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Abstract
Black-box optimization (BBO) techniques are often the core engine used in combinatorial op-
timization problems which include multi-asset class portfolio construction. The computational
complexity of such evolutionary algorithms, however, is excessively high to the point that finding
optimal portfolios in large search spaces becomes intractable and learning dynamics are usually
heuristic. To alleviate these challenges, in this paper, we set out to leverage advances in meta-
learning-based evolution strategy (ES), Adaptive ES-Active Subspaces, and fast-moving natural
ES to improve high-dimensional portfolio construction. Using such modern ES algorithms in a
series of risk-aware passive and active asset allocation problems, we obtain orders of magnitude ef-
ficiency in finding optimal portfolios compared to vanilla BBO methods. Moreover, as we increase
the number of asset classes, our modern suite of BBOs finds better local optima resulting in better
financial advice quality.

1. Introduction

Traditional methods of portfolio construction, including mean-variance optimization, operate based
on two aspects: portfolio risk and portfolio return. However, actual investor decisions indicate that
the selection of portfolios relies on a variety of risk and return dimensions, including systematic risk,
volatility, active alpha, tracking error, and implicit risk factor exposures [1]. As a portfolio optimiza-
tion problem, asset allocation could be solved by quadratic programs (QPs) through a set of linear
constraints. However, the optimization problem becomes non-convex and computationally difficult
when nonlinear constraints like transaction costs or minimum portfolio lots are incorporated [24].
Similarly, the inclusion of higher distribution moments in forecasts can result in added complexity
[18]. In such circumstances, black-box optimization (BBO) algorithms that are gradient-free are
great alternatives. In the space of portfolio optimization, BBO methods such as genetic algorithm
(GA) are the go-to search strategies to find optimal portfolios [15, 23, 34]. Nonetheless, GA comes
with a fundamental shortcoming that a simple GA algorithm on the OneMax problem* has exponen-
tial runtime with overwhelming probability for a population size n ≤ d1/8−ϵ for a problem size of d
and a small ϵ > 0 [30]. This implies that the application of GA to large-scale portfolio construction
problems with large population sizes is computationally intractable.

*. These authors contributed equally to this work
*. The OneMax problem defines the task to find the binary string (of a given length) that maximizes the sum of its digits.
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Recently, BBO alternatives such as parallelizable evolution strategies (ES) have shown promise
in solving high-dimensional optimization problems comparable to gradient-based approaches [22,
36, 37]. These methods typically use first principles [31, 38] and require empirical tuning to find
local optima. The evolutionary algorithms community has proposed numerous solutions to reducing
the runtime complexity of ES [29], providing guidance to samples’ update direction [7, 38], and
informing the learning dynamics of the ES by meta-learning the search heuristics [21].

In the present work, we aim to extend these advances in BBO to portfolio optimization as we
adopt multiple algorithms based on black-box evolutionary strategies to solve two general forms
of utility maximization problems to find optimal portfolio asset allocation. In addition, we aim to
utilitze the Jax library [4] to accelerate evolutionary computations including the utility function.
Our experimental results mark a 10-1000 fold speed-up in searching for the optimal combination of
assets. More importantly, we find better local optima in larger problems and spaces in comparison
with the genetic algorithm. Our findings enable more efficient integration of BBO methods in
portfolio management engines leading to better financial advice.

2. Related Works

In this section, we discuss research highly relevant to our work’s scope.
Optimization in Portfolio Construction There are numerous optimization methods that can be

used for portfolio construction. For instance, Black-box optimization (BBO) Methods such as GA,
Particle Swarm Optimization (PSO), and Evolutionary Estrategies (ES) have been largely adopted
in this space [1, 6, 12, 25–27, 33]. While BBO methods are preferable in non-convex settings
and use cases where it is critical to solving for global minima, they are often compute-intensive
and not scalable. More efficient algorithms such as dynamic programming (DP) and reinforcement
learning (RL) could be used as an alternative to BBOs, as long as the problem is convex [3, 8, 9]. In
asset management, many model-based and model-free RL and hybrid methods of those have been
proposed [5, 11, 13, 17, 35, 39, 40].

Evolution Strategies (ES). ES [2, 32] is a popular BBO method that do not require access to
gradients for optimization. This makes it applicable to nonconvex optimization problems, where
solution candidates get selected, evaluated, and updated regardless of the fitness properties. ES
typically refines a given distribution parameters via an iterative approach [14]. ES has been signifi-
cantly improved over the last two decades to have their convergence, robustness to hyperparameters,
complexity, and efficiency addressed [28, 38]. In particular, parallelization schemes allowed them
to match the speed performance of gradient-based methods [36, 37].

In this work, we aim to show how modern ES algorithms could relax the assumptions of dy-
namic programming while improving the performance of BBOs. Accordingly, we adapt three
recently developed algorithms namely simulation annealing, discovered ES (DES) [21], adaptive
sample-efficient blackbox optimization via ES-active subspaces (ASEBO) [7], and cost-reduced
fast-moving natural ES (CR-FM-NES) [29], to solve utility maximization problems for finding op-
timal distribution of assets for a given portfolio.

