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Abstract
Improving the generalization ability of modern deep neural networks (DNNs) is a fundamental
problem in machine learning. Two branches of methods have been proposed to seek flat minima and
improve generalization: one led by sharpness-aware minimization (SAM) minimizes the worst-case
neighborhood loss through adversarial weight perturbation (AWP), and the other minimizes the
expected Bayes objective with random weight perturbation (RWP). Although RWP has advantages in
training time and is closely linked to AWP on a mathematical basis, its empirical performance always
lags behind that of AWP. In this paper, we revisit RWP and analyze its convergence properties. We
find that RWP requires a much larger perturbation magnitude than AWP, which leads to convergence
issues. To resolve this, we propose m-RWP that incorporates the original loss objective to aid
convergence, significantly lifting the performance of RWP. Compared with SAM, m-RWP is more
efficient since it enables parallel computing of the two gradient steps and faster convergence, with
comparable or even better performance1.

1. Introduction

Modern deep neural networks (DNNs) are often over-parameterized and contain millions or even
billions of parameters. As the number of parameters greatly exceeds that of samples, DNNs can
easily memorize the entire training data and overfit them eventually, even with random labels [39].
Therefore, it is crucial to develop effective training algorithms that enable the network to achieve
superior interpolation and generalize well beyond the training set [33].

Many works are devoted to improving the generalization ability of DNNs [9, 17, 35, 40, 41].
Following the idea that flat minima adapt better to the potential distribution shift between training and
test data and thus exhibit better generalization [4, 15, 27], two prominent branches of methods have
been proposed to seek such flat minima and show effective generalization improvement. The first
formulates the optimization target as a min-max problem and tries to minimize the training loss under
the worst-case adversarial weight perturbation (AWP), known as sharpness-aware minimization

1. The code is available at https://github.com/nblt/RWP.
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(SAM) [9]. The second, represented by LPF-SGD [2], attempts to recover flat minima by minimizing
the expected training loss under random weight perturbation (RWP). These two approaches are not
only alike in formulation but can also be mathematically connected [32]. However, the empirical
performance of RWP is commonly believed to be inferior to that of AWP [2, 29, 44], despite being
computationally cheaper. The reason for this is that RWP is much weaker in perturbing the model
than AWP, which can leverage the precise gradient information.

In this paper, we revisit RWP from a convergence perspective and aim to bridge the performance
gap between these two types of perturbations. We show that RWP requires orders of perturbation
magnitude larger than that of AWP for a similar perturbation strength, which can lead to convergence
issues. To address this, we propose to incorporate the gradient of the original loss objective to
improve convergence and guide the network towards better minima. We refer to our approach as
m(ixed)-RWP. Despite both SAM and m-RWP consuming two gradient steps for each iteration, the
two in m-RWP are separable and thus can be efficiently computed in parallel, enabling the same
training speed as regular SGD. In contrast, the two gradient steps in SAM are successive, resulting in
a doubling of the training time. Another benefit of the two separable gradient steps in m-RWP is
the ability to simultaneously use two different batches of data, further accelerating the convergence.
In contrast, this is not permitted for SAM and can even have a detrimental effect on generalization
performance. In summary, we make the following contributions:

• We analyze the convergence properties of SGD with RWP and propose to incorporate the
gradient of the original loss objective to improve the convergence.

• We present m-RWP as an efficient alternative to SAM with comparable or even better perfor-
mance. By parallelly computing the two gradient steps and utilizing two different data batches
for each step, m-RWP halves the training time of SAM with faster convergence.

• We conduct extensive experiments with various architectures on benchmark image classifica-
tion tasks to demonstrate the efficiency and effectiveness of our method.

2. Preliminary

Let f(x;w) be the neural network function with trainable parameters w ∈ Rd, where d is the number
of parameters. The loss function over a pair of data point (xi,yi) is denoted as L(f(xi;w),yi)
(shorted for Li(w)). Given the datasets S = {(xi,yi)}ni=1 drawn from data distribution D with i.i.d.
condition, the empirical loss can be defined as L(w) = 1

n

∑n
i=1 Li(w).

Two branches of methods are proposed to pursue flat minima and better generalization ability.
The first, known as sharpness-aware minimization [9], tries to minimize the worst-case loss in a
neighborhood (defined by a norm ball) to bias training trajectories towards flat minima, i.e.,

LSAM(w) = max
∥ϵs∥2≤ρ

L(w + ϵs), (1)

where ρ is the radius that controls the neighborhood size. Instead of posing the strict ‘max-loss’ over
the neighborhood, the second, represented by LPF-SGD [2], adopts ‘expected-loss’ and minimizes
the posterior (typically an isotropic Gaussian distribution) of the following Bayes objective [32]:

LBayes(w) = Eϵr∼N (0,σ2I)L(w + ϵr). (2)

