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Abstract
In this work, we study optimization problems of the form minx maxy fpx, yq, where fpx, yq is
defined on a product Riemannian manifold M ˆ N and is µx-strongly geodesically convex (g-
convex) in x and µy-strongly g-concave in y, for µx, µy ě 0. We design accelerated methods when
f is pLx, Ly, Lxyq-smooth and M, N are Hadamard. To that aim we introduce new g-convex op-
timization results, of independent interest: we show global linear convergence for metric-projected
Riemannian gradient descent and improve existing accelerated methods by reducing geometric con-
stants. Additionally, we complete the analysis of two previous works applying to the Riemannian
min-max case by removing an assumption about iterates staying in a pre-specified compact set.

1. Introduction

A wide array of recently developed machine learning methods can be phrased as min-max optimiza-
tion problems. This has lead to a renewed interest in optimization methods for min-max algorithms
[11, 27, 29, 30, 37]. Applications include generative adversarial networks [12], and adversarial as
well as distributionally robust classifiers [9, 13], among others. In this work, we study a class of
min-max problems over Riemannian manifolds.

Riemannian optimization, the study of optimizing functions defined over Riemannian mani-
folds, is motivated by the following two reasons. First, some constrained optimization problems
can be expressed as unconstrained optimization problems over Riemannian manifolds. And second,
some non-convex Euclidean problems such as operator scaling [1], can be rephrased as geodesically
convex (g-convex) problems on Riemannian manifolds, which means global minima can be found
efficiently despite nonconvexity. Geodesic convexity is a generalization of convexity to Riemannian
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manifolds. Some examples of machine learning tasks which can be phrased as g-convex, g-concave
min-max problems are the robust matrix Karcher mean, constrained g-convex optimization on man-
ifolds via the augmented Lagrangian, and more generally the distributionally robust version of any
finite-sum, g-convex optimization problem, cf. [20, 42]. Other related Riemannian min-max prob-
lems, which do not satisfy the g-convex, g-concave assumption include projection-robust optimal
transport [18] and geometry-aware robust PCA [42].

Another motivation for studying g-convex settings is its potential to shed light on the non-g-
convex case. Indeed, in Euclidean optimization, a deep understanding of convex problems has led
to optimal methods for approximating stationary points. In fact a variety of these algorithms run
convex methods as subroutines [5, 19, 26].

Table 1: Summary of results and comparison. See Appendix B for the notation. ζ and δ are con-
stants determined by the curvature and diameter of the domain, and are 1 in the Euclidean
case. We use κλ for 1{pλµq, where λ is a proximal parameter. In column K, H stands for
Hadamard, R stands for Riemannian. Our contributions are in gray.

Method Complexity Notes K

G-CONVEX

(MP22, PRGD) rOpζDL{µq small diam. D & ∇fpx˚q “ 0 H
(MP22, Thm 4) rOpζ

?
κλq accelerated, g-convex H

PRGD rOpζRL{µq global, R def
“ Lppf,X q{L H

Algorithm 3 rOp
?
ζκλ ` ζq accelerated, g-convex H

MIN-MAX

(JLV22, RCEG-SCSC) rOp
a

ζ{δ ¨ L{µ` 1{δq R

(ZZS22, RCEG-CC) O
´

a

ζ{δ ¨ LD2{ε
¯

We remove strong
assumptions (see Section 2) R

RAMMA-SCSC rOpζ4.5
b

Lx
µx
`
ζLLxy
µxµy

`
Ly
µy
`ζ2q H

RAMMA-SCC rOpζ5.5 LD?
µxε
q H

RAMMA-CC rOpζ4.5
b

LD2

ε `ζ
5.5
a

LxyL
D2

ε q

pLx, Ly, Lxyq-smooth case,

where L def
“ maxtLx, Ly, Lxyu

H

RAMMA-WC rO
´

ζ 4 ∆0L
ε2

b

ζ ` L
µy

¯

ε-stationary point (Theorem 32) H

Main results. Previous works on Riemannian min-max optimization [20, 42] proposed and ana-
lyzed a Riemannian version of the extragradient method, see Appendix A for a detaild discussion
of related works. These important works have two major limitations:

(a) They assume that the smoothness constants in x and y are similar, i.e., they consider the
pL,L,Lq-smooth and pµ, µq-strongly convex case. However, in applications, often the smooth-
ness constants in x and y are quite different, and this can be exploited to achieve faster algo-
rithms.
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(b) They rely on the assumption that the iterates of their algorithms stay in some compact set
specified a priori but without a mechanism to enforce such constraints1. This property is key
to bound penalties in the convergence rates caused by the geometry, as these penalties grow
with increasing distances between the iterates and a saddle point.

We address both these limitations, ensuring bounding geometric penalties. Our main contribution
is a Riemannian Accelerated Min-Max Algorithm (RAMMA), which works in the finer setting
of pLx, Ly, Lxyq-smoothness and pµx, µyq-strong g-convexity, addressing limitation (a), and en-
forces the iterates to stay in a predefined compact set via projections, addressing limitation (b).
RAMMA works by reducing the strongly g-convex, strongly g-concave (SCSC) min-max problem
to a sequence of strongly g-convex minimization problems. Also, via reductions to the SCSC case,
RAMMA can be used to solve g-convex, g-concave (CC) and strongly g-convex, g-concave (SCC)
min-max problems, obtaining the accelerated rate on ε in the SCC case for the first time on Rieman-
nian manifolds, cf. Theorem 29. Furthermore, using a variation of RAMMA, which we refer to as
RAMMA-WC, we can extend our analysis to the NC-SC setting, cf. Theorem 30.

In order to implement subroutines used in RAMMA, we prove linear convergence of Projected
Riemannian Gradient Descent (PRGD) for smooth and constrained strongly g-convex functions de-
fined on Hadamard manifolds, which is a fundamental result and an important piece of our min-max
algorithm. The best previous analysis for PRGD [28] was limited to the case where the diameter of
the domain is sufficiently small (ζD ă 2) and a point with 0 gradient is inside of this set: we remove
these assumptions. Additionally, we improve the state of the art on accelerated inexact proximal
point algorithms for g-convex Hadamard optimization. Our new method improves the rates from
rOpζ{

?
λµq to rOp

a

ζ{pλµq ` ζq for µ-strongly g-convex problems, where λ is a proximal param-
eter. To further address limitation (b), we show that, with the right choice of learning rates, the
algorithms from [20, 42] do stay in a ball around the global saddle point, whose radius is two times
the initial distance to the saddle. Table 1 provides a detailed comparison between our results and
prior work. We provide a general version of Sion’s theorem which holds on Riemannian mani-
folds, and improves on prior results [42, Theorem 3.1] by ensuring the existence of a saddle point
fpx˚, y˚q “ maxyPY minxPX fpx, yq “ minxPX maxyPY fpx, yq under weak assumptions. In par-
ticular X and Y are not required to be compact in, for example, the strongly g-convex, strongly
g-concave case (see Appendix G).

1.1. Problem Setting

See Appendix B for definitions and notation. In this work, M and N always represent two uniquely
geodesic finite-dimensional Riemannian manifolds of sectional curvature bounded by rκmin, κmaxs,
and X ĂM, Y Ă N are compact g-convex subsets for which we have access to metric-projection
oracles. We consider the optimization problem minxPX maxyPY fpx, yq, where f : M ˆN Ñ R

denotes a function with a saddle point at px˚, y˚q P X ˆ Y , that satisfies ∇fpx˚, y˚q “ 0. Let
px0, y0q P XˆY be an initial point. DefineD def

“ maxtdiampX q,diampYqu. Our aim is to compute
an ε-saddle point of f over X ˆ Y , where f satisfies the following Assumption 1, with constants
µx, µy, Lx, Ly, Lxy. We also assume without loss of generality that Lx “ Ly, and µy ď µx. Indeed,
we can rescale the manifolds to obtain Lx “ Ly which keeps Lxy, Lx{µx, Ly{µy, µxµy constant, as
well as geometric penalties depending on ζ, see Appendix F. Also, if µy ą µx, we can work with the

1. Note that this assumption is not the same as the iterates staying in some compact set a posteriori.
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Algorithm 1 Riemannian Accelerated Min-Max Algorithm RAMMApf, px0, y0q, ε,X ˆ Yq
Input: Sets X Ă M, Y Ă N that are g-convex in Hadamard manifolds M and N , pµx, µyq-

strongly g-convex pLx, Ly, Lxyq-smooth function f : M ˆ N Ñ R, initial point px0, y0q P

X ˆ Y , accuracy ε. Define ξ def
“ 4 maxtζX2D, ζ

Y
2Du ´ 3 “ Opζq. For Ti, ε̂i, see Table 2.

1: ηx Ð p9ξµx `maxtLxy, µxuq
´1, ηy Ð p9ξµy `maxtLxy, µyuq

´1

2: λy Ð pmaxtLy, Lxyu ` 9ξµyq
´1

3: x̂Ð RiemaconAbspφpxq
def
“ maxyPY fpx, yq, x0, T1, ηx,X , Lines 6-9)

4: ŷ Ð RiemaconAbspy ÞÑ ´fpx̂, yq, y0, T2, λy,Y,PRGDq ˛ One-Gap-to-Dist
5: return x̂, ŷ

Subroutine for Line 3: With accuracy ε̂1, solve minxPX tφpxq `
1

2ηx
d2pxk, xqu for some xk P X .

6: ηy Ð p9ξµy `maxtLxy, µyuq
´1, pλÐ 1{p9ξpµx ` η

´1
x q ` Lx ` ζη

´1
x q

7: ỹk Ð RiemaconAbspψpyq
def
“ maxxPX t´fpx, yq´

1
2ηx

d2pxk, xqu, y0, T3, ηy,Y, Lines 10-11)

8: x̃k Ð RiemaconAbspx ÞÑ fpx, ỹkq `
1

2ηx
d2pxk, xq, x0, T4,X , pλ,PRGDq ˛ One-Gap-to-Dist

9: return x̃k
Subroutine for Line 7: With accuracy ε̂3, solve minyPYtψpyq `

1
2ηy
d2py`, yqu for some y` P Y .

10: x̄`, ȳ` Ð RABRpfpx, yq ` 1
2ηx

d2pxk, xq ´
1

2ηy
d2py`, yq, px0, y0q, T5,X ˆ Yq

11: return ȳ`

function hpx, yq “ ´fpy, xq. We write L def
“ maxtLx, Ly, Lxyu, κx

def
“ Lx{µx, and κy

def
“ Ly{µy.

We assume f satisfies the following Assumption 1 for pLx, Ly, Lxy, µx, µyq and we say a function
is pL̄x, L̄y, L̄xyq-smooth if it satisfies p2q and p3q below.

Assumption 1 Let M, N , X , Y be as above, and let g : M ˆ N Ñ R be differentiable. For
any px, yq P X ˆ Y , it holds: p1q g is pµ̄x, µ̄yq-SCSC in X ˆ Y . p2q ∇xgp¨, yq is L̄x-Lipschitz in
X and ∇ygpx, ¨q is L̄y-Lipschitz in Y . p3q ∇ygp¨, yq and ∇xgpx, ¨q are L̄xy-Lipschitz in X and Y ,
respectively.

2. Riemannian Corrected Extra-Gradient

Previous works provide rates of convergence for Riemannian smooth min-max problems [20, 42]
by using RCEG, a Riemannian adaptation of the extragradient method. The stepsize η of RCEG
depends on the geometric constants ζD and 1{δD arising from the Riemannian cosine law (Theo-
rem 7), which are larger the farther the iterates are from each other and from the saddle point. Thus,
the current theory does not yield a complete algorithm unless we can guarantee that given a learning
rate η depending on the diameter D of a set X specified a priori, the iterates of RCEG stay in X .
In the following Theorem 2, we show that for D depending on the initial distance to the saddle, for
both the CC and SCSC cases, the iterates of RCEG stay in the closed ball B̄ppx˚, y˚q, D{2q around
the saddle point. We also note that not relying on this assumption is one of the main difficulties in
the design of our algorithm RAMMA.

Proposition 2 (Riemannian Corrected Extra-Gradient) [Ó] Let M and N be uniquely geodesic
Riemannian manifolds of sectional curvature bounded by rκmin, κmaxs. Let f : M ˆ N Ñ R be
a function with a saddle point at px˚, y˚q, and let D2 def

“ d2px0, x
˚q ` d2py0, y

˚q, and define D
as any upper bound to 4D. Assume B def

“ B̄ppx˚, y˚q, 2Dq Ă M ˆ N . If f is pL,L,Lq-smooth
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and pµ, µq-SCSC in B, then for Algorithm 2, the primary iterates pxt, ytq and the secondary iterates
pwt, ztq satisfy: d2pxt, x

˚q ` d2pyt, y
˚q ď D2 and d2pwt, x

˚q ` d2pzt, y
˚q ď 4D2 and we obtain

an ε-saddle point in the µ-SCSC and the CC cases in T iterations for, respectively:

T “ rO

˜

L

µ

d

ζD
δD
`

1

δD

¸

and T “ O

˜

LD2

ε

d

ζD
δD

¸

.