3. Background and Methodology

In this section, we describe the algorithms we explore in the context of utility maximization for
asset allocation problems.
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Given a function f(x) : RD → R, in a BBO the objective function is:

min
x

f(x), xd : ∀d ∈ 1, 2, ..., D

The Evolutionary Strategies (ES) assumes a search distribution to maximize the probability of
high fitness for candidates in each generation. For instance, given a Gaussian distribution consists of
a mean vector m ∈ RD and a covariance matrix Σ ∈ RD×D where D denotes the number of search
space dimensions. Additionally we harness accelerated computing by modifying ask-evaluate-tell
API developed in EVOSAX [4, 20], a library that efficiently implemented evolutionary strategies in
JAX. This interface iterates through through 1) ask: samples the candidate solutions, given a search
distribution for D-dimensional space: xj ∈ RD ∼ N (m,Σ), ∀j = 1, 2, ..., N(strategy.ask(...)),
2) evaluate: calculates the black-box fitness function for the selected candidates: f(xj), and 3) tell:
updates the search distribution: (m,Σ, xj , fj) → m′,Σ′.

3.1. Genetic Algorithm

A genetic algorithm (GA) evolves P out of N individuals at every generation given the fitness
score fi with parameters (i.e. genotype) θi. The top T individuals become the parent of the next
generation. In the Gaussian GA, a parent is selected uniformly at random with replacement, and
Gaussian noise is added to the parameter vector: θ′ = θ + σϵ, ϵ ∈ N (0, I) A common problem
in this algorithm is convergence to sub-optimal results. In response, self-adaptive mutation rate
(SAMR) and Group Elite Selection of Mutation Rates (GESMR) have been proposed [10, 19].

3.2. Simulated Annealing

The simulation annealing (SA) algorithm is based on the theorem developed in statistical physics
and the Boltzmann distribution of system state given the system temperature [16].

3.3. Discovered Evolution Strategies Revisit

As a meta-learned black-box optimization approach, the DES [21] finds the best performing evo-
lution strategy (ES) for functions without access to gradients which is invariant to the solutions
(i.e.population) order using meta-learning. A self-attention architecture is suggested to address the
variant solution order and the following rules update the mean and variance of the solution in an
evolution strategy.

The population weights, ωt, are updated using self-attention architecture:

ωt = softmax(softmax(
QKT

√
DK

)V )

where queries (Q), keys (K), and values (V) use learned linear transforms. This architecture
is highly generalizable to unseen optimization tasks, supervised learning problems, and continuous
control tasks.

3.4. Adaptive ES-Active Subspaces for Blackbox Optimization (ASEBO)

The main idea of ASEBO, similar to ES-type BBO models is that we do not require an accurate
estimation of the gradient. ASEBO continuously learns the bias of the underlying low-dimensional
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model for approximating the gradients via compressed sensing and contextual bandit methods. For
this purpose, ASEBO dynamically learns the dimension of the gradient space at different stages
of optimization without external supervision. Accordingly, it is more sample efficient than other
black-box optimization algorithms [7].

3.5. Cost Reduced FM Natural Evolution Strategies (CR-FM-NES

CR-FM-NES [29] is a variant of natural evolutionary strategies (NES) [38] for high-dimensional
black-box optimization. This approach utilizes a representation of the covariance matrix instead of
the full covariance matrix. This reduces the time and space complexity of the Fast Moving NES
from cubic O(d3) and quadratic O(d2) to linear O(d) complexity.

The EvoSax implementation of the CR-FM-NES is called preconditioning finite difference
(PFD) which extends the FD approach to ES by adding uncertainty in the estimation of the fitness
gradient.

3.6. Search Distribution in portfolio optimization

The distribution from which we sample search parameters across all aforementioned BBO algo-
rithms is typically the normal distribution. To prepare these search algorithms for multi-class port-
folio optimization problems, we change the distribution to log-normal and divide the outcomes by
the sum of all variables. This is to make sure the generated candidate portfolio weights are between
0 and 1 and sum to 1.

4. Portfolio Construction Experiment and Results

The asset allocation model aims to determine the optimal allocation of asset classes in a portfolio.
The allocation model takes input from an investor such as her attitude toward passive and alpha risk
etc., and also from a forward-looking Monte-Carlo-generated simulation of market returns for asset
classes and time horizons.

In this section, we discuss results for optimizing the portfolios with various asset classes (ACs),
trading strategies, population size, and algorithm generations. For each algorithm, the population
size and the generations, and other optimization parameters, depending on the algorithm, are deter-
mined through hyper-tuning. The passive risk is assumed either 7 or 8 depending on the passive or
active trading strategies.

4.1. Experiment One: Minimum Constraints

For passive portfolio construction, we define the following objective utility based on the prospective
cumulative return of the portfolio in 10 years and the risk aversion rate (PRA):

Adjusted Return =
1

1−RA
[Cumulative Return](1−RA) (1)

where for passive return, we assume RA = 8. The cumulative return in the above equation refers
to the total return of the portfolio at the end of 10 years investment horizon.