Such expected loss could effectively smooth the loss landscape and thus recover flat minima [2].
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Adversarial Weight Perturbation (AWP). To optimize LSAM, we first have to find the worst-case
perturbations ϵ∗s for the max problem. Foret et al. [9] practically approximate (1) via the first-order
expansion:

ϵ∗s ≈ argmax
∥ϵs∥2≤ρ

ϵ⊤s ∇wL(w) = ρ
∇wL(w)

∥∇wL(w)∥2
. (3)

Then the gradient at the perturbed weight w + ϵ∗s is computed for updating the model:

∇LSAM(w) ≈ ∇L(w)|w+ϵ∗s . (4)

Random Weight Perturbation (RWP). For optimizing LBayes, we similarly sample a random
perturbation ϵr and calculate the gradient at the perturbed weight w + ϵr for updating the model:

∇LBayes(w) ≈ ∇L(w)|w+ϵr . (5)

For modern DNNs, the loss function does not change with parameter scaling when ReLU-nonlinearities
and batch normalization [16] are applied. Hence, it is essential to consider the filter-wise struc-
ture. Following the approach in [2], we practically generate the RWP from a filter-wise Gaussian
distribution, i.e., ϵr ∼ N

(
0, σ2diag(∥w1∥2, · · · , ∥wk∥2)

)
, with σ controlling the variance.

RWP requires much larger magnitude. AWP is much more “effective” at perturbing the model
compared to RWP. Consequently, in order to achieve a similar level of perturbation strength, the
magnitude of RWP needs to be considerably larger than that of AWP. As dipicted in Figure A1,
to attain a similar expected perturbed training loss E [L(w∗ + ϵ)], the perturbation radius of RWP
needs to be two orders of magnitude larger than that of AWP. Such large perturbations can introduce
instability in training and cause convergence issues that degrade the performance.

3. Improving Random Weight Perturbation By Integrating Original Loss

We first investigate the convergence properties of the following RWP-SGD:

wt+1 = wt −
γt
|Bt|

∑
i∈Bt

∇Li(wt + ϵr), (6)

where Bt denotes the batch indices at time t. We make some standard assumptions on smoothness
and bounded variance of stochastic gradients, which are typical as in [1, 8, 11, 18, 21].

Theorem 1 (Convergence in convex settings) Let ϵr ∼ N (0, σ2Id×d) be the random perturba-
tion and b be the batch size. Suppose that Li(w) is a convex function on Rd and w∗ satisfies
∇LBayes(w∗) = 0. Consider the sequence (wt)t∈N generated by (A1), with a stepsize satisfying
γt =

γ√
t+1

and γ < 1
2β . Then we have

E
[
L(w̄t)− inf L

]
≤ ∥w0 −w∗∥2

2γ
√
t

+
γ log(t)√

t

(
σ2
0

b
+ σ∗

L

)
+ ασ

√
d, (7)

where w̄=
∑t−1

k=0 pt,kwk, with pt,k=
γk(1−2γkβ)∑t−1

k=0 γk(1−2γkβ)
and σ∗

L=E
[
∥∇L(w∗ + ϵr)∥2

]
. Furthermore,

if L(w) is strongly convex, i.e.,∇2L(w) ≥ mI , we have σ∗
L ≥ m2σ2d.
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We present full assumptions and proof in Appendix A1 and make the following remarks: (1) The
first two terms decrease at a rate of O( 1√

t
) and O( log(t)√

t
), respectively, which is consistent with

the convergence rate of regular SGD. (2) The third term is a positive constant proportional to σ,
which prevents the effective reduction of the loss at the end of training. Intuitively, the ‘smoothed’
loss function LBayes(w) provides an upper bound on the original loss function L(w) for convex
functions, and their respective minima would be different, leading to the minima gap. (3) σ∗

L is the
variance term introduced by random weight perturbation. It can remain large when ∥ϵr∥2 is large,
thereby slowing down the convergence.
Improving convergence by integrating original loss. To improve the convergence of RWP-SGD,
we propose to combine the original loss with the expected Bayes loss, i.e.,

Lm(w) = λLBayes(w) + (1− λ)L(w), (8)

where λ is a pre-given balance coefficient. These two loss terms are complementary to each other:
the first LBayes(w) provides a smoothed landscape that biases the network towards flat region, while
the second L(w) helps recover the necessary local information and better locates the minima that
contributes to high performance. These two together could provide a both ‘local’ and ‘global’ viewing
of the landscape — by optimizing Lm(w), a good solution can be expected.

Efficient Parallel Training. Both SAM and m-RWP involve two gradient steps for each iteration,
i.e., ∇L(w) and ∇L(w + ϵ). The two steps in m-RWP are separable, whereas, in SAM, they are
computed sequentially. This allows us to half the training time of m-RWP by parallel computing.