3. Riemannian Accelerated Algorithms for Minimization and Min-Max

In this section, we provide new results for PRGD, an improved accelerated algorithm for strongly g-
convex functions RiemaconRel, and our new accelerated min-max algorithm RAMMA. Theorem 6

Proposition 3 (Projected Riemannian Gradient Descent (PRGD)) [Ó] Let f : M Ñ R be a µ-
strongly g-convex and L-smooth function in a g-convex compact subset X Ă M of a Hadamard
manifold M. For an initial point x0 P X and R def

“ Lppf,X q{L, after

T ě min

"

2κζR log

ˆ

fpx0q ´ fpx
˚q

ε

˙

, 1` 2κζR log

ˆ

LζRd
2px0, x

˚q

2ε

˙*

steps of PRGD with update rule xt`1 Ð PX
`

expxt
`

´ 1
L∇fpxtq

˘˘

, we have fpxT q ´ fpx˚q ď ε,
where κ “ L{µ.

Theorem 4 (Strongly g-Convex Acceleration) [Ó] Using the definitions and notation of Algorithm 3
to optimize a function f which is µ̄-strongly g-convex in X , we have fpyT q ´ fpx˚q ď ε after a

number of iterations T ě 2
b

ξmaxt 1
λµ̄ , 9ξu log2

´

2λ´1d2px0,x˚q
ε

¯

“ rOp
?
ζκλ ` ζq.

Defining φpxq def
“ maxyPY fpx, yq, one can rephrase the problem minxPX maxyPY fpx, yq as minxPX φpxq.

By Theorem 35, if fp¨, yq is µx-strongly g-convex, then φpxq is as well. Hence, we can use Algo-
rithm 3 to solve this minimization problem. This means that at each iteration, we need to solve the
subroutine minxPX tφpxq ` 1{p2ηxqd

2px̃, xqu (Line 12 of Algorithm 3), which can be phrased as
minxPX maxyPYtfpx, yq ` 1{p2ηxqd

2px̃, xqu. By Theorem 13 we can exchange the min and the
max, resulting in maxyPY minxPX tfpx, yq `

1
2ηx

d2px̃, xqu. Let ψpyq def
“ ´maxxPX t´fpx, yq ´

1
2ηx

d2px̃, xqu, then by Theorem 35 we can interpret the latter min-max problem above as the µy-
strongly g-convex problem minyPY ψpyq. We note that an approximate solution to minyPY ψpyq
does not directly yield an approximate solution for the min-max problem, but we obtain the latter af-
ter some extra algorithmic steps, as we detail in Theorem 6. We can solve this minimization problem
via Algorithm 3 again, which involves solving a proximal step minyPYtψpyq ` 1{p2ηyqd

2py, ỹqu at
each iteration which can be phrased as the min-max problem minxPX maxyPYtfpx, yq`1{p2ηxqd

2px̃, xq´
1{p2ηyqd

2py, ỹqu. By choosing ηx and ηy such that Lxy ď p4ηxηyq´1{2, we ensure that x and y have
weak interaction for this last regularized min-max problem. Functions fpx, yq for which the inter-
action between x and y is weak, meaning that Lxy is small relative to other function parameters, i.e.,
the gradient of fpx, yq with respect to x is only weakly dependent on y and vice versa can be effi-
ciently solved by our Riemannian Alternating Best Response algorithm (RABR), which alternates
between minimizing x ÞÑ fpx, ytq where yt is kept fixed and maximizing y ÞÑ fpxt`1, yq where
xt`1 is kept fixed, cf. Appendix I.3. Hence, we reduce the original min-max problem to a series of
min-max problems with weak interaction, which we can solve efficiently using RABR.
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Theorem 5 (Convergence rates of RAMMA) [Ó] Consider a function f : MˆN Ñ R as defined
in Section 1.1 with µx, µy ą 0 and let M and N be Hadamard manifolds. Then, Algorithm 1
obtains an ε-saddle point after the following number of calls to the gradient and projection oracles:

rO

˜

ζ4.5

d

Lx
µx
`
Ly
µy
`
ζLLxy
µxµy

` ζ2

¸

.

The central problem of achieving accelerated rates for RAMMA is to show that the iterates stay in
a prespecified compact set in order to bound the geometric constant ζ. We design an algorithm that
enforces constraints, as opposed to guaranteeing that the iterates of the algorithm naturally stay in a
set, as we did for RCEG in Section 2, see Appendix C for a detailed discussion of the difficulties in
achieving accelerated rates.
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Appendix A. Related Work

Euclidean min-max optimization. The extragradient (EG) algorithm is an optimal algorithm for
solving min-max problems achieving optimal rates ofOpL{µq for L-smooth and µ-SCSC functions.
The convergence of EG was first introduced in Korpelevich [24] under the assumption that the op-
timization was performed over compact sets. It was recently proven in Mokhtari et al. [29, 30] that
this compactness is not needed in either the SCSC case or the CC case. Recently, some works [27,
37] have achieved accelerated rates for more fine-grained smoothness and strong-convexity assump-
tions, where the constants with respect to each variable can differ, among other things, cf. Assump-

tion 1. Lin et al. [27] introduced an algorithm with accelerated rates of rOp
b

L2

µxµy
q for pµx, µyq-

SCSC and L-smooth functions. Later, [37] proved accelerated rates of rOp
b

Lx
µx
`

LLxy
µxµy

`
Ly
µy
q for

the more general case of pLx, Ly, Lxyq-smooth and pµx, µyq-SCSC functions. These accelerated
methods reduce the solution of the SCSC min-max problem to a sequence of better conditioned
strongly convex minimization problems carried out by variants of accelerated proximal point algo-
rithms.
Riemannian min-max optimization. There are several works studying algorithms for solving
monotone variational inequalities on compact subsets of Hadamard manifolds, which encompass
CC min-max problems as a special case. The algorithms presented in these works are variations of
the inexact proximal point algorithm [4, 25] and the EG algorithm [3, 10] and come with asymp-
totic convergence guarantees. Two recent works [20, 42] based on a variation of the Euclidean
EG called Riemannian corrected extragradient (RCEG) have shown convergence rates for smooth,
unconstrained min-max problems on Riemannian manifolds of bounded sectional curvature that
match the Euclidean EG up to geometric constants for the CC [42] and SCSC [20] case. The
convergence guarantees of RCEG assume that the iterates stay in some pre-specified, compact set
without any mechanism to enforce this. In contrast, the previously mentioned works [3, 4, 10, 25],
treat Riemannian min-max problems over compact sets and and explicitly enforce that the iterates
stay inside these. Jordan et al. [20] additionally analyzes non-smooth min-max problems in the CC
and SCSC case, as well as stochastic versions of both the smooth and non-smooth case. Han et al.
[15] introduce a second-order min-max algorithm for Riemannian manifolds aimed at minimizing
the gradient norm of the f . Huang et al. [17] studies min-max problems in a Euclidean-Riemannian
product space that are non-convex and strongly g-concave.
Riemannian g-convex minimization. Optimization of g-convex functions with rates of conver-
gence has been studied more extensively than min-max problems. Zhang and Sra [40] provided
several first-order deterministic and stochastic methods applying to smooth or non-smooth prob-
lems. A long line of works have tackled the question of acceleration on Riemannian manifolds,
see [28] for an overview. We improve over this work by reducing geometric penalties in the rates,
among other things. Furthermore, some works studied adaptive methods [21], as well as projection-
free [38, 39], saddle-point-escaping [6, 7, 35, 43], and variance-reduced methods [32, 33, 41]. Some
lower bounds were provided by Criscitiello and Boumal [8], Hamilton and Moitra [14]. Analyses
of methods for non-smooth problems that work with in-manifold constraints via projection oracles
were provided in Zhang and Sra [40] and further studied in other works, such as Wang et al. [36].
For the smooth case with in-manifold constraints, Martínez-Rubio and Pokutta [28] provided an
analysis of PRGD under restrictive assumptions: the diameter D of the feasible set is required to be
small enough so that ζD ă 2 and the global solution is required to be inside of the set. To the best of
our knowledge, there is no other method or analysis for the smooth setting using a metric-projection
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oracle. We remove both of these assumptions and show that PRGD enjoys linear convergence rates
for strongly g-convex and smooth problems with a projection oracle to an arbitrary g-convex con-
straint.

Appendix B. Definitions and Notations

The following definitions in Riemannian geometry cover the concepts used in this work, cf. [2, 31].
A Riemannian manifold pM, gq is a real C8 manifold M equipped with a metric g, which is a
smoothly varying inner product. For x P M, denote by TxM the tangent space of M at x. For
vectors v, w P TxM, we use xv, wyx for the inner product of the metric, }v}x

def
“

a

xv, vyx for the
corresponding norm, and we omit x when it is clear from context. A geodesic of length ` is a curve
γ : r0, `s ÑM of unit speed that is locally distance minimizing.

A set X is said to be g-convex if every two points are connected by a geodesic that remains
in X . The set X is said to be uniquely geodesic if every two points are connected by one and
only one geodesic. The exponential map Expx : TxM Ñ M takes a point x P M, and a vector
v P TxM and returns the point y we obtain from following the geodesic from x in the direction v for
length }v}, if this is possible. We denote its inverse by Logxp¨q, which is well defined for uniquely
geodesic manifolds, so we have Expxpvq “ y and Logxpyq “ v. In that case, we use Γxypvq P TxM
to denote the parallel transport of a vector v in TyM from TyM to TxM along the unique geodesic
that connects y to x. We write Γxpvq if y is clear from context. We use inj to denote the injectivity
radius at x.

We use B̄px,Rq to denote a closed Riemannian ball with center x and radius R, and denote
by dpx, yq the distance between x and y, A map PX : M Ñ X is a metric-projection operator if
it satisfies dpx,PX pxqq ď dpx, zq for all z P X . For a uniquely geodesic g-convex set Z a point
z P Z and a closed Riemannian ball X def

“ B̄px,Dq Ă Z Ă M we have PX pzq “ z if z P X and
PX pzq “ ExpxpDLogxpzq{}Logxpzq}q is a relatively cheap metric-projection operator, cf. [28].

As in the Euclidean space, a differentiable function is L-smooth and µ-strongly g-convex in a
uniquely geodesic g-convex set X , if for any two points x, y P X we have, respectively:

fpyq ď fpxq`x∇fpxq,Logxpyqy`
L

2
d2px, yq and fpyq ě fpxq`x∇fpxq,Logxpyqy`

µ

2
d2px, yq.

The latter property is equivalent to

fpExpxpt ¨ Logxpxq ` p1´ tq ¨ Logxpyqqq ď tfpxq ` p1´ tqfpyq ´
tp1´ tqµ

2
d2px, yq,

for t P r0, 1s and also applies to non-differentiable functions. The function is said to be g-convex
if µ “ 0 and p´µq-weakly g-convex if µ ă 0. Further, it is µ-strongly g-concave if ´f is µ-
strongly convex. The function f has L̄x-Lipschitz gradients in X if for all x, y P X we have
}∇fpxq ´ Γx∇fpyq} ď L̄xdpx, yq. A function f is Lppf,X q-Lipschitz in X if |fpxq ´ fpyq| ď
Lppf,X qdpx, yq for all x, y P X , where X is omitted if clear from context.

A function fpx, yq is pµx, µyq-SCSC in X ˆ Y if it is µx-strongly g-convex in X and µy-
strongly g-concave in Y . If µy “ 0 we say the function is µx-SCC, if it is µx “ µy “ 0, then
it is CC and if it is non g-convex and µy-strongly g-concave it is NCSC For a function f : M ˆ

N Ñ R that is CC in X ˆ Y , a point px̂, ŷq P X ˆ Y is an ε-saddle point of f in X ˆ Y if
maxyPY fpx̂, yq ´ minxPX fpx, ŷq ď ε, assuming the max and min exist. We define it to be an
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ε-saddle point in distance if d2px̂, x˚q` d2pŷ, y˚q ď ε, where px˚, y˚q is a 0-saddle point in X ˆY
that satisfies fpx˚, y˚q “ minxPX maxyPY fpx, yq “ maxyPY minxPX fpx, yq, whose existence we
can guarantee under mild assumptions, cf. Theorem 13. We do not specify the saddle point is taken
with respect to X ˆ Y when it is clear from context.

The sectional curvature of a manifold M at a point x PM for a 2-dimensional space V Ă TxM
is the Gauss curvature of ExpxpV q at x. Hadamard manifolds are complete simply-connected
Riemannian manifolds of non-positive sectional curvature. They are uniquely geodesic and Expxp¨q
is well defined on them for every v P TxM. Given R ą 0, and a manifold of sectional curvature
bounded in rκmin, κmaxs, we define the geometric constants ζR

def
“ R

a

|κmin| cothpR
a

|κmin|q if
κmin ă 0 and ζR

def
“ 1 otherwise, and δR

def
“ R

?
κmax cotpR

?
κmaxq if κmax ą 0 and δR

def
“ 1

otherwise. For a set X of diameter D, we use ζX def
“ ζD or just ζ if X is clear from context. For the

product X ˆ Y , we abuse the notation and use ζ def
“ maxtζX , ζYu. Similarly for the notation δX

and δ. These constants appear in Riemannian optimization analysis via the Riemannian cosine law
Theorem 7 or other similar inequalities. The big-O notation rOp¨q omits log factors.

Appendix C. Difficulties in Riemannian Accelerated Min-Max AlgorithmRAMMA

Recall that by definition of φpxq, the subproblem minxPX tφpxq`1{p2ηxqd
2pxk, xqu can be phrased

as
min
xPX

max
yPY

tfpx, yq ` 1{p2ηxqd
2px, xkqu.