We implement and compare the aforementioned algorithms with passive utility functions for 8
and 16 passive ACs as follows.
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Table 1: Portfolio Optimization with 8 Asset Classes
Algorithm Pop. Size Generations Search

Cap.
Utility Proc. Time

(sec)
Genetic Algorithm 1000 100 100k −8.0427e−4 204
Simulated Anneal-
ing

200 100 20k −8.0429e−4 3.92

DES 835 178 148k −8.0426e−4 3.6
ASEBO 100 450 45k −8.3151e−4 7.68
CR-FM-NES 80 50 4k −8.043e−4 6.9

The results for 8 ACs in Table 1 indicate that multiple alternatives of the genetic algorithm can
solve the portfolio optimization to the same precision in a significantly faster time. Particularly, the
DES obtains a better utility corresponding to a 98% improvement in processing time over the GA.

According to Table 2, the GA consumes 4 times as much time for solving the lowest utility for 16
ACs, which also provides worse utility compared to 8 ACs due to the possibly higher combinatorial
complexity, nonetheless, DES still produces top results with 97% improvement in processing time.
It is worthwhile to note that the DES and CR-FM-NES both can produce better results than 8 ACs in
much faster time and the DES can produce utility results slightly worse than CR-FM-NES’s under
10 seconds.

Table 2: Portfolio Optimization with 16 Asset Classes
Algorithm Pop. Size Generations Search

Cap.
Utility Proc. Time

(sec)
Genetic Algorithm 5000 100 500k −8.5114e−4 840.34
Simulated Anneal-
ing

5000 100 500k −8.0093e−4 4.93

DES 2110 905 1910k −7.8762e−4 23.27
ASEBO 500 50 25k −8.7351e−4 4.33
CR-FM-NES 620 650 403k −7.9121e−4 16.76

4.2. Experiment Two: Seeking Alpha

In this section, we add a minimal set of assumptions to seek higher alpha. The first assumptions is
selecting few assets for active trading which are simply assumed as separate asset classes. Second,
we add an expected return and the variance empirically extracted from tracking asset classes. Finally
the active risk aversion rate is assumed 10 for active asset classes which directly impacts the return:

Adjusted Return = Adjusted Passive Return[RA = 8] +Adjusted Active Return[RA = 10]

Tables 3 and 4 show results with active constraints. For 8 passive and 4 active ACs, the ASEBO
has surpassed the other three algorithms in producing the highest utility while DES dominates the
table in terms of utility score. With the addition of another 8 assets for passive trading in Table 4, the
overall utility has improved across the board nonetheless time complexity of the GA has deteriorated
except while that of ASEBO and CR-FM-NES has improved with additional ACs. According to the
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portfolio weights, the complexity of the optimized portfolio weights across all algorithms is reduced
with the addition of active ACs. Notice that adding active components to the problem elevates the
scale of the utility scores as illustrated in Tables 3 and 4 compared to deviate passive-only portfolios
presented in Tables 1 and 2. In addition, the simulation annealing (SA) algorithm is removed from
these tables because of its intractable complexity for active trading.

Table 3: Portfolio Optimization with 10 Asset Classes
Algorithm Pop. Size Generations Search

Cap.
Utility Proc. Time

(sec)
Genetic Algo-
rithm

1000 100 100k −0.123435 269

DES 530 82 43k −0.123466 5.86
ASEBO 140 740 103k −0.1234287 24.57
CR-FM-NES 80 830 66k −0.1240545 29.71

Table 4: Portfolio Optimization with 20 Asset Classes
Algorithm Pop. Size Generations Search

Cap.
Utility Proc. Time

(sec)
Genetic Algo-
rithm

5000 100 500k −0.119986 1255

DES 530 82 43k −0.119005 6.94
ASEBO 140 740 103k −0.119569 4.61
CR-FM-NES 80 830 66k −0.119219 8.75

4.3. Conclusion

This paper introduced a Jax-optimized framework for a typical portfolio optimization problem with
forward-looking asset return scenarios. We used GA as the baseline and compared the results of
other algorithms such as SA, DES, ASEBO, and CR-FM-NES for different passive and active asset
classes. The notable results show that the DES can improve the utility results over the baseline in all
circumstances and simultaneously perform the optimization task in under 10 seconds which is over
98% percent improvement over the GA. Results indicate a strong case for portfolio construction
using modern GPU-enabled evolutionary black-box optimization.

5. Notes

All investing is subject to risk, including the possible loss of the money you invest. Be aware that
fluctuations in the financial markets and other factors may cause declines in the value of your ac-
count. There is no guarantee that any particular asset allocation or mix of funds will meet your
investment objectives or provide you with a given level of income. This material is provided for
informational purposes only and is not intended to be investment advice or a recommendation to
take any particular investment action.

©2023 The Vanguard Group, Inc. All rights reserved.
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