Different Data Batches Accelerate Convergence. For m-RWP, we can use two different data
batches to compute the two gradient steps. This virtually enlarges the batch size and reduces the
gradient variance term in (7), which is σ2

0
b , by a factor of 2λ2 − 2λ+ 1. This, in turn, enhances the

convergence rate. However, we find that such modifications undesirably destroy the generalization
performance of SAM to that of SGD, as shown in Table A1. We present the convergence analysis of
m-RWP in Appendix A1.2 and the training curves comparison of different methods in Appendix A6.

4. Experiments

In this section, we conduct extensive experiments to demonstrate the efficiency and effectiveness of
our proposed m-RWP algorithm. We begin by introducing the experimental setup and then evaluate
the performance over standard benchmark datasets.
Setup. We experiment over three benchmark image classification tasks, including CIFAR-10, CIFAR-
100 [25], and ImageNet [3], and evaluate across various representative DNN architectures, including
VGG [34], ResNet [13], WideResNet [38], and ViT [5]. We compare four training schemes, including
SGD, SAM, RWP and m-RWP, and place the detailed settings in Appendix A5.
Results. We first focus on the CIFAR-10 and CIFAR-100 datasets. We compare the final test accuracy,
total computation (in FLOPs), and training time for different schemes. Detailed comparisons are
presented in Table 1. It is worth noting that while both SAM and m-RWP require the same amount
of computation, which is twice that of SGD, the training time of m-RWP can be reduced by
half compared to SAM through parallel computing. RWP does not bring consistent improvement
over SGD, showing its sensitivity to different architectures, and has a significant performance gap
compared to SAM, especially on larger models. m-RWP consistently outperforms RWP, enhancing
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Table 1: Results on CIFAR-10/100. We set the computation (FLOPs) and training time of SGD as
1×. The best accuracy is in bold and the second best is underlined.

Model Method CIFAR-10 CIFAR-100 FLOPs Time

VGG16-BN

SGD 94.96±0.15 75.43±0.29 1× 1×
SAM 95.43±0.11 76.74±0.22 2× 2×
RWP 94.97±0.01 76.31±0.15 1× 1×

m-RWP 95.61±0.23 77.85±0.17 2× 1×

ResNet-18

SGD 96.10±0.08 78.10±0.39 1× 1×
SAM 96.50±0.08 80.22±0.23 2× 2×
RWP 96.17±0.31 80.08±0.11 1× 1×

m-RWP 96.68±0.17 81.25±0.13 2× 1×

WRN-28-10

SGD 96.85±0.05 82.51±0.24 1× 1×
SAM 97.37±0.02 84.44±0.03 2× 2×
RWP 96.73±0.12 83.40±0.08 1× 1×

m-RWP 97.28±0.09 84.37±0.12 2× 1×

ViT-S

Adam 86.60±0.03 63.66±0.28 1× 1×
SAM 87.48±0.28 64.83±0.24 2× 2×
RWP 86.53±0.04 63.07±0.41 1× 1×

m-RWP 88.18±0.19 66.13±0.03 2× 1×

performance by 1.6% on CIFAR-10 and 3.1% on CIFAR-100, thereby confirming its effectiveness in
improving generalization. Besides, m-RWP achieves very competitive performance against SAM:
for example, it outperforms SAM significantly by 1.1% with VGG16-BN and 1.0% with ResNet-18
on CIFAR-100. On the larger WideResNet models, m-RWP performs comparably to SAM, e.g.,
+0.09% with WideResNet-16-8 and -0.07% with WideResNet-28-10 on CIFAR-100.

Next, we evaluate our proposed scheme on the ImageNet dataset, which has a substantially
larger scale than CIFAR datasets. In the case of SAM, the 2× longer training time would be
prohibitively slow, making it essential to improve the training efficiency. We evaluate over ResNet-18
and ResNet-50, and present the results in Table 2. We observe that m-RWP significantly outperforms
SAM, achieving 71.58% accuracy (+0.81%) with ResNet-18, and 78.04% accuracy (+0.89%) with
ResNet-50. We note that models trained on ImageNet are typically under-trained and thus the faster
convergence of m-RWP offers even more significant advantages over SAM.

Table 2: Results on ImageNet. We set the computation (FLOPs) and training time of SGD as 1×.