Let px˚k`1, y
˚px˚k`1qq be the saddle point of this min-max problem (Theorem 13), and note that for

x˚, the best response y˚px˚q for this regularized min-max problem is still y˚. Intuitively, if we do
not constrain the min-max problem and the subproblems to X ˆ Y , our iterates could get far from
our initial point, and this would make us incur greater geometric penalties. Denote by x̂˚ and ŷ˚ the
unconstrained optimizers. Then, if we considered an unconstrained version of our algorithm, the
point ỹk computed in Line 7, would be close to the best response ŷ˚px̂˚k`1q and for this point we can
only guarantee that its distance to ŷ˚ is bounded as dpŷ˚px̂˚k`1q, ŷ

˚px̂˚qq ď pLxy{µyqdpx̂
˚, x̂˚k`1q,

by using Statement 1 of Theorem 39. This would preclude acceleration because of the added extra
polynomial dependency of Lxy{µy on the convergence rates via ζ, which grows with the distances
between the iterates and the minimizer. For this reason, we constrain the algorithm. In order to
implement a constrained algorithm, we require a linearly convergent subroutine for strongly g-
convex and constrained problems, which did not previously exist. To this end, we use our PRGD
algorithm (Theorem 3).

Another difficulty is that in order to apply the steps explained above, we require an accelerated
algorithm for strongly g-convex optimization that bounds geometric penalties in our setting. Prior
work relies on relative-accuracy proximal solutions which, for our setting, would rely on unknown
quantities. Because of this reason, we designed Algorithm 3 that accesses f by solving proximal
subproblems with absolute accuracy.

Lastly, there is a mismatch between the optimality criterion required for the proximal prob-
lems and the optimality criterion provided by the guarantees of the subroutines we used to solve
them. For example, Line 6 requires computing an approximate minimizer x̃k of minxPX tφpxq `
1{p2ηxqd

2pxk, xqu, but after Line 7 we only obtain an approximate minimizer ỹk of ψpyq. In Ap-
pendix D we discuss the different optimality criteria and in particular show how to relate these
measures in Theorem 6.
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Appendix D. Converting Between Different Optimality Criteria

We now give a brief overview of the different optimality criteria in g-convex and min-max problems,
before we formalize how to guarantee one criterion from another, in Theorem 6. In L̄-smooth and
µ̄-strongly g-convex optimization there are, among others, two well-known measures of optimality:
The primal gap Ěgappxq

def
“ gpxq ´ gpx˚q and the squared distance to the solution d2px, x˚q, where

x˚
def
“ arg min gpxq is the unique minimizer of g. By strong convexity, one can show that if a point

x has a small gap, then it is also close in distance to the solution, up to some function parameters:
d2px, x˚q ď 2

µ̄pgpxq ´ gpx˚qq. In unconstrained optimization, a converse statement also holds,
since gpxq´gpx˚q ď L

2 d
2px, x˚q. Analogously to the Euclidean space, in optimization constrained

to a g-convex closed set X a similar result can be obtained after a relatively cheap algorithmic
computation. For the point x1 def

“ PX px ´
1
L∇fpxqq defined as the result of one step of projected

gradient descent, one can show that Ěgappx1q ď
ζRL

2 d2px, x˚q, where now the gap is defined with
respect to the constrained optimum gpxq ´minxPX gpxq and R is defined as in Theorem 3.

In the optimization of smooth and SCSC functions g : X ˆ Y Ñ R, where X ,Y are g-
convex closed sets, we have other notions of optimality. Also, define the functions x˚pyq def

“

arg minxPX gpx, yq and y˚pxq def
“ arg maxyPX , gpx, yq. We have the following notions of opti-

mality:

• Duality gap gappx̄, ȳq
def
“ maxyPY gpx̄, yq ´minxPX gpx, ȳq “ gpx̄, y˚px̄qq ´ gpx˚pȳq, ȳq;

• Squared distance to the solution d2px̄, x˚q ` d2pȳ, y˚q;

• Gap in each of the variables:

gappx̄q
def
“ gpx̄, y˚px̄qq ´ gpx˚, y˚q, and gappȳq

def
“ gpx˚, y˚q ´ gpy˚pȳq, ȳq.

We note that gappx̄, ȳq “ gappx̄q ` gappȳq and by optimality of the points involved, all three gaps
are non-negative. The following lemma provides how one can relate these measures.

Lemma 6 [Ó] Let X ĂM,Y Ă N be closed g-convex subsets of the Hadamard manifolds M, N ,
respectively. Let g : MˆN Ñ R satisfy Assumption 1 in X ˆ Y . The following holds:

1. (Full Gap to One Gap) gappx̄q ď gappx̄, ȳq and , gappȳq ď gappx̄, ȳq.

2. (One Gap to One Dist) d2px̄, x˚q ď 2
µ̄x

gappx̄q, and d2pȳ, y˚q ď 2
µ̄y

gappȳq.

3. (One Gap to Dist - One Variable Optimization) Suppose gappȳq ď ε. If we compute an
ε̂-minimizer x̄1 of the problem minxPX gpx, ȳq, then

d2px̄1, x˚q ` d2pȳ, y˚q ď
4ε̂

µ̄x
`

2ε

µ̄y

˜

2L̄2
xy

µ̄2
x

` 1

¸

.

4. (Dist to Gap) If in addition, x ÞÑ gpx, ȳq is L̄xp-Lipschitz in X and y ÞÑ gpx̄, yq is L̄yp-Lipschitz
in Y , we have that

gappx̄, ȳq ď dpy˚, ȳq

ˆ

L̄yp ` L̄
x
p

L̄xy
µ̄x

˙

` dpx˚, x̄q

ˆ

L̄xp ` L̄
y
p

L̄xy
µ̄y

˙

.
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Above, we showed that we can essentially guarantee any optimality criterion with another,
by only increasing the accuracy by low polynomial factors depending on the problem parameters,
which translates into logarithmic factors when applied to a method like our Algorithm 1. The most
expensive reduction consists of going from having a low gappxq or gappyq to bounding the other
measures Theorem 6.3, for which we require running an accelerated method on one variable. This
is done in Lines 4 and 8 of Algorithm 1. The complexity of the main routine in Algorithm 1 still
dominates these extra algorithmic steps.

Appendix E. Geometric Auxiliary Results

In this appendix, we use the following abuse of notation. Given points x, y, z P M, we write y
to mean Logxpyq, if it is clear from context. For example, for v P TxM we have xv, y ´ xy “
´xv, x ´ yy “ xv,Logxpyq ´ Logxpxqy “ xv,Logxpyqy; }v ´ y} “ }v ´ Logxpyq}; }z ´ y}x “
}Logxpzq ´ Logxpyq}; and }y ´ x}x “ }Logxpyq} “ dpx, yq.

In this section, we provide already established useful geometric results that will be used in our
proofs in the sequel.

Lemma 7 (Riemannian Cosine-Law Inequalities) For the vertices x, y, p P M of a uniquely
geodesic triangle of diameter D, we have

xLogxpyq,Logxppqy ě
δD
2
d2px, yq `

1

2
d2pp, xq ´

1

2
d2pp, yq.

and
xLogxpyq,Logxppqy ď

ζD
2
d2px, yq `

1

2
d2pp, xq ´

1

2
d2pp, yq

See [28] for a proof.

Remark 8 Actually, in spaces with lower bounded sectional curvature, if we substitute the con-
stants ζD in the previous Theorem 7 by the tighter constant and ζdpp,xq, the result also holds. See
[40].

The following lemmas allow us to bound functions defined in some tangent space by other
functions defined in another tangent space. See Kim and Yang [22] for a proof.

Lemma 9 Let x, y, p P M be the vertices of a uniquely geodesic triangle T of diameter D, and
let zx P TxM, zy def

“ Γyxpzxq ` Logypxq, such that y “ Expxprz
xq for some r P r0, 1q. If we take

vectors ay P TyM, ax def
“ Γxypa

yq P TxM, then we have the following, for all ξ ě ζD:

}zy ` ay ´ Logyppq}
2
y ` pξ ´ 1q}zy ` ay}2y

ď }zx ` ax ´ Logxppq}
2
x ` pξ ´ 1q}zx ` ax}2x `

ξ ´ δD
2

ˆ

r

1´ r

˙

}ax}2x.

Corollary 10 Let x, y, p P M be the vertices of a uniquely geodesic triangle of diameter D, and
let zx P TxM, zy def

“ Γyxpzxq ` Logypxq, such that y “ Expxprz
xq for some r P r0, 1s. Then, the

following holds

}zy ´ Logyppq}
2 ` pζD ´ 1q}zy}2 ď }zx ´ Logxppq}

2 ` pζD ´ 1q}zx}2.
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The case r “ 1 above is obtained by taking the limit r Ñ 1.

Lemma 11 Let M be a Riemannian manifold of sectional curvature bounded by rκmin, κmaxs that
contains a uniquely g-convex set X Ă M of diameter D ă 8. Then, given x, y P X we have the
following for the function Φx : MÑ R, y ÞÑ 1

2d
2px, yq:

∇Φxpyq “ ´Logypxq and δD}v}
2 ď Hess Φxpyqrv, vs ď ζD}v}

2.

These bounds are tight for spaces of constant sectional curvature. Consequently, Φx is δD-strongly
g-convex and ζD-smooth in X .

Appendix F. Rescaling the metric to obtain Lx “ Ly

If given pM, gq we rescale the metric g by a factor c2 P Rą0, we obtain that any distance D
is scaled by c. That is, if we consider pM, g̃q, where g̃ “ c2g, then if we denote the distance
induced by g̃ by dg̃p¨q, we have dg̃px, yq “ cdpx, yq for all x, y P M. And similarly, if the bounds
on the sectional curvature of pM, gq are rκmin, κmaxs, we obtain that the bounds on the sectional
curvature for pM, g̃q are rκ̃min, κ̃maxs “

1
c2
rκmin, κmaxs. Given a geodesically convex set X ,

the geometric constants ζX and δX remain invariant under this tranformation. Indeed, let X be a
set of diameter D measured with dp¨q and D̃ measured with dg̃p¨q. Then, if κmin ă 0 we have
ζX “ D

a

|κmin| cothpD
a

|κmin|q “ D̃
a

|κ̃min| cothpD̃
a

|κ̃min|q. For κmin ą 0 it is ζX “ 1 in
both cases. Similarly, we obtain the result for δX . For a function f : M Ñ R, we have that L-
smoothness and µ-strong convexity under g transforms into L̃-smoothness and µ̃-strong convexity
under g̃, for L̃ “ L{c2 and µ̃ “ µ{c2 since by definition:

fpyq ď fpxq ` x∇fpxq,Logxpyqy `
L

2
d2px, yq “ fpxq ` x∇fpxq,Logxpyqy `

L

2c2
dg̃px, yq

2,

and analogously for µ-strong convexity. In particular, the condition number L̃{µ̃ “ L{µ remains
constant, and for any two points x, y P M we have L̃dg̃px, yq2 “ Ld2px, yq. Now, if we have a
function f : M ˆ N Ñ R defined as in Section 1.1, and we rescale the metric of M by c2

1
def
“

pLx{Lyq
1{2 and rescale the metric of N by c2

2
def
“ pLy{Lxq

1{2, then we have L̃x “
a

LxLy “ L̃y
and L̃x{µ̃x “ Lx{µx as well as L̃y{µ̃y “ Ly{µy, and µ̃xµ̃y “ µxpLx{Lyq

´1{2µypLy{Lxq
´1{2 “

µxµy. Finally L̃xy “ Lxy, since

}∇xfpx, yq ´∇xfpx, y
1q}x,g̃ “

1

c1
}∇xfpx, yq ´∇xfpx, y

1q}x

ď
1

c1
Lxydpy, y

1q “
1

c1c2
Lxydg̃py, y

1q

“ Lxydg̃py, y
1q.

So indeed one can assume without loss of generality that for one such function f , we have Lx “ Ly.

Appendix G. Generalized Riemannian Sion’s Theorem

We first generalize Sion’s theorem [34, 42] to Riemannian manifolds under mild assumptions, which
in particular are satisfied if f is SCSC, ensuring the existence of a saddle point in this case. For
Riemannian manifolds, this theorem generalizes [42] which required the sets X , Y to be compact.
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Definition 12 A function f : X ˆ Y Ñ R is called inf-sup-compact at px̃, ỹq P X ˆ Y if the
sublevel sets of fp¨, ỹq and the superlevel sets of fpx̃, ¨q are compact. A function is quasi g-convex
(resp. quasi g-concave) if their level sets are g-convex (resp. g-concave).

Theorem 13 (Generalized Sion’s Theorem) [Ó] Let M and N be finite-dimensional Riemannian
manifolds. Further, let X Ă M and Y Ă N be g-convex and uniquely geodesic subsets. Let
f : X ˆ Y Ñ R be a function such that fp¨, yq is lower semicontinuous and quasi g-convex for
all y P Y , fpx, ¨q is upper semicontinuous and quasi g-concave for all x P X and that is inf-sup
compact for some px1, y1q P X ˆ Y . Then we have

min
xPX

max
yPY

fpx, yq “ max
yPY

min
xPX

fpx, yq.

Corollary 14 For µx, µy ą 0, a pµx, µyq-SCSC function f : X ˆ Y Ñ R is inf-sup compact for
any point in X ˆ Y . If we have an f : X ˆ Y Ñ R that is CC, then if X , Y are compact then
fpx, yq ` IX pxq ´ IYpyq is inf-sup compact for any point, where IC denotes the indicator function
of a set C, which is 0 if x P C and it is `8 otherwise. Similarly, if the function is pµx, 0q-SCC and
Y is compact then fpx, yq ´ IYpyq is inf-sup compact for any point.