Model Training Top-1 Accuracy Top-5 Accuracy FLOPs Time

ResNet-18

SGD 70.46 89.79 1× 1×
SAM 70.77 89.83 2× 2×
RWP 70.65 89.60 1× 1×

m-RWP 71.58 90.31 2× 1×

ResNet-50

SGD 76.83 93.55 1× 1×
SAM 77.15 93.55 2× 2×
RWP 76.32 92.99 1× 1×

m-RWP 78.04 93.91 2× 1×
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5. Conclusion

In this work, we revisit the use of random weight perturbation for improving generalization per-
formance. We demonstrate that random weight perturbation requires a much larger perturbation
magnitude than the adversarial one, which leads to convergence issues. To address this problem, we
propose m-RWP that incorporates the original loss objective to aid convergence and significantly
enhance the performance. Compared with the current state-of-the-art SAM that adopts adversarial
weight perturbation, our extensive experiments show that m-RWP achieves comparable or even better
performance. Moreover, m-RWP offers greater efficiency by enabling parallel computing of the two
gradient steps and faster convergence by utilizing different data batches for each step.
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Appendix A1. Missing Proofs

A1.1. Proof of Theorem 4.1

In this part, we prove Theorem 4.1 in the main paper, which provides analytical results on the
convergence of the following RWP-SGD algorithm:

wt+1 = wt −
γt
|Bt|

∑
i∈Bt

∇Li(wt + ϵr). (A1)

The proof is based on [2, 8, 10]. Before proceeding with the proof, we need the following necessary
lemmas and assumptions.

Lemma 2 (Bisla et al. [2]) Let L(w) : Rd → R be α-Lipschitz continuous and β-smooth w.r.t.
l2-norm. The smoothed loss function is defined as LBayes(w) ≜ Eϵr∼N (0,σ2I)L(w + ϵr). Then the
following properties hold:

1. LBayes(w) is α-Lipschitz continuous.

2. LBayes(w) is continuously differentiable; moreover, its gradient is min{ασ , β}-Lipschitz con-
tinuous, i.e., LBayes(w) is min{ασ , β}-smooth.

3. If L(w) is convex, L(w) ≤ LBayes(w) ≤ L(w) + ασ
√
d.

Lemma 3 (Garrigos et al. [10]) If L(w) is convex and β-smooth, for all w1,w2 ∈ Rd, we have

1

2β
∥∇L(w2)−∇L(w1)∥2 ≤ L(w2)− L(w1)− ⟨∇L(w1),w2 −w1⟩.

Assumption 1 (Bounded variance). E
[
∥∇Li(w)−∇L(w)∥2

]
≤ σ2

0 for all w ∈ Rd and i ∈ [n].
Assumption 2 (Individual α-Lipschitz continuous and β-smoothness). There exist α, β ≥ 0 such
that ∥Li(w)−Li(v)∥ ≤ α∥w− v∥, ∥∇Li(w)−∇Li(v)∥ ≤ β∥w− v∥ for all w,v ∈ Rd, i ∈ [n].

Theorem 4.1 Let ϵr ∼ N (0, σ2Id×d) be the random perturbation and b be the batch size. Suppose
that Li(w) is a convex function on Rd and w∗ satisfies∇LBayes(w∗) = 0. Consider the sequence
(wt)t∈N generated by (A1), with a stepsize satisfying γt =

γ√
t+1

and γ < 1
2β . Then we have

E
[
L(w̄t)− inf L

]
≤ ∥w0 −w∗∥2

2γ
√
t

+
γ log(t)√

t

(
σ2
0

b
+ σ∗

L

)
+ ασ

√
d,

where w̄=
∑t−1

k=0 pt,kwk, with pt,k=
γk(1−2γkβ)∑t−1

k=0 γk(1−2γkβ)
and σ∗

L=E
[
∥∇L(w∗ + ϵr)∥2

]
. Furthermore,

if L(w) is strongly convex, i.e.,∇2L(w) ≥ mI , we have σ∗
L ≥ m2σ2d.

Proof Let LB(w)
def
= 1

|B|
∑

i∈B∇Li(w). We first derive the following inequality that holds true:

∥∇LBt(w + ϵr)∥2 ≤ 2∥∇LBt(w + ϵr)−∇LBt(w
∗ + ϵr)∥2 + 2∥∇LBt(w

∗ + ϵr)∥2.

Applying Lemma 3 and taking the expectation over both sides, we obtain:

EBt,ϵr

[
∥∇LBt(w + ϵr)∥2

]
≤ 4β(LBayes(w)− LBayes(w∗)) +

2σ2
0

b
+ 2σ∗

L,

10
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where the last two terms follow from

EBt,ϵr

[
∥∇LBt(w

∗ + ϵr)∥2
]

= EBt,ϵr

[
∥∇LBt(w

∗ + ϵr)−∇L(w∗ + ϵr) +∇L(w∗ + ϵr)∥2
]

= EBt,ϵr

[
∥∇LBt(w

∗ + ϵr)−∇L(w∗ + ϵr)∥2
]
+ Eϵr

[
∥∇L(w∗ + ϵr)∥2

]
≤ σ2

0

b
+ σ∗

L.

Next, we analyze the behaviour of ∥wt+1 −w∗∥2. By developing squares, we obtain:

∥wt+1 −w∗∥2 = ∥wt −w∗∥2 − 2γt⟨∇LBt(wt + ϵr),wt −w∗⟩+ γ2t ∥∇LBt(wt + ϵr)∥2.

Taking expectation conditioned on wt and utilizing the convexity of LBayes(w), we obtain:

Et

[
∥wt+1 −w∗∥2

]
= ∥wt −w∗∥2 − 2γt⟨∇LBayes(wt),wt −w∗⟩+ γ2t E

[
∥∇L((wt + ϵr)∥2

]
≤ ∥wt −w∗∥2 + 2γt (2γtβ − 1)

(
LBayes(wt)− LBayes(w∗)

)
+ 2γ2t (

σ2
0

b
+ σ∗

L).

Further taking expectation and summing over k = 0, · · · , t− 1, we have:

2
t−1∑
k=0

γk (1− 2γkβ)E
[
LBayes(wk)− LBayes(w∗)

]
≤ ∥w0 −w∗∥2 − E

[
∥wt −w∗∥2

]
+ 2(

σ2
0

b
+ σ∗

L)

t−1∑
k=0

γ2k .

Dividing both sides by 2
∑t−1

k=0 γk (1− 2γkβ), we obtain:

t−1∑
k=0

E

[
γk (1− 2γkβ)∑t−1
k=0 γk (1− 2γkβ)

[
LBayes(wk)− LBayes(w∗)

]]

≤ ∥w0 −w∗∥2

2
∑t−1

k=0 γk (1− 2γkβ)
+

(
σ2
0
b + σ∗

L)
∑t−1

k=0 γ
2
k∑t−1

k=0 γk (1− 2γkβ)
.

Define pt,k
def
= γk(1−2γkL1)∑t−1

k=0 γk(1−2γkL1)
, we observe pt,k ≥ 0 and

∑t−1
k=0 pt,k = 1. Using that LBayes(w) is

convex together with Jensen’s inequality gives:

E
[
LBayes(w̄t)− LBayes(w∗)

]
≤

t−1∑
k=0

E

[
γk (1− 2γkβ)∑t−1
k=0 γk (1− 2γkβ)

[
LBayes(wk)− LBayes(w∗)

]]

≤ ∥w0 −w∗∥2

2
∑t−1

k=0 γk (1− 2γkβ)
+

(
σ2
0
b + σ∗

L)
∑t−1

k=0 γ
2
k∑t−1

k=0 γk (1− 2γkβ)
. (A2)

11
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Finally, with the integral bound

t−1∑
k=0

γ2k = γ2
t−1∑
k=0

1

k + 1
≤ γ2

∫ t−1

k=0

1

k + 1
dk = γ2 log(t),

t−1∑
k=0

γk ≥
∫ t−1

k=1

γ√
k + 1

dk = 2γ
(√

t−
√
2
)
,

we have the following equality for large enough t:

t−1∑
k=0

γk (1− 2γkβ) ≥ 2γ
(√

t−
√
2− γβ log(t)

)
≥ 2γ

(√
t−
√
2− log(

√
k)
)

≥ γ
√
t.

Applying the above equality into (A2) and with 2, we arrive at the result:

E
[
L(w̄t)− L(w∗)

]
≤ ∥w0 −w∗∥2

2
∑t−1

k=0 γk (1− 2γkβ)
+

(
σ2
0
b + σ∗

L)
∑t−1

k=0 γ
2
k∑t−1

k=0 γk (1− 2γkβ)
+ ασ

√
d

≤ ∥w0 −w∗∥2

2γ
√
t

+
(
σ2
0
b + σ∗

L)γ
2 log(t)

γ
√
t

+ ασ
√
d

=
∥w0 −w∗∥2

2γ
√
t

+
γ log(t)√

t
(
σ2
0

b
+ σ∗

L) + ασ
√
d.

Furthermore, if∇2L(w) ≥ mI , let w∗
L

def
= argmin

w
L(w), then we have the following bound:

E
[
∥∇L(w∗ + ϵr)∥2

]
≥ E

[
∥∇L(w∗

L + ϵr)∥2
]
≥ m2E

[
∥ϵr∥2

]
= m2σ2d.

A1.2. Convergence analysis of m-RWP

In the following, we provide the convergence analysis of the m-RWP algorithm, which integrates the
gradient of the original loss objective into RWP-SGD to improve the convergence.

Theorem A2 Let ϵr ∼ N (0, σ2Id×d) be the random perturbation and b be the batch size. Suppose
Li(w) is a convex function on Rd and w∗ satisfies∇Lm(w∗) = 0. Consider the sequence (wt)t∈N
generated by Algorithm 2, with a stepsize satisfying γt =

γ√
t+1

and γ < 1
2β . Then we have:

E
[
L(w̄t)− inf L

]
≤ ∥w0 −w∗∥2

2γ
√
t

+
γ log(t)√

t

(
2λ2 − 2λ+ 1

b
σ2
0 + λ2σ∗

m

)
+ ασλ

√
d,

where w̄=
∑t−1

k=0 pt,kwk with pt,k=
γk(1−2γkβ)∑t−1

k=0 γk(1−2γkβ)
and σ∗

m=E
[
∥∇L(w∗ + ϵr)−∇LBayes(w∗)∥2

]
.