Proof of Theorem 13.
Let X sup “ tx P X | supyPY fpx, yq ď αu and XX “

Ş

yPYtx P X | fpx, yq ď αu. Note that
XX “ tx P X | fpx, yq ď α,@y P Yu and hence XX “ X sup by the definition of the supremum.
We have that XX Ă tx P X | fpx, y1q ď αu. For every y P Y , tx P X | fpx, yq ď αu is closed
because fp¨, yq is lower semicontinuous for all y P Y and by the inf-compactness of fp¨, y1q, we
have tx P X | fpx, y1q ď αu is compact. It follows that XX and X sup are also compact. Note
that X sup is a sublevel set of ϕpxq “ supyPY fpx, yq. Define M1 “ tx P X | ϕpxq ď ϕpx1qu,
which is compact because the sublevel sets of ϕ are of the form of X sup, and it is not empty because
x1 P M1. We can write infxPX ϕpxq “ infxPM1 ϕpxq and since ϕ is lower semicontinuous and M1

is compact and non-empty, we have minxPX ϕpxq “ minxPX supyPY fpx, yq. One can analogously,
show that maxyPY infxPX fpx, yq exists.

The inequality maxyPY infxPX fpx, yq ď minxPX supyPY fpx, yq holds. In the following, we
show that the reverse inequality also holds. Let α ă minxPX supyPY fpx, yq and φypαq

def
“ tx P

X | fpx, yq ď αu. By definition of φy1 and inf-compactness, φy1pαq is g-convex and compact. We
have that the collection of complements

φC
def
“

 

φCy pαq “ tx P X | fpx, yq ą αu
(

yPY

is an open cover of X . Assume for the sake of contraction that φC is not an open cover of X . In this
case there exists an x0 P X such that fpx0, yq ď α for all y P Y . For this x0, it holds in particular
that supyPY fpx0, yq ď α. This contradicts the definition of α, since

α ă min
x

sup
y
fpx, yq ď sup

yPY
fpx0, yq ď α

cannot hold.
Since φC covers X , it also covers φy1pαq Ă X . The set φy1pαq is compact, so it has a finite

cover
 

φCyipαq
(

i“2,...,m
, and thus

 

φCyipαq
(

i“1,...,m
is a finite cover for X . We have found a set
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Y1 “ ty1, . . . , ymu such that for all x P X , there exists ỹ P Y1, with x P φCỹ pαq. This implies
α ă maxỹPY1 fpx, ỹq for all x P X . Let ϕ1pxq “ maxỹPY1 fpx, ỹq; then ĂM1 “ tx P X | ϕ1pxq ď
ϕ1px1qu is compact and non-empty. It follows that infxPX ϕ1pxq “ inf

xPĂM1
ϕ1pxq and hence

minxPX ϕ1pxq “ minxPX maxỹPY1 fpx, yq exists. Since α ă maxỹPY1 fpx, ỹq for all x P X ,
it holds in particular for α ă minxPX maxỹPY1 fpx, ỹq. By Theorem 15, there exists a y0 P Y
with α ă minxPX fpx, y0q ď supyPY minxPX fpx, yq. Consider a monotonic increasing sequence
αk Ñ minxPX supyPY fpx, yq, then since αk ă supyPY minxPX fpx, yq, we have shown the reverse
inequality

min
xPX

sup
yPY

fpx, yq ď max
yPY

inf
xPX

fpx, yq.

We have shown that minxPX supyPY fpx, yq and maxyPY infxPX fpx, yq exist, i.e., there exists x0 “

arg minxPX supyPY fpx, yq and y0 “ arg maxyPY infxPX fpx, yq and we can write

fpx0, ỹq ď sup
yPY

fpx0, yq “ inf
xPX

fpx, y0q ď fpx̃, y0q, @px̃, ỹq P X ˆ Y.

Setting x̃Ð x0 and ỹ Ð y0 we have that

fpx0, y0q “ min
xPX

fpx, y0q “ max
yPY

fpx0, yq.

It follows that
min
xPX

max
yPY

fpx, yq “ max
yPY

min
xPX

fpx, yq,

which concludes the proof.

The previous proof was inspired by ideas from three different generalizations of Sion’s theorem,
namely from Hartung [16], Komiya [23], Zhang et al. [42]. The following lemma, that we used in
the proof of Theorem 13 above, appeared in [42]. We add the lemma with a proof for completeness.

Lemma 15 Let pM, dMq and pN , dN q be finite-dimensional, unique geodesic metric spaces. Sup-
pose X Ď M, Y Ď N are geodesically convex sets. Let f : X ˆ Y Ñ R be a function such that
fp¨, yq is geodesically-quasi-convex and lower semi-continuous and fpx, ¨q is geodesically-quasi-
concave and upper semi-continuous. Then for any finite k points y1, . . . , yk P Y and any real
number α ă minxPX maxiPrks f px, yiq, there exists y0 P Y s.t. α ă minxPX f px, y0q.

Proof We prove the lemma for two points, and then the general lemma holds by induction. Suppose
it does not hold, so assume that for such an α, we have minxPX fpx, yq ď α for any y P Y . As a
consequence, there is at least a constant β such that

min
xPX

fpx, yq ď α ă β ă min
xPX

max tf px, y1q , f px, y2qu . (1)

Consider the geodesic γ : r0, d py1, y2qs Ñ Y connecting y1 and y2. For any t P r0, d py1, y2qs

and corresponding z “ γptq on the geodesic, the level sets φzpαq, φzpβq are nonempty due to
(1) and closed due to lower semi-continuity of f regarding the first variable. Since f is geodesic
quasi-concave in the second variable, we obtain

fpx, zq ě min tf px, y1q , f px, y2qu , @x P X .
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This is equivalent to say φzpαq Ď φzpβq Ď φy1pβq Y φy2pβq. We then argue the intersection
φy1pβqXφy2pβq should be empty. Otherwise, there exists x P X such that max tf px, y1q , f px, y2qu ď

β, contradicting (1). Next, by quasi-convexity, since level set φzpβq is geodesic convex for any z, it
is also connected. Consider the three facts:

• φzpαq Ď φy1pβq Y φy2pβq

• φy1pβq X φy2pβq is empty

• φzpαq, φy1pβq and φy2pβq are closed (due to lower semi-continuity), connected and convex

We claim that either φzpαq Ď φy1pαq or φzpαq Ď φy2pαq holds for any point z on the geodesic
γ. Suppose not, then we can always find two points w1 P φy1pβq, w2 P φy2pβq such that w1, w2 P

φzpαq. Since φzpαq is convex, then there is a geodesic γ : r0, 1s Ñ X in φzpαq connecting w1, w2.
Therefore γ also lies in φzpαq Ď φy1pβqYφy2pβq. Because φy1pβqXφy2pβq is empty, γ´1 induces
a partition on r0, 1s as J1X J2 “ ∅ and J1Y J2 “ r0, 1s where γ pJ1q Ď φy1pβq, γ pJ2q Ď φy2pβq.
Therefore at least one of J1, J2 is not closed. Since γ is a continuous map, at least one of φy2pβq
or φy2pβq is also not closed, contradicting known conditions. Since either φzpαq Ď φy1pαq or
φzpαq Ď φy2pαq, the two sets below

I1
def
“

!

t P r0, 1s | φγptqpαq Ď φy1pβq
)

,

I2
def
“

!

t P r0, 1s | φγptqpαq Ď φy2pβq
)

form a partition of the interval r0, 1s. We prove I1 is closed and nonempty. The latter is obvious
since at least γ´1 py1q P I1. Now we turn to prove closedness. Let tk be an infinite sequence in I1

with a limit point of t. We consider any x P φγptqpαq. The upper semi-continuity of fpx, ¨q implies

lim sup
kÑ8

f px, γ ptkqq ď fpx, γptqq ď α ă β.

Therefore, there exists a large enough integer l such that f px, γ ptlqq ă β. This implies x P
φγptlqpβq Ď φy1pβq. Therefore for any x P φγptqpαq, x P φy1pβq also holds. This is equivalent to
φγptqpαq Ď φy1pβq. Hence by the definition of level set, we know the t P I1 and I1 is then closed.
By a similar argument, I2 is also closed and nonempty. This contradicts the definition of partition
and hence proves the lemma.

Appendix H. Proofs of Riemannian Corrected Extra-Gradient

Proof of Theorem 2. We show that if dpxt, x˚q2`dpyt, y˚q2 ď D2 then dpwt, x˚q2`dpzt, y˚q2 ď
4D2 and dpxt`1, x

˚q2 ` dpyt`1, y
˚q2 ď D2. Then, these two latter properties are satisfied for all

t ě 0, since dpx0, x
˚q2 ` dpy0, y

˚q2 ď D2. Recall our notation ζ def
“ ζD and δ def

“ δD.
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We start by showing that in both the CC and the SCSC cases, the secondary iterates pwt, ztq are
not far from the saddle point:

d2pwt, x
˚q ` d2pzt, y

˚q ď 2rd2pwt, xtq ` d
2pxt, x

˚q ` d2pzt, ytq ` d
2pyt, y

˚qs

1
ď p2` 4η2L2qpd2pxt, x

˚q ` d2pyt, y
˚qq

2
ď p2`

δ

ζ
qpd2pxt, x

˚q ` d2pyt, y
˚qq

3
ď 4D2.

Here, 1 holds since by definition ofwt we have d2pwt, xtq “ }η∇xfpxt, ytq}
2 ď 2η2L2pd2pxt, x

˚q`

d2pyt, y
˚qq and similarly d2pzt, ytq ď 2η2L2pd2pxt, x

˚q ` d2pyt, y
˚qq. Further 2 holds because

η ď
b

1
4L2ζ

. And 3 holds since we have δ
ζ ď 1 and by our hypothesis on xt, yt. We bounded

3D ď 4D for convenience. Now, since f is µ-SCSC, we have that

fpwt, y
˚q ´ fpx˚, ztq “ fpwt, y

˚q ´ fpwt, ztq ` fpwt, ztq ´ fpx
˚, ztq

1
ď `x∇yfpwt, ztq, logztpy

˚qy ´
µ

2
d2pwt, x

˚q

´ x∇xfpwt, ztq, logwtpx
˚qy ´

µ

2
d2pzt, y

˚q

“
1

η
x´η∇xfpwt, ztq ˘ logwtpxtq, logwtpx

˚qy ´
µ

2
d2pwt, x

˚q

`
1

η
xη∇yfpwt, ztq ˘ logztpytq, logztpy

˚qy ´
µ

2
d2pzt, y

˚q

2
ď

1

η
xlogwtpxt`1q, logwtpx

˚qy ´
1

η
xlogwtpxtq, logwtpx

˚qy ´
µ

2
d2pwt, x

˚q

`
1

η
xlogztpyt`1q, logztpy

˚qy ´
1

η
xlogztpytq, logztpy

˚qy ´
µ

2
d2pzt, y

˚q,

(2)

where we used the µ-SCSC property in 1 and the definition of the iterates xt`1, yt`1 in 2 . We
now use the Riemannian cosine inequalities to obtain the inequalities below, cf. Theorem 7, [40,
Lemma 1]. The first two inequalities use the fact that the diameters of the geodesic triangles with
vertices wt, xt, x˚ and zt, yt, y˚, respectively, are upper bounded by 4D ď D, because all of those
points are in B def

“ B̄ppx˚, y˚q, 2Dq and this ball is geodesically convex and uniquely convex and
hence it contains the triangles. If κmin ě 0, we have that ζc “ 1 for any c ą 0, so we can just use
Theorem 7 to obtain the last two inequalities. If κmin ă 0, we use the more fine-grained inequality
[40, Lemma 1]. This lemma establishes the cosine inequalities with constants ζdpwt,x˚q and ζdpzt,y˚q,
respectively. The inequalities also hold for greater values of these constants, so we use ζ because
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we already established that dpwt, x˚q, dpzt, y˚q ď 2D ď 4D.

´2xlogwtpxtq, logwtpx
˚qy ď ´δd2pwt, xtq ´ d

2pwt, x
˚q ` d2pxt, x

˚q

´2xlogztpytq, logztpy
˚qy ď ´δd2pzt, ytq ´ d

2pzt, y
˚q ` d2pyt, y

˚q

2xlogwtpxt`1q, logwtpx
˚qy ď ζd2pwt, xt`1q ` d

2pwt, x
˚q ´ d2pxt`1, x

˚q

2xlogztpyt`1q, logztpy
˚qy ď ζd2pzt, yt`1q ` d

2pzt, y
˚q ´ d2pyt`1, y

˚q.

(3)

We can further bound the following term using the update rules and gradient Lipschitzness,

d2pwt, xt`1q “ } logwtpxt`1q}
2 “ } logwtpxtq ´ η∇xfpwt, ztq}

2

“ }ηΓwtxt∇xfpxt, ytq ´ η∇xfpwt, ztq}
2

“ 2η2
`

}Γwtxt∇xfpxt, ytq ´∇xfpwt, ytq}
2 ` }∇xfpwt, ytq ´∇xfpwt, ztq}

2
˘

ď 2η2L2pd2pwt, xtq ` d
2pzt, ytqq.

(4)

Analogously, we obtain

d2pzt, yt`1q ď 2η2L2pd2pwt, xtq ` d
2pzt, ytqq. (5)

Using the triangle inequality and pa` bq2 ď 2a2 ` 2b2, we have

´
µ

2
d2pwt, x

˚q ď
µ

2
d2pwt, xtq ´

µ

4
d2pxt, x

˚q,

´
µ

2
d2pzt, y

˚q ď
µ

2
d2pzt, ytq ´

µ

4
d2pyt, y

˚q.
(6)

So finally, we now bound (2) using (3) in combination with (4) to (6). We will use the following
inequality to study the CC and SCSC cases separately.