12
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Proof The schematic derivation of this proof is similar to that of Theorem 4.1. Firstly, we recall the
update rule in m-RWP:

wt+1 = wt − γt

 λ

|Bt,1|
∑
i∈Bt,1

∇Li(wt + ϵr) +
1− λ

|Bt,2|
∑
i∈Bt,2

∇Li(wt)

 .

Let LB(w)
def
= 1

|B|
∑

i∈B∇Li(w) and ∇Lm
B (w)

def
= λ∇LBt,1(w + ϵr) + (1 − λ)∇LBt,2(w), we

first have the following equality:

∥∇Lm
B (w)∥2 ≤ 2∥∇Lm

B (w)−∇Lm
B (w∗)∥2 + 2∥∇Lm

B (w∗)∥2.

Applying Lemma 3 and taking expectation over both sides, we obtain:

EBt,1,Bt,2,ϵr [∥∇Lm
B (w)] ≤ 4β(Lm(w)− Lm(w∗)) +

2σ2
0(2λ

2 − 2λ+ 1)

b
+ 2λ2σ∗

m.

where the last two terms follow from that

EBt,1,Bt,2,ϵr

[
∥∇Lm

B (w∗)∥2
]

= EBt,1,Bt,2,ϵr

[
∥∇Lm

B (w∗)− EBt,1,Bt,2 [∇Lm
B (w∗)] + EBt,1,Bt,2 [∇Lm

B (w∗)] ∥2
]

= EBt,1,Bt,2,ϵr

[
∥∇Lm

B (w∗)− EBt,1,Bt,2 [∇Lm
B (w∗)]

∥∥2] + Eϵr

[
∥EBt,1,Bt,2 [∇Lm

B (w∗)] ∥2
]

= EBt,1,Bt,2,ϵr

[
∥∇Lm

B (w∗)− EBt,1,Bt,2 [∇Lm
B (w∗)]

∥∥2] + Eϵr

[
∥λ∇L(w∗ + ϵr)− λ∇LBayes(w∗)∥2

]
≤ σ2

0(2λ
2 − 2λ+ 1)

b
+ λ2σ∗

m.

By developing squares, we obtain:

∥wt+1 −w∗∥2 = ∥wt −w∗∥2 − 2γt⟨∇Lm
B (w),wt −w∗⟩+ γ2t ∥∇Lm

B (w)∥2.

Taking the expectation conditioned on wt and using the convexity of Lm(w), we have:

Et

[
∥wt+1 −w∗∥2

]
= ∥wt −w∗∥2 − 2γt⟨∇Lm(wt),wt −w∗⟩+ γ2t E

[
∥∇Lm

B (w)∥2
]

≤ ∥wt −w∗∥2 + 2γt (2γtβ − 1) (Lm(wt)− Lm(w∗)) + 2γ2t (
2λ2 − 2λ+ 1

b
σ2
0 + λ2σ∗

m).

Taking expectation and summing over k = 0, · · · , t− 1 leads to:

2
t−1∑
k=0

γk (1− 2γkβ)E [Lm(wk)− Lm(w∗)]

≤ ∥w0 −w∗∥2 − E
[
∥wt −w∗∥2

]
+ 2(

2λ2 − 2λ+ 1

b
σ2
0 + λ2σ∗

m)
t−1∑
k=0

γ2k .

13
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Dividing both sides by 2
∑t−1

k=0 γk (1− 2γkβ), we obtain:

t−1∑
k=0

E

[
γk (1− 2γkβ)∑t−1
k=0 γk (1− 2γkβ)

[Lm(wk)− Lm(w∗)]

]

≤ ∥w0 −w∗∥2

2
∑t−1

k=0 γk (1− 2γkβ)
+

(2λ
2−2λ+1

b σ2
0 + λ2σ∗

m)
∑t−1

k=0 γ
2
k∑t−1

k=0 γk (1− 2γkβ)
.

Hence, we arrive at the convergence result:

E
[
L(w̄t)− L(w∗)

]
≤ ∥w0 −w∗∥2

2
∑t−1

k=0 γk (1− 2γkβ)
+

(2λ
2−2λ+1

b σ2
0 + λ2σ∗

m)
∑t−1

k=0 γ
2
k∑t−1

k=0 γk (1− 2γkβ)
+ λασ

√
d

≤ ∥w0 −w∗∥2

2γ
√
t

+
(2λ

2−2λ+1
b σ2

0 + λ2σ∗
m)γ2 log(t)

γ
√
t

+ λασ
√
d

=
∥w0 −w∗∥2

2γ
√
t

+
γ log(t)√

t
(
2λ2 − 2λ+ 1

b
σ2
0 + λ2σ∗

m) + λασ
√
d.