0 ď fpwt, y
˚q ´ fpx˚, ztq

ď
1

2η
rp4ζη2L2 ´ δ ` µηqd2pwt, xtq ` p1´

µη

2
qd2pxt, x

˚q ´ d2pxt`1, x
˚qs

`
1

2η
rp4ζη2L2 ´ δ ` µηqd2pzt, ytq ` p1´

µη

2
qd2pyt, y

˚q ´ d2pyt`1, y
˚qs.

(7)

Case CC We have µ “ 0. It follows that for η ď
b

δ
4ζL2 , we have by (7) that

d2pxt`1, x
˚q ` d2pyt`1, y

˚q ď d2pyt, y
˚q ` d2pxt, x

˚q ď D2.

Case SCSC We have µ ą 0. It follows that for η ď min
!
b

δ
8L2ζ

, δ2µ

)

, we have by (7) that

d2pxt`1, x
˚q`d2pyt`1, y

˚q ď

´

1´
µη

2

¯

pd2pyt, y
˚q`d2pxt, x

˚qq ď d2pyt, y
˚q`d2pxt, x

˚q ď D2.

Now to conclude the first statement, recall D def
“ dppx0, y0q, px

˚, y˚qq andD ě 4D by definition.
Since we just showed that the iterates do not go farther than 2D ď D{2 to px˚, y˚q, then they stay
in the closed ball B def

“ B̄ppx˚, y˚q, D{2q, whose diameter is D. Therefore, our choice of η in the
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pseudocode in Algorithm 2 is a valid one. Note that the knowledge of this set B is not needed for
the algorithm.

For the second statement, we note that the proofs of the convergence rates stated in the propo-
sition were provided by Jordan et al. [20] for the SCSC case and by Zhang et al. [42] for the CC
case under the following additional assumption: when η is chosen with respect to some geomet-
ric constants δD and ζD, then the iterates do not leave a set of diameter D that contains px˚, y˚q.
We showed that the iterates satisfy this assumption for our choice of learning rate η and there-
fore the convergence follows. Note that Jordan et al. [20] proves for the SCSC case that pxT , yT q
is an ε1-saddle point in distance. By Statement 4 of Theorem 6, we have that gappxT , yT q ď
rdpxT , x

˚q ` dpyT , y
˚qsLD p1` L{µq. This holds, as by assumption ∇fpx˚, y˚q “ 0 and hence

Lppfpx, yqq ď LD. Hence, we have that gappxT , yT q ď 2LD
´

1` L
µ

¯?
ε1. Thus after

T “ rO

˜

L

µ

d

ζD
δD
`

1

δD

¸

.

iterations of RCEG, we obtain a ε-saddle point for the SCSC case.

Algorithm 2 Riemannian Corrected Extragradient (RCEG)
Input: Initialization px0, y0q, f : MˆN Ñ R, manifolds M and N , g-strong convexity constant

µ (for SCSC), smoothness L, bound D ě 4D “ 4pd2px0, x
˚q ` d2py0, y

˚qq1{2.

1: For SCSC, choose η Ð min

"c

δD
8L2ζD

,
δD
2µ

*

, for CC, choose η Ð
c

δD
4L2ζD

2: pw0, z0q Ð
`

expx0p´η∇xfpx0, y0qq, expy0pη∇yfpx0, y0qq
˘

3: z̄0 Ð z0, w̄0 Ð w0

4: px1, y1q Ð
`

expw0
p´η∇xfpw0, z0q ` logw0

px0qq, expz0pη∇yfpw0, z0q ` logz0py0qq
˘

5: for t “ 1 to T ´ 1 do
6: pwt, ztq Ð

`

expxtp´η∇xfpxt, ytqq, expytpη∇yfpxt, ytqq
˘

7: pxt`1, yt`1q Ð
`

expwtp´η∇xfpwt, ztq ` logwtpxtqq, expztpη∇yfpwt, ztq ` logztpytqq
˘

8: if µ “ 0 then ˛ Geodesic averaging for CC
9: pw̄t, z̄tq Ð

´

expw̄t´1

´

t´1 logw̄t´1
pwtq

¯

, expz̄t´1

´

t´1 logz̄t´1
pztq

¯¯

10: end if
11: end for
Output: pxT , yT q if µ ą 0, else pw̄T´1, z̄T´1q

Consider the convex-concave setting. It directly follows from Zhang et al. [42, Theorem 4.1]
that RCEG is non-expansive in the “main” iterates xt, yt. We copy the second last inequality from
the proof and adapt the notation as well as correction a minor numerical error and simplifying
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ζM “ ζN “ ζ and ξM “ ξN “ δ.

0 ď fpx̂t, y
˚q ´ fpx˚, ŷtq ď

1

η

“

p4ζL2η2 ´ δqd2pxt, x̃tq ` d
2pxt, x

˚q ´ d2pxt`1, x
˚q
‰

`
1

η

“

p4ζL2η2 ´ δqd2pyt, ỹtq ` d
2pyt, y

˚q ´ d2pyt`1, y
˚q
‰

Choosing the optimal stepsize η “ 1
2L

?
δ?
ζ

and noting that the dual gap is nonnegative we get that
the main series is non-expansive,

d2pxt`1, x
˚q ` d2pyt`1, y

˚q ď d2pyt, y
˚q ` d2pxt, x

˚q.

Note that the reason we care about expansivity is to bound the geometric deformation. We now
specify that both ζ and δ, depend on the distances dpx̃t, x˚q and dpỹt, y˚q, meaning that we have to
show non-expansivity for the secondary iterates x̃t, ỹt, which we will do in the following,(we use zt
to simplify the notation)

d2pz̃t, z
˚q ď 2d2pzt, z

˚q ` 2d2pzt, z̃tq

ď p2` 2η2L2qd2pzt, z
˚q “ p2`

δ

2ζ
qd2pzt, z

˚q

ď
5

2
d2pzt, z

˚q ď
5

2
d2pz0, z

˚q

In the first inequality we use the triangle inequality. In the second line we used the update rule
z̃t “ expztp´ηF pztqq and smoothness and then the definition of η. The last line follows by the
definition of the geometric constants and the non-expansivity of the main iterates. Since the main
iterates are non-expansive, we can now conclude that the secondary iterates are only a small constant
further away from the saddle point than the initialization.

Appendix I. Proofs of convergence rates for our Accelerated Algorithms

I.1. Acceleration for G-Convex Functions

We use RiemaconAbs to refer to Algorithm 3 for µ-strongly g-convex minimization. We write
RiemaconAbspf, x0, T,X ,subroutineq to specify the output of the algorithm initialized at x0

for optimizing the function f constrained to X , run for T steps and making use of the subroutine
subroutine. The subroutine solves a proximal problem approximately, effectively implementing
an approximate implicit Riemanian Gradient Descent (RGD) step. In the pseudocode, we use the
notation ΠCppq to refer to the Euclidean projection of a point p onto a closed convex set C.
Proof of Theorem 4. We note that it is ξ def

“ 4ζ2DX
´3 ď 8ζDX

´3 “ OpζDX
q. Let κ def

“ 1
λµ and let

c
def
“ 1

2
?
ξκ

, so that Ak “ p1` cq
k for all k ě 1, and ak “ ξpp1` cqk ´ p1` cqk´1q “ ξcp1` cqk´1

for all k ě 1. We also note that in order to satisfy
a

ξ{κ ď 1{3, to be used later, we only use
µ-strong g-convexity of f , instead of µ̄-strong convexity, where µ def

“ mintµ̄, 1{p9ξλqu. We want to
show the following is almost a Lyapunov function for our problem

Ψk
def
“ Ak

ˆ

fpykq ´ fpx
˚q `

µ

4
}zykk ´ x˚}2yk `

µpξ ´ 1q

4
}zykk }

2
yk

˙

,
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Algorithm 3 RiemaconAbspf, x0, T or ε, λ,X ,subroutineq. Absolute accuracy criterion.
Input: Finite-dimensional Hadamard manifold M of bounded sectional curvature, feasible g-

convex compact set X of diameter DX . Initial point x0 P X Ă M. Function f : M Ñ R

that is µ̄-strongly g-convex in X . Parameter λ ą 0. Final iteration T or accuracy ε. If ε is
provided, compute the corresponding T and vice versa, cf. Theorem 4, subroutine to solve
the proximal problems of Lines 5 and 12.

1: ξ Ð 4ζ2DX
´ 3 ˛ ξ is OpζDX

q

2: µÐ mintµ̄, 1{p9ξλqu
3: κÐ 1{pλµq
4: ε̂Ð ε ¨ p8

?
ξκ3{2q´1

5: y0 Ð ε̂-minimizer of the proximal problem minyPX tfpyq `
1

2λd
2px0, yqu

6: z̄y00 Ð zy00 Ð 0 P Ty0M
7: A0 Ð 1

8: for k “ 1 to T do
9: Ak Ð p1` 1{p2

?
ξκqqk

10: ak Ð ξpAk ´Ak´1q

11: xk Ð Expyk´1
p

ak
Ak´1`ak

z̄
yk´1

k´1 `
Ak´1

Ak´1`ak
yk´1q “ Expyk´1

p
ak

Ak´1`ak
z̄
yk´1

k´1 q ˛ Coupling

12: yk Ð ε̂-minimizer of problem minyPX tfpyq `
1

2λd
2pxk, yqu ˛ Approximate implicit RGD

13: vxk Ð ´Logxk
pykq{λ ˛ Approximate subgradient

14: zxkk´1 Ð Logxk
pExpyk´1

pz̄
yk´1

k´1 qq

15: zxkk Ð A´1
k pAk´1z

xk
k´1 `

ak
ξ p´λ´

2
µqv

x
kq ˛Mirror Descent step

16: zykk Ð Γykxkpz
xk
k q ` Logykpxkq ˛Moving the dual point to TykM

17: z̄ykk Ð ΠB̄p0,DX q
pzykk q P TykM ˛ Easy projection done so the dual point is not very far

18: end for
19: return yT .

in the sense that we can show
Ψk ď Ψk´1 ` 2pκ` 1qAkε̂. (8)

If we show (8), then we can conclude the theorem since for T ě 2
?
ξκ log2p

2λ´1d2px0,x
˚q

ε q, we
would have

fpyT q ´ fpx
˚q ď

ΨT

AT
ď

Ψ0

AT
` 2ε̂pκ` 1q

řT
i“1Ai
AT

ď
Ψ0

AT
` 2ε̂pκ` 1q

AT`1

cAT

1
ď

Ψ0

2Tc
` 4ε̂κ3{2

a

ξ
2
ď

ε

2
`
ε

2
“ ε.

where in 1 we used c “ 1{p2
?
ξκq ď 1{6 (by

a

ξ{κ ď 1{3 and ξ ě 1) and so p1 ` cq1{c ą 2.
We also bounded 1 ` c ď 2. For 2 , we used ε̂ def

“ ε{p8
a

κ3ξq and Ψ0 ď fpy0q ´ fpx˚q ď
λ´1d2px0, x

˚q due to Theorem 21 and the definition of y0. In short, we find an ε-minimizer for

T “ Op
?
ζκ logp

λ´1d2px0,x
˚q

ε qq.
We now focus on proving (8). We can assume without loss of generality that xk “ 0. We

work in the tangent space of xk all of the time except when applying Theorem 17 that moves lower
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bounds, so according to our notation, points x˚, yk´1, and yk should be interpreted as Logxk
px˚q,

Logxk
pyk´1q and Logxk

pykq, respectively. We note that our choice of dual point zxkk comes from
optimizing the regularized lower bound that we have at iteration k:

zxkk “ arg min
xPTx

k
M

#

ˆ

Ak´1µ

4

˙

}zxkk´1 ´ x}
2
xk
`
ak
ξ

µ

4

›

›

›

›

ˆ

1`
2

µλ

˙

yk ´
2

µλ
xk ´ x

›

›

›

›

2

xk

+

1
“

Ak´1z
xk
k´1 `

ak
ξ

”´

1` 2
µλ

¯

yk ´
2
λµxk

ı

Ak´1 ` ak{ξ

2
“

Ak´1z
xk
k´1 ´

ak
ξ

´

λ` 2
µ

¯

vxk

Ak´1 ` ak{ξ
.

(9)

The equality 1 can be obtained by just taking a derivative and checking when we have global
optimality. Equality 2 uses xk “ 0 and λvxk “ xk ´ yk “ ´yk. The definition of zxkk as
the arg min above is derived from minimizing a convex combination of the previously computed
regularized lower bound, a quadratic with minimizer at zxkk´1, plus the new bound which we obtain
by Theorem 16. Indeed, one can check that the second summand is a quadratic that has the same
minimizer as the right hand side in Theorem 16. In order to show (8), by Theorem 17 it is enough
to show

Ak

ˆ

fpykq ´ fpx
˚q `

µ

4
}zxkk ´ x˚}2xk

`
µpξ ´ 1q

4
}zxkk }

2
xk
´ 2pκ` 1qε̂

˙

ď Ak´1

ˆ

fpyk´1q ´ fpx
˚q `

µ

4
}zxkk´1 ´ x

˚}2xk
`
µpξ ´ 1q

4
}zxkk´1}

2
xk

˙

.

(10)

The following identities involving our parameters will be useful in the sequel

Ak “ Ak´1 ` ak{ξ (11)

Ak´1pxk ´ yk´1q “ ´akpxk ´ z
xk
k´1q (equiv. to) yk´1 “ ´

ak
Ak´1

zxkk´1 (12)

yk “ ´λv
x
k (13)

We regroup the terms in (10) with evaluations of f to the left hand side to yield Ak´1pfpykq ´
fpyk´1qq` pak{ξq ¨ pfpykq´ fpx

˚qq and then we apply Theorem 16 twice to show that it is enough
to prove:

Ak´1xv
x
k , yk ´ yk´1y ´Ak´1

µ

4
}yk´1 ´ yk}

2 `
ak
ξ
xvxk , yk ´ x

˚y ´
ak
ξ

µ

4
}x˚ ´ yk}

2

ď
µ

4

“

Ak´1p}z
xk
k´1 ´ x

˚}2 ` pξ ´ 1q}zxkk´1}
2q ´Ak

`

}zxkk ´ x˚}2 ` pξ ´ 1q}zxkk }
2
˘‰

Note that the errors with respect to ε̂ cancel each other. Now, we will just check that the terms
involving xx˚, ¨y and }x˚}2 cancel each other, given our choice of zxkk . Indeed, for }x˚}2 we have
the following weights on each side:

´
ak
ξ

µ

4
“
µ

4
pAk´1 ´Akq,

which holds by (11). Then, on each side of the inequality we have the following that holds by our
choice of zxkk , and (13)

xx˚,´
ak
ξ
vxk `

ak
ξ

µ

2
¨ p´λqvxky “ xx

˚,
µ

4
Ak´1 ¨ p´2zxkk´1q ´

µ

4
Ak ¨ p´2zxkk qy.
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We remove those terms involving x˚, and we use the properties (12) and (13) and the definition of
zxkk so the only variables left are ak, Ak´1, Ak, vxk and zxkk´1:

´ λAk´1}v
x
k}

2 ` akxv
x
k , z

xk
k´1y ´

µ

4
Ak´1λ

2}vxk}
2 ´

µ

4

a2
k

Ak´1

}zxkk´1}
2 ` 2xvxk , z

xk
k´1y

λµak
4

´
ak
ξ
λ}vxk}

2 ´
ak
ξ

µ

4
λ2}vxk}

2

ď
µ

4
Ak´1ξ}z

xk
k´1}

2 ´
µ

4

ξ

Ak

ˆ

A2
k´1}z

xk
k´1}

2 `
a2
k

ξ2 pλ`
2

µ
q2}vxk}

2 ´ 2xvxk , z
xk
k´1yAk´1

ak
ξ
pλ`

2

µ
q

˙

The strategy now is to complete squares to make appear a factor proportional to ´}avxk ` bzxkk´1}
2

on the left hand side, and show that we can prove the inequality without that term, where a, b P R.
We pick a so that ´a2}vxk}

2 is precisely the term involving }vxk}
2 that we have above, if we move

all of those to the left hand side. In other words, after completing squares we will just need to prove
that the resulting factor multiplying }zxkk´1}

2 is non-positive. Let’s first regroup all the coefficients
with respect to }vxk}

2, }zxkk´1}
2 and xvxk , z

xk
k´1y and place them on the left hand side:

xvxk , z
xk
k´1y ¨ ak

ˆ

1`
λµ

2

˙ˆ

1´
Ak´1

Ak

˙

` }vxk}
2 ¨

˜

´λAk ´
µ

4
λ2Ak `

µ

4

a2
k{ξ

Ak

ˆ

λ`
2

µ

˙2
¸

` }zxkk´1}
2

˜

´
µ

4

a2
k

Ak´1

´
µξ

4
Ak´1 `

µξ

4

A2
k´1

Ak

¸

ď 0.

(14)

So now we pick ´a2 as the resulting factor multiplying }vxk}
2, i.e., ´a2 def

“ ´λAkp1 `
µλ
4 q `

1
4µ

a2k{ξ
Ak
pλµ` 2q2 and therefore we have

b2 “
p2abq2

4a2
“ a2

k

ˆ

1`
λµ

2

˙2 ˆ

1´
Ak´1

Ak

˙2 1

4a2
.

For this computation to be valid, we need to show our choice for ´a2 is non-positive. We recall it
holds that Ak “ p1` cq

k, Ak´1 “ p1` cq
k´1, ak “ ξcp1` cqk´1 and use κ “ 1

µλ , and c “ 1
2
?
ξκ

.

So ´a2 ď 0 if and only if 1 below holds:

ξ

ˆ

1` 4κ` 4κ2

1` 4κ

˙

“
ξ

4λµ

˜

pλµ` 2q2

p1` λµ
4 q

¸

1
ď

A2
kξ

2

a2
k

“
p1` cq2

c2
“ 1`

2

c
`

1

c2
“ 1` 4

a

ξκ` 4ξκ.

And this inequality is clearly satisfied, since we assumed κ ě 1. Indeed, drop the two first sum-
mands on the right hand side and multiply by 1` 4κ.

So now we can just add 2abxvxk , z
xk
k´1y ` a2}vxk}

2 ` b2}zxkk´1}
2 “ }vxk ´ zxkk´1}

2 ě 0 to the left
hand side of (14) and show the resulting inequality, in order to prove the result. So it is enough to
prove the resulting factor multiplying }zxkk´1}

2 is non-positive:

a2
k

ˆ

1`
λµ

2

˙2 ˆ

1´
Ak´1

Ak

˙2 ˆ

λAkp4` µλq ´
1

µ

a2
k{ξ

Ak
pλµ` 2q2

˙´1

´
µa2

k

4Ak´1

´
µξAk´1

4
`
µξA2

k´1

4Ak
ď 0.
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Now, this inequality holds by substituting the values of Ak, Ak´1, ak, using κ “ pλµq´1 and
c “ 1

2
?
ξκ

and doing some simple computations. Indeed, by substituting, combining the last two

summands, dividing by µp1 ` cqk´2{4, reducing the 4 ` µλ to 2 ` µλ and simplifying terms, we
obtain it is enough to prove

c4p1` cqk´2ξ2p2` λµq

λµp1` cqk ´ p1` cqk´2c2ξpλµ` 2q
´ c2p1` cqξ2 ´ cξ ď 0.

From here, the inequality follows by operating out and comparing terms. If we just substitute the
value of c2 “ 1{p2ξκq in the instances where there is c4 or c2, then κ disappears from the equation
and one can compare terms to reach the result, by using c P p0, 1q, ξ ą 1.

We now prove the auxiliary lemmas that were used to prove Theorem 4.

Lemma 16 (Approx. st. g-convexity by approx. subgradient) Let yk be an ε̂minimizer of hkpxq
def
“

minxPX tfpxq `
1

2λd
2pxk, xqu, and let vxk

def
“ ´λ´1Logxk

pykq. Then, for all x P X , we have

fpxq ě fpykq ` xv
x
k , x´ ykyxk `

µ

4
}x´ yk}

2
xk
´

ˆ

2

λµ
` 2

˙

ε̂.

Proof Let y˚k
def
“ arg minxPX hkpxq. The function hk is p 1

λ ` µq-strongly g-convex because by
Theorem 11 the function 1

2d
2pxk, xq is 1-strongly g-convex in a Hadamard manifold. This strong

convexity and optimality of the point y˚k yield 1 below. Besides, we have

fpxq
1
ě

ˆ

fpy˚k q `
1

2λ
d2pxk, y

˚
k q

˙

´
1

2λ
d2pxk, xq `

ˆ

1

2λ
`
µ

2

˙

d2py˚k , xq

2
ě

ˆ

fpykq `
1

2λ
}xk ´ yk}

2
xk
´ ε̂

˙

´
1

2λ
}xk ´ x}

2
xk
`

ˆ

1

2λ
`
µ

2

˙

}y˚k ´ x}
2
xk

“ fpykq ` xv
x
k , x´ ykyxk `

µ

2
}x´ yk}

2
xk
`

ˆ

1

λ
` µ

˙

pxx´ yk, yk ´ y
˚
kyxk `

1

2
}y˚k ´ yk}

2
xk
q ´ ε̂

3
ě fpykq ` xv

x
k , x´ ykyxk `

µ

4
}x´ yk}

2
xk
´

ˆ

1

λµ
`

1

2

˙ˆ

1

λ
` µ

˙

}y˚k ´ yk}
2
xk
´ ε̂

4
ě fpykq ` xv

x
k , x´ ykyxk `

µ

4
}x´ yk}

2
xk
´

ˆ

2

λµ
` 2

˙

ε̂.

(15)

where in 2 we used the ε̂-optimality of yk for hkp¨q and we used for the last summand that in a
Hadamard manifold we have dpx, yq ě }x´ y}z for any three points x, y, z.

In 3 , we used Young’s inequality:

xx´ yk,

ˆ

1

λ
` µ

˙

pyk ´ y
˚
k qyxk ě ´

µ

4
}x´ yk}

2
xk
´

1

µ

ˆ

1

λ
` µ

˙2

}yk ´ y
˚
k}

2,

and grouped some terms. Finally, in 4 we used ´}y˚k ´ yk}
2
xk
ě ´d2py˚k , ykq and then p 1

λ ` µq-
strong convexity of hk along with ε̂-optimality of yk: p 1

λ `µq}y
˚
k ´ yk}

2
xk
ď hkpykq ´ hkpy

˚
k q ď ε.
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Lemma 17 (Translating potentials with no geometric penalty) Using the notation in Algorithm 3,
we have

Ak´1p}z
xk
k´1 ´ x

˚}2xk
` pξ ´ 1q}zxkk´1}

2
xk
q ´Akp}z

xk
k ´ x˚}2xk

` pξ ´ 1q}zxkk }
2
xk
q

ď Ak´1p}z
yk´1

k´1 ´ x
˚}2yk´1

` pξ ´ 1q}z
yk´1

k´1 }yk´1
q

´Akp}z
yk
k ´ x˚}2yk ` pξ ´ 1q}z

yk´1

k´1 }
2
yk´1

´ }yk ´ z
yk
k }

2
yk
q.

Proof Firstly, by the projection step in Line 17, we have

}z
yk´1

k´1 ´ x
˚}2yk ě }z̄

yk´1

k´1 ´ x
˚}2yk and pξ ´ 1q}z

yk´1

k´1 }
2
yk
ě pξ ´ 1q}z̄

yk´1

k´1 }
2
yk

(16)

since the operation is a simple Euclidean projection onto the closed ball B̄p0, Dq in TykM. Now,
the following holds

}z̄
yk´1

k´1 ´ x
˚}2yk´1

` pξ ´ 1q}z̄
yk´1

k´1 }
2
yk´1

1
ě }zxkk´1 ´ x

˚}2xk
` pζ2D ´ 1q}zxkk´1}

2
xk
` pξ ´ ζ2Dq}z̄

yk´1

k´1 }
2
yk´1

2
ě }zxkk´1 ´ x

˚}2xk
` pξ ´ 1q}zxkk´1}

2
xk
` pξ ´ ζ2Dq

˜

ˆ

Ak´1 ` ak
Ak´1

˙2

´ 1

¸

}zxkk´1}
2
xk

3
ě }zxkk´1 ´ x

˚}2xk
` pξ ´ 1q}zxkk´1}

2
xk
`

3pξ ´ 1q

2

˜

ˆ

Ak´1 ` ak
Ak´1

˙2

´ 1

¸

}zxkk´1}
2
xk
,

(17)

where 1 is due to Theorem 10, with y Ð xk and x Ð yk´1 and to dpxk, pq ď dpxk, yk´1q `

dpyk´1, pq ď }z
yk´1

k´1 }yk´1
`D ď 2D for any p PM. Inequality 2 uses the definition of xk. In 3 ,

we used the definition of ξ “ 4ζ2D ´ 3 that implies ξ ´ ζ2D ě
3
4pξ ´ 1q. Now, we use Theorem 9

with y Ð yk, x Ð xk z
x “ ´vxk ¨

ak
ξ pλ `

4
µq{Ak, ax Ð zxkk´1pAk´1{Akq, so that zx ` ax “ zxkk

and zy ` ay “ zykk and

r “
}Logxk

pykq}

}zx}
“

λ}vxk}

}vxk} ¨
ak
ξ pλ`

4
µqA

´1
k

“
ξAk

akp1`
4
λµq

1
ď

c

ξ

κ

2
ď

1

3
ă 1.

We will now explain why 1 holds. But first note that by the previous inequality, by the choice of
parameters and the fact that r ă 1, the assumptions in Theorem 9 are satisfied. Also, note that 2
holds by the assumption on λ. We have 1 above if and only if the following holds

ξAk´1 ď

c

ξ

κ
ak

ˆ

´

c

κ

ξ
` 1` 4κ

˙

, (18)

and this is implied by ξ ď
b

ξ
κcξ ¨ 3κ, by substituting the values of Ak´1 and ak and using 3κ ď

4κ ´
a

κ{ξ ď 4κ ´
a

κ{ξ ` 1, which comes from our assumption κ ě 9ξ ě ξ. Consequently, a
sufficient condition is c ě 1{p3

?
ξκq, which is satisfied by our choice c “ 1{p2

?
ξκq.

The result in Theorem 9, applied as above results in

}zxkk ´ x˚}2xk
` pξ ´ 1q}zxkk }

2
xk
`
ξ ´ 1

2

ˆ

r

1´ r

˙

A2
k´1

A2
k

}zxkk´1}
2 ě }zykk ´ x˚}2yk ` pξ ´ 1q}zykk }

2
yk
.

(19)
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Combining (17) multiplied byAk´1 with (19) multiplied byAk, we obtain that in order to conclude,
it suffices to show

Ak
ξ ´ 1

2

r

1´ r

A2
k´1

A2
k

´Ak´1

3pξ ´ 1q

2

˜

ˆ

ak `Ak´1

Ak´1

˙2

´ 1

¸

ď 0.