Appendix A2. Related Work

Flat Minima and Generalization. The connection between the flatness of local minima and
generalization has been extensively studied [4, 17, 19, 22, 27]. Hochreiter et al. [14, 15] are among
the first to reveal the connection between flat minima and the generalization of a model. Keskar et
al. [22] observe that the performance degradation of large batch training is caused by converging to
sharp minima. More recently, Jiang et al. [19] present a large-scale study of generalization in DNNs
and demonstrate a strong connection between the sharpness and generalization error under various
settings and hyper-parameters. Keskar et al. [22] and Dinh et al. [4] state that the flatness can be
characterized by Hessian’s eigenvalues and provide computationally feasible method to measure it.

Sharpness-aware Minimization (SAM). SAM [9] is a recently proposed training scheme that
seeks flat minima by formulating a min-max problem and utilizing adversarial weight perturbation
(AWP) to encourage parameters to sit in neighborhoods with uniformly low loss. It has shown power
to achieve state-of-the-art performance. Later, a line of works improves the SAM’s performance
from the perspective of the neighborhood’s geometric measure [23, 26, 29] or surrogate loss function
[46]. Several methods have been developed to improve training efficiency [6, 7, 18, 28, 31, 43, 43].

Random Weight Perturbation (RWP). RWP is widely used in deep learning. Multiple weight
noise injection methods have been shown to effectively escape spurious local optimum [45] and
saddle points [20]. Upon generalization, Zhang et al. [44] discuss that RWP is much less effective for
generalization improvement than AWP. Wen et al.. [37] propose SmoothOut framework to smooth out
the sharp minima. Wang et al. [36] propose Gaussian model perturbation (GMP) as a regularization
scheme for SGD training, but it remains inefficient due to the need of multiple computation budgets
for noise sampling. Bisla et al. [2] connect the smoothness of the loss objective to generalization and
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adopt filter-wise random Gaussian perturbation generation to improve the performance. However,
the performance of RWP still lags behind that of AWP [2, 29]. Notably, recent Möllenhoff et al. [32]
mathematically connect the expected Bayes loss under RWP with the min-max loss in SAM and
suggest that RWP can be viewed as a ‘softer’ version of AWP. We significantly lift the performance
of RWP from the convergence perspective and fill the performance gap to that of AWP.

Appendix A3. SAM and m-RWP Algorithm

Algorithm 1: SAM algorithm
Input: Loss function L(w), training datasets

S = {(xi,yi)}ni=1, initial weight
winit, batch size b, neighborhood size
ρ, learning rate γ

Output: Trained weight w

Initialize weight w ← winit;
while not converged do

Sample a batch data B of size b from S;
Compute adversarial weight perturbation:

ϵs = ρ ∇BL(w)
∥∇BL(w)∥2

;
Compute the gradient approximation g:

g ← ∇LB(w + ϵs);
Update w using gradient descent:

w ← w − γg;
end
return w.

Algorithm 2: m-RWP algorithm
Input: Loss function L(w), training datasets

S = {(xi,yi)}ni=1, initial weight winit,
batch size b, filter number k, noise variance
σ, balance coefficient λ, learning rate γ

Output: Trained weight w

Initialize weight w ← winit;
while not converged do

Sample batch data B1 and B2 of size b from S;
Generate random weight perturbations:

ϵr ∼ N
(
0, σ2diag (∥w1∥2, · · · , ∥wk∥2)

)
;

Compute the gradients g1 and g2 in parallel:
g1 ← ∇LB1

(w), g2 ← ∇LB2
(w + ϵr);

Update w using gradient descent:
w ← w − γ(λg1 + (1− λ)g2);

end
return w.

Appendix A4. Magnitude Comparison of RWP and AWP

As the precise gradient direction is known, AWP is much more “effective” at perturbing the model
compared to RWP. Consequently, in order to achieve a similar level of perturbation strength, the
magnitude of RWP needs to be considerably larger than that of AWP. We carry out comparative
experiments using a model w∗ that has been well-trained with SGD and apply different magnitudes
of perturbation for both RWP and AWP. As dipicted in Figure A1, to attain a similar expected
perturbed training loss E [L(w∗ + ϵ)], the perturbation radius of RWP would need to be two orders
of magnitude larger than that of AWP. Such large perturbations can introduce instability in training
and cause convergence issues that degrade the performance.