We substitute the value of r and after simplifying we obtain that we want to show

ξA3
k´1 ´ 3pa2

k ` 2akAk´1q

ˆ

ak

ˆ

1`
4

λµ

˙

´ ξAk

˙

ď 0

After substituting the value of Ak, Ak´1, ak, operating out and dividing by ξp1` cq3k´3, we obtain
that the previous inequality is equivalent to

1` 3ξ2p1` cqc2 ` 6ξc` 6ξc2 ď 3ξ2p1` 4κqc3 ` 6ξc2p1` 4κq “
3ξc

2κ
` 6ξc`

3

κ
` 12

where in the last equality we used c2 “ 1{p4ξκq. This inequality holds. After simplifying the
terms 6ξc we get that the left hand side is ď 1 ` 3p1`cq

2κ ` 3
κ ď 7 where we used the value of

c “ 1{p2
?
ξκq ď 1 and κ ě 1.

Corollary 18 [Ó] If in addition to the assumptions from Theorem 4, f is also L-smooth in X ,
Algorithm 3 with λ “ 1{L and PRGD as subroutine, yields an ε-minimizer after rOpζRζ

3{2?κ` ζq
gradient and metric-projection oracle calls, where R ď pLppf,X q{L ` 2DX q{ζ and DX is the
diameter of X .

Proof of Theorem 18. By Theorem 4, it suffices to run Algorithm 3 for

T 2 ě 2

d

ξ

λµ̄
` 9ξ2 log2

ˆ

2λ´1d2px0, x
˚q

ε

˙

iterations in order to obtain an ε-minimizer. We use λ “ 1{L, and recall ξ “ rOpζq. Step k of Algo-
rithm 3 requires computing a ε̂-minimizer of minxPX hkpxq, where hkpxq

def
“ fpxq ` 1

2λd
2pxk, xq

and
ε̂ “

ε

8

c

ξ
´

L
mintµ,L{p9ξqu

¯3
.

We implement the subroutine with PRGD with learning rate 1
L1 , where L1 def

“ Lp1 ` ζ q is a bound
on the smoothness of h, cf. Theorem 11. We require the following number of steps

T 1 ě 1` 2
L1

µ1
ζR log

ˆ

L1ζRD
2
X

2ε̂

˙

,

where R “ Lpph,X q{L1. We can bound

R ď
maxxPX }∇fpxq} ` Ldpx, xkq

Lp1` ζq

1
ď

maxxPX t}∇fpxq}{Lu ` 2DX
ζ

,
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where in 1 we used that for all x P X , it is

dpx, xkq ď dpyk´1, xkq ` dpx, yk´1q
2
ă dpyk´1, z̄

yk´1

k´1 q `DX
3
ď 2DX .

where 2 holds by definition of xk and the fact yk´1, x P X , while 3 is due to the projection
defininig z̄yk´1

k´1 .
The condition number of h is bounded by

L1

µ1
ď λL` ζ ď 1` ζ.

So we have

T 1 ě 1` 2ζRp1` ζq log

¨

˝4
Lp1` ζqζRD

2
X

b

pLµ ` 9ξq3ξ

ε

˛

‚,

The complete complexity of RiemaconAbs is

T “ T 1T 2 “ rOpζRζ
3
2

a

κ` ζq.

Corollary 19 Under the assumptions from Theorem 18, if a global minimizer x˚ P arg minM fpxq
is in X , so that ∇fpx˚q “ 0, then Algorithm 3 with λ “ 1{L and PRGD as subroutine, as in
Theorem 18 yields an ε-minimizer after rOpζ3{2?κ` ζq gradient and metric-projection oracle calls.

Proof By the assumption on x˚ and the smoothness assumption, we have that Lppf,X q ď LDX
and since ζ ě DX

a

|κmin|, we obtain R ď pLppf,X q{L ` 2DX q{ζ “ Op 1?
|κmin|

q and thus

ζR “ Op1q. We obtain the result by applying Theorem 18. Note that we can also use PRGD with
RiemaconRel and Theorem 23 and similarly it is ζR “ Op1q.

Note that Martínez-Rubio and Pokutta [28, Theorem 6] had to assume a mild condition on the
Hadamard manifold and obtained overall query complexity rOpζ 2?κq whereas we obtain lower
complexity in the general Hadamard case with bounded sectional curvature. Note that to compare
to Martínez-Rubio and Pokutta [28, Theorem 6] we would run our algorithm for X a ball of center
x0 and radius an upper bound on dpx0, x

˚q and in such a case the implementation of the metric-
projection oracle consist of computing a direct and an inverse exponential and simple operations,
cf. [28, Proposition 14], so it does not increase the order of our computational complexity. We note
that [28] provided another instantiation of their algorithm for g-convex minimization but under the
assumption of having access to a projection oracle that is not a metric-projected oracle.

Remark 20 We can obtain the accelerated result for the g-convex case with reduced geometric
penalties via a reduction to the µ-strongly g-convex case. Assume the existence of a global minimizer
x˚ and let D{2 ě dpx0, x

˚q. Given an ε ą 0, we optimize the regularized function fεpxq
def
“

f ` ε
D2dpx0, xq

2. Denote by x˚ε to the minimizer of fε. We have dpx0, x
˚
ε q ď dpx0, x

˚q ď D{2

(see [28, Lemma 10]). We run Algorithm 3 on fε on a ball B̄px0, D{2q. We have that fε is strongly
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g-convex with constant 2ε
D2 , cf. Theorem 11. Hence, the algorithm finds an ε{2 minimizer xT 1 of fε

after T 1 “ rOpζ`
b

ζD2{pλεqq iterations. By definition, it is dpx0, x
˚q ď D{2 so the regularization

at x˚ is ε
D2dpx0, x

˚q2 ď ε
4 and thus xT 1 is an ε-minimizer of f :

fpxT 1q ď fεpxT 1q ď fεpx
˚q `

ε

4
ď fpx˚q ` ε.

I.2. Convergence of Projected Gradient Descent

Proof of Theorem 3. Below, we prove that for any point xt P X , PRGD yields

fpxt`1q ´ fpx
˚q ď pfpxtq ´ fpx

˚qq

˜

1´
µ

4LζRt

¸

, (20)

where Rt
def
“ }∇fpxtq}{L. Recall our notation Lppf,X q for denoting the Lipschitz constant of f in

X . Given (20) above, and defining R def
“ Lppf,X q{L, we have by applying (20) T times from x0,

that the following holds

fpxT q ´ fpx
˚q ď min

#

pfpx0q ´ fpx
˚qq

ˆ

1´
µ

4LζR

˙T

,
LζR

2
d2px0, x

˚q

ˆ

1´
µ

4LζR

˙T´1
+

,

since by Theorem 21 we have fpx1q´fpx
˚q ď

LζR
2 d2px0, x

˚q. The result follows by bounding the
right hand side of the expression above by ε and reorganizing.

We now prove (20). The following holds:

fpxt`1q
1
ď min

xPX

"

fpxq `
LζRt

2
d2px, xtq

*

2
ď min

αPr0,1s

#

αfpx˚q ` p1´ αqfpxtq `
LζRtα

2

2
d2px˚, xtq

+

3
ď min

αPr0,1s

"

fpxtq ´ α

ˆ

1´ α
LζRt
µ

˙

pfpxtq ´ fpx
˚qq

*

4
“ fpxtq ´

µ

4LζRt
pfpxtq ´ fpx

˚qq.

Above, we used Theorem 21 to conclude 1 , and 2 results from restricting the minimum to
the geodesic segment between x˚ and xt so that x “ Expxtpαx

˚ ` p1´ αqxtq. We also use g-
convexity of f . In 3 , we used strong convexity of f to bound µ

2d
2px˚, xtq ď fpxtq ´ fpx˚q.

Finally, in 4 we substituted α by the value that minimizes the expression, which is µ{p2LζRtq.
The result in (20) follows by subtracting fpx˚q to the inequality above. The final statement is a
direct consequence of (20) and the definition of R, along with fpx1q ´ fpx˚q ď

LζR
2 d2px0, x

˚q

which holds due to Theorem 21.
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Lemma 21 (Dist to Gap and Warm Start) Let M be a Hadamard manifold X ĎM be a uniquely
g-convex set of diameter D, x̄ P X , and g : M Ñ R a g-convex and L-smooth function in X with
a minimizer at x˚ P arg minxPX gpxq. Assume access to a metric-projection operator PX on X
and let x1 def

“ PX pExpx̄p´
1
L∇gpx̄qqq, and R def

“ dpx1, x̄q “ }∇gpx̄q}{L. The following holds for all
p P X :

gpx1q ´ gppq ď
ζRL

2
d2px̄, pq.

In particular, we have

gpx1q ´ gpx˚q ď
ζRL

2
d2px̄, x˚q.

See [28, Lemma 18 (Warm start)] for a proof.

I.3. Convergence of Riemannian Alternating Best Response

We use RiemaconRel to refer to the accelerated algorithm for µ-strongly convex functions pre-
sented in [28, Theorem 4], and RiemaconRelpf, x0, T,X ,subroutineq to specify the output of
the algorithm initialized at x0 for optimizing the function f constrained to X , run for T steps and
making use of the subroutine subroutine.

Fact 22 (Convergence of RiemaconRel) Let M be a finite-dimensional Hadamard manifold of
bounded sectional curvature, and consider f : X Ă M Ñ R, a g-convex function in a compact
g-convex set X of diameter DX , λ ą 0, and x˚ P arg minxPX fpxq. Define ξ def

“ 4ζ2D ´ 3.
If f is µ-strongly g-convex then, running RiemaconRel as defined in [28, Theorem 4] for T “

p90ξ{
?
µλq logpµd2px0, x

˚q{εq iterations, returns a point yT that satisfies fpyT q ´ fpx˚q ď ε.

See [28, Theorem 4] for a proof.

Corollary 23 [Ó] If f as defined in Fact 22 is in addition L-smooth, then RiemaconRel with
λ “ 1{L and PRGD as subroutine, yields an ε-minimizer after rOpζRζ

2?κq gradient and metric-
projection oracle calls, where R ď pLppf,X q{L` 2DX q{ζ.

Proof of Theorem 23. By Fact 22, it suffices to run RiemaconRel for

T 2 “
90ξ
?
µλ

log

ˆ

µd2px0, x
˚q

ε

˙

(21)

iterations in order to obtain an ε-minimizer. Note ξ “ rOpζq. We use λ “ 1{L. Note that
RiemaconRel uses a series of restarts, so in the following, k refers to the k-th iteration in one of the
calls to [28, Algorithm 1]. This detail can be ignored in the following, as we bound k uniformly by
T 2 in (22). Step k of RiemaconRel requires computing a σk-minimizer of minxPX hkpxq, where
hkpxq

def
“ fpxq ` 1

2λd
2pxk, xq and σk

def
“ d2pxk, x

˚
kq{p78λpk ` 1q2q. We solve the prox problem

using PRGD with learning rate 1
L1 , where L1 def

“ Lp1 ` ζ q is a bound on the smoothness of h, cf.
Theorem 11. By Theorem 3, this requires

T 1 ě 1` 2
L1

µ1
ζR log

ˆ

L1ζRD
2
X

2σk

˙
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iterations, where L1 and µ1 are smoothness and strong g-convexity constants of h respectively and
R “ }∇hpx0q}{L

1. We can bound

R ď
maxxPX }∇fpxq} ` Ldpx, xkq

Lp1` ζq
ď

maxxPX }∇fpxq}{L` 2DX
ζ

,

where the last inequality uses dpX , xkq ď 2DX , cf. [28]. We have that κ1, the condition number of
h, is bounded by κ1 ď L1

µ1 ď λL ` ζ ď 1 ` ζ. By the definition of κ1 and bounding k ď T 2, we
obtain

T 1 ě 1` 4ζRζ logp78ζζRpT
2 ` 1q2q ě 1` 4ζRζ logp78ζζRpk ` 1q2q. (22)

All in all RiemaconRel requires

T “ T 1T 2 “ rOpζRζ
2?κq

calls to the gradient and metric projection oracle respectively.

Consider a specific class of functions fpx, yq for which the interaction between x and y is
weak, meaning that Lxy is small relative to other function parameters, i.e., the gradient of fpx, yq
with respect to x is only weakly dependent on y and vice versa. If the interaction between x and y is
weak enough, alternating between minimizing x ÞÑ fpx, ytq where yt is kept fixed and maximizing
y ÞÑ fpxt`1, yq where xt`1 is kept fixed is sufficient to converge to the saddle point and can be
solved efficiently. The approach of computing the optimal value of x for a fixed y, or vice versa,
can be seen as the best response of x given a fixed y, hence the name. In particular, for the case of
Lxy “ 0, x and y have no interaction and it suffices to independently compute the best response for
x and y once to solve the min-max problem. Our Riemannian Alternating Best Response (RABR)
algorithm implements this approach by repeatedly applying approximate best responses using the
algorithm RiemaconRel, cf. Appendix I.3. RABR applies only to a limited class of problems, but
it will be used as a subroutine for RAMMA. RABR is inspired by the Euclidean algorithm of Wang
and Li [37, Algorithm 1].

Theorem 24 (Convergence of RABR) [Ó] Let f satisfy Assumption 1 with Lxy ă 1
2

?
µxµy. Then

Algorithm 4 requires T “ rOpζRζ
2?κx ` κyq calls to the gradient and projection oracles to ensure

d2pxT , x
˚q ` d2pyT , y

˚q ď ε, where R “ max tLppfp¨, yq,X q{Lx, Lppfpx, ¨q,Yq{Lyu {ζ `D{ζ.