Appendix A5. Training Details

Training Settings. We compare the performance of four training schemes: SGD, SAM, RWP, and
m-RWP. For CIFAR experiments, we set the training epochs to 200 with batch size 256, momentum
0.9, and weight decay 0.001 [6, 42], keeping the same among all schemes for a fair comparison
(except for ViT-S, we adopt a longer 400 epochs training schedule with an initial learning rate of
0.0001 and Adam [24] as the base optimizer). We set ρ for SAM as 0.05 for CIFAR-10 and 0.10
for CIFAR-100 as in [9, 26]. For m-RWP/RWP, we try σ in {0.001, 0.005, 0.01, 0.015, 0.02, 0.03}
using ResNet-18 and finally use σ = 0.015 for m-RWP and σ = 0.01 for RWP for optimal. For
ImageNet experiments, we set the training epochs to 90 with batch size 256, weight decay 0.0001,
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Figure A1: Expected training loss E[L(w∗+ϵ)] w.r.t. different perturbation radius ∥ϵ∥2 for RWP and
AWP. The experiments employ a well-trained model w∗ using SGD on CIFAR-10 with ResNet-18.
Note that the x-axis is in logarithmic coordinates.

and momentum 0.9. We use ρ = 0.05 for SAM following [9, 26] and σ = 0.005, λ = 0.5 for
m-RWP. We employ m-sharpness with m = 128 for SAM as in [9, 26]. For all experiments, we
adopt cosine learning rate decay [30] with an initial learning rate of 0.1 and record the final model
performance on the test set. Mean and standard deviation are calculated over three independent trials.

Appendix A6. Training Curves

Training Curves. We visualize the training curves of four training schemes (SGD, SAM, RMP,
and m-RWP) using ResNet-18 on CIFAR-10 (Figure A2), CIFAR-100 (Figure A3), and ImageNet
(Figure A4). Our results show that m-RWP achieves significantly faster convergence than the other
competitive schemes in both training loss and test accuracy.
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Figure A2: Training curves on CIFAR-10 with ResNet-18 model.
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Figure A3: Training curves on CIFAR-100 with ResNet-18 model.

0 30 60 90
Epochs

1

2

3

4

5

Tr
ai

ni
ng

 lo
ss

SGD
SAM
RWP
m-RWP

(a) Training loss

0 30 60 90
Epochs

20

30

40

50

60

70
Ac

cu
ra

cy
 (%

)

SGD
SAM
RWP
m-RWP

(b) Test accuracy

Figure A4: Training curves on ImageNet with ResNet-18 model.

Appendix A7. Ablation Study and Visualization

Table A1: Effects of same/different data
batches for two gradient steps. The exper-
iments are conducted on CIFAR-100 with
ResNet-18.

Training Same Different

SAM 80.22±0.23 78.30±0.11 (↓ 1.92)
m-RWP 81.04±0.10 81.25±0.13 (↑ 0.21)

Impact of different data batches. We further in-
vestigate the impact of same/different data batches
for the two gradient steps in m-RWP and SAM. The
results are presented in Table ??. We observe that for
m-RWP, the two choices yield comparable perfor-
mance, with different batches being slightly better.
However, for SAM, these two approaches are starkly
different. Adopting different data batches would un-
desirably destroy the generalization performance of
SAM to that of plain SGD. This finding suggests that applying the same data batch for adversarial
attack and gradient propagation is a crucial part for SAM’s generalization improvement. We attribute
this to the unique characteristic of AWP in SAM, which is specific to a particular batch of data.
AWP over one batch can degenerate to meaningless noise w.r.t. another batch. In contrast, the
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perturbation for m-RWP is not associated to data and hence it allows using two different batches to
accelerate convergence with better efficiency.

Sensitivity of hyper-parameters. m-RWP has two hyper-parameters, namely the noise magni-
tude σ and balance coefficient λ. To better understand their effects on performance, we test the
performance under different choices of values. Specifically, we pick two representative network, i.e.,
VGG16-BN and ResNet-18, for CIFAR-10/100 datasets, and vary σ in {0.005, 0.01, 0.015, 0.02}
and λ in {0.1, 0.3, 0.5, 0.7, 0.9}. The results are in Figure A5. We observe that σ = 0.015 and
λ = 0.5 is a robust choice for both architectures on CIFAR-10 and CIFAR-100.
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Figure A5: Performance under various hyper-parameter configurations.

Loss landscape and Hessian spectrum. Finally, we compare the loss landscape and Hessian
spectrum of SAM and m-RWP. Following the plotting technique in [27], we uniformly sample
50× 50 grid points in the range of [−1, 1] from random “filter-normalized” direction [27], and for
Hessian spectrum, we approximate it using the Lanczos algorithm [12]. In Figure A6, we observe
that both methods could achieve flat loss landscape while m-RWP yields wider flat region with
smaller dominant eigenvalue λ1. This is perhaps due to the larger perturbations that m-RWP imposes.
We thus conclude that m-RWP can converge to a flat minima as SAM does, or even better.
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Figure A6: Loss landscape and Hessian spectrum visualization of SAM (Left) and m-RWP (Right).
Models are trained on CIFAR-10 with ResNet-18.
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