Proof of Theorem 24. We begin by connecting the inexactness of the iterates pxt, ytq from Algo-
rithm 4 to the number of RiemaconRel iterations,

d2pxt`1, x
˚pytqq

1
ď

2

µx
rfpxt`1, ytq ´ fpx

˚pytq, ytqs

2
ď 2d2pxt, x

˚pytqq exp

ˆ

´Tx
90ξ
?
κx

˙

.

(23)

We used strong g-convexity of x ÞÑ fpx, ytq in 1 , and 2 follows from running RiemaconRel on
fp¨, ytq for Tx iterations starting from xt and ending up with xt`1. Noting that since ´fpxt`1, ¨q is
strongly g-convex, we can repeat the arguments for y,

d2pyt`1, y
˚pxt`1qq ď

2

µy
rfpxt`1, y

˚pxt`1qq ´ fpxt`1, yt`1qs

ď 2d2pyt, y
˚pxt`1qq exp

ˆ

´Ty
90ξ
?
κy

˙

.

(24)
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Note that we use RiemaconRel instead of our RiemaconAbs in Algorithm 4, since the absolute
error criterion of RiemaconAbs creates an unwanted dependence between the required precision of
the proximal problems and the precision of the original problem. Choosing Tx “ 90ξ

?
κx logp512q

and Ty “ 90ξ
?
κy logp512q, it follows from (23) and (24) that,

d2pxt`1, x
˚pytqq ď

1

256
d2pxt, x

˚pytqq (25)

d2pyt`1, y
˚pxt`1qq ď

1

256
d2pyt, y

˚pxt`1qq (26)

Further,

dpxt`1, x
˚q

1
ď dpxt`1, x

˚pytqq ` dpx
˚pytq, x

˚q

2
ď

1

16
dpxt, x

˚q `
17

16
dpx˚pytq, x

˚q

3
ď

1

16
dpxt, x

˚q `
17Lxy
16µx

dpyt, y
˚q.

(27)

We used the triangle inequality in 1 , and 2 follows from (25) and the triangular inequality again.
Finally, 3 uses Theorem 39, noting that x˚ “ x˚py˚q. For y, we follow the same argument and
then use (27) in 1 below

dpyt`1, y
˚q ď dpyt`1, y

˚pxt`1qq ` dpy
˚pxt`1q, y

˚q

ď
1

16
dpyt, y

˚q `
17

16
dpy˚pxt`1q, y

˚q

1
ď

1

16
dpyt, y

˚q `
17Lxy
16µy

ˆ

1

16
dpxt, x

˚q `
17Lxy
16µx

dpyt, y
˚q

˙

ď

ˆ

1

16
`

172Lxy
2

162µxµy

˙

dpyt, y
˚q `

17Lxy
162µy

dpxt, x
˚q.

(28)

Now we define C def
“ µy{µx and obtain

d2pxt`1, x
˚q ` Cd2pyt`1, y

˚q
1
ď 2

˜

1

162
` C

ˆ

17Lxy
162µy

˙2
¸

d2pxt, x
˚q

` 2

˜

C

C

ˆ

17Lxy
16µx

˙2

` C

˜

1

162
`

ˆ

172Lxy
2

162µxµy

˙2
¸¸

d2pyt, y
˚q

2
ď 2d2pxt, x

˚q

ˆ

1

162
`

172

162

1

4

˙

` 2Cd2pyt, y
˚q

ˆ

172

162

1

4
`

ˆ

1

162
`

1

42

172

162

˙˙

ď
3

5
pd2pxt, x

˚q ` Cd2pyt, y
˚qq.

where 1 follows from pa ` bq2 ď 2a2 ` 2b2, (27) and (28). Inequality 2 is obtained by using
Lxy ă

1
2

?
µxµy, which holds by assumption, and by the definition of C. By expanding the previous
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inequality, it follows

d2pxT , x
˚q ` Cd2pyT , y

˚q ď

ˆ

3

5

˙T
`

d2px0, x
˚q ` Cd2py0, y

˚q
˘

.

Now we study two cases. If C ě 1, we have 1 below

d2pxT , x
˚q`d2pyT , y

˚q
1
ď

ˆ

3

5

˙T µy
µx

`

d2px0, x
˚q ` d2py0, y

˚q
˘

2
ď

ˆ

3

5

˙T Lx
µx

`

d2px0, x
˚q ` d2py0, y

˚q
˘

,

where 2 is due to µy ď Ly and Lx “ Ly. Recall that we assumed the latter without loss of
generality. Similarly, if C P p0, 1q we have, for C ď 1,

d2pxT , x
˚q`d2pyT , y

˚q ď

ˆ

3

5

˙T µx
µy

`

d2px0, x
˚q ` d2py0, y

˚q
˘

ď

ˆ

3

5

˙T Ly
µy

`

d2px0, x
˚q ` d2py0, y

˚q
˘

.

Thus, for all C ą 0, we obtain

d2pxT , x
˚q ` d2pyT , y

˚q ď

ˆ

3

5

˙T

maxtκx, κyu
`

d2px0, x
˚q ` d2py0, y

˚q
˘

. (29)

Hence, we require

T 1 “ O
ˆ

log

ˆ

pd2px0, x
˚q ` d2py0, y

˚qqpκx ` κyq

ε

˙˙

,

iterations of Algorithm 4 to ensure d2pxT , x
˚q`d2pyT , y

˚q ď ε. By Theorem 23, each RiemaconRel
call requires T 1x “ rOpζRζ

?
κxq and T 1y “ rOpζRζ

?
κyq calls to the gradient and metric projection

oracle respectively. In total, RABR requires

T 1pTxT
1
x ` TyT

1
yq “

rOpζRζ
2
a

κx ` κyq

calls to the gradient and metric projection oracle.

Algorithm 4 Riemannian Alternating Best Response RABR(f, px0, y0q, T or ε,X ˆ Y)
Input: G-convex subsets X Ă M, Y Ă N of Hadamard manifolds M and N , initialization

px0, y0q P X ˆY , function f : MˆN Ñ R that is pµx, µyq-SCSC and pLx, Ly, Lxyq-smooth,
T (if ε is given, compute T , see Theorem 24). Define ξ def

“ 4 maxtζX2D, ζ
Y
2Du ´ 3 “ O pζq

1: Tx Ð 90ξ
?
κx logp512q, Ty Ð 90ξ

?
κy logp512q

2: for t “ 0 to T ´ 1 do
3: xt`1 Ð RiemaconRelpfp¨, ytq, xt, Tx,X ,PRGDq
4: yt`1 Ð RiemaconRelp´fpxt`1, ¨q, yt, Ty,Y,PRGDq
5: end for

Output: pxT , yT q
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I.4. Convergence analysis of RAMMA

We first prove this important proposition, that describes how to go from one measure of convergence
to another, possibly after performing some optimization steps.
Proof of Theorem 6. Statement 1 follows from the non-negativity of the gaps and gappx̄q `
gappȳq “ gappx̄, ȳq. Statement 2 follows from the strong convexity of φx and φy.

We now prove Statement 3. By strong concavity of φy we have d2pȳ, y˚q ď 2
µ̄y

gappyq ď 2ε
µ̄y

.
The optimizer of gp¨, ȳq is x˚pȳq, so by µ̄x-strong g-convexity of this function and optimality of x̄1,
we have d2px̄1, x˚pȳqq ď 2ε̂

µ̄x
. Thus, we have

d2px̄1, x˚q ` d2pȳ, y˚q
1
ď 2dpx̄1, x˚pȳqq2 ` 2dpx˚pȳq, x˚q2 ` d2pȳ, y˚q

2
ď

4ε̂

µ̄2
x

`

˜

2L̄2
xy

µ̄x
` 1

¸

d2pȳ, y˚q ď
4ε̂

µ̄x
`

2ε

µ̄y

˜

2L̄2
xy

µ̄2
x

` 1

¸

.

(30)

We used the triangular inequality and Young’s in 1 and for the second summand of 2 we used the
pL̄xy{µ̄xq-Lipschitzness of x˚p¨q, due to Theorem 39.

Under the assumption of Statement 4, we have that

gappx̄, ȳq “ gpx̄, y˚px̄qq ´ gpx̄, ȳq ` gpx̄, ȳq ´ gpx˚pȳq, ȳq

ď L̄ypdpy
˚px̄q, ȳq ` L̄xpdpx

˚pȳq, x̄q

ď L̄yppdpy
˚px̄q, y˚q ` dpy˚, ȳqq ` L̄xppdpx

˚pȳq, x˚q ` dpx˚, x̄qq

1
ď L̄yp

ˆ

L̄xy
µ̄y

dpx˚, x̄q ` dpy˚, ȳq

˙

` L̄xp

ˆ

L̄xy
µ̄x

dpȳ, y˚q ` dpx˚, x̄q

˙

“ dpy˚, ȳq

ˆ

L̄yp ` L̄
x
p

L̄xy
µ̄x

˙

` dpx˚, x̄q

ˆ

L̄xp ` L̄
y
p

L̄xy
µ̄y

˙

.

We used Theorem 39 in 1 above.

Before we go on to prove Theorem 5, we briefly discuss a technical detail.

Remark 25 (Saddle point assumption) In Section 1.1 we assume for the sake of clarity that f
admits a saddle point px˚, y˚q P X ˆ Y satisfying ∇fpx˚, y˚q “ 0. However, it is not necessary
to assume that the saddle point has zero gradient and a slightly weaker assumption suffices to show
our convergence result. From now on, let px˚, y˚q P X ˆY be a saddle point in X ˆY which does
not necessarily have zero gradient, and let px̂˚, ŷ˚q P M ˆN , be a global saddle point such that
∇fpx̂˚, ŷ˚q “ 0. Then, it suffices to assume that d2px0, x̂

˚q`d2py0, ŷ
˚q ď D2 . This allows global

saddle points to lie outside X ˆ Y . We also note that in fact, our algorithms can work without any
assumption on d2px0, x̂

˚q ` d2py0, ŷ
˚q by using an upper bound of this distance in our algorithmic

parameters.

Proof of Theorem 5. The total number of gradient and metric-projection oracle calls of Algorithm 1
can be calculated as follows

T1pT3T5 ` T4q ` T2,
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Table 2: Overview of precision and iteration parameters for RAMMA

Number of iterations Required precisions

T1 “ rOp
b

ζ
µxηx

q ε1 “
εµx
4C

´

2Lxy2

µy2
` 1

¯´1
, ε̂1 “

ε1pηxµxq
3
2

4
?
ξ

T2 “ rOpζ
5
2

b

ζ `
Lxy`Ly
µy

q ε2 “
µyε
8C

T3 “ rO
´b

ζ
µyηy

¯

ε3 “
µyε12pµxηxq3

64C2
kξ

ˆ

2Lxy2

µx`η_x´1`1

˙ , ε̂3 “ ε3pηyµyq
´3{2{p8

?
ξq

T4 “ rOpζ
5
2
?
κx ` ζq ε4 “

pµx`η
´1
x qpµxηxq3ε12

128C2
kξ

T5 “ rOpζ3
a

Lxηx ` Lyηy ` ζq ε5 “
ε32pµyηyq

32ξC2
`

where T1 to T5 refer to the complexity of the different routines, which are provided in Theorems 26
to 28. We provide an overview of the required εi, ε̂i, Ti in Table 2. We have that

T1T3T5 “ rO

˜

ζ4

d

Lx
µxµyηy

`
Ly

µxµyηx
`

ζ

µxµyηxηy

¸

.

Recall that we assumed without loss of generality that µy ď µx. We analyze some cases now. If
µx ď Lxy, we have that η´1

x “ Lxy ` 9ξµx, η´1
y “ Lxy ` 9ξµy and

O

ˆ

Lx
µxµyηy

`
Ly

µxµyηx
`

ζ

µxµyηxηy

˙

“ O

ˆ

ζ2LLxy
µxµy

` ζ3

˙

.

If Lxy ď µx, µy, we have that η´1
x “ p1` 9ξqµx, η´1

y “ p1` 9ξqµy and

O

ˆ

Lx
µxµyηy

`
Ly

µxµyηx
`

ζ

µxµyηxηy

˙

“ O
`

ζpκx ` κyq ` ζ
3
˘

.

If µy ď Lxy ď µx, we have η´1
x “ p1` 9ξqµx,η´1

y “ Lxy ` 9ξµy and it is

O

ˆ

Lx
µxµyηy

`
Ly

µxµyηx
`

ζ

µxµyηxηy

˙

“ O

ˆ

ζpκx ` κyq `
LLxy
µxµy

`
ζ2Lxy

mintµx, µyu
` ζ3

˙

.

All in all the worst case complexity is

O

ˆ

Lx
µxµyηy

`
Ly

µxµyηx
`

ζ

µxµyηxηy

˙

“ O

ˆ

ζ2LLxy
µxµy

` ζpκx ` κyq ` ζ
3

˙

.

Hence

T1T3T5 “ rOpζ9{2

d

ζLLxy
µxµy

` κx ` κy ` ζ
2q. (31)

Further, we have

T1T4 “ rO

˜

ζ3

d

κx ` ζ

µxηx

¸

.
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It holds that

O

ˆ

κx ` ζ

µxηx

˙

“ O

ˆ

ζ2 ` κxζ `
LxLxy
µx2

`
ζLxy
µx

˙

,

and hence

T1T4 “ rOpζ3

d

ζ2 ` κxζ `
LxLxy
µx2

`
ζLxy
µx

q. (32)

Finally

T2 “ rOpζ
5
2

d

ζ `
Lxy ` Ly

µy
q. (33)

Using (31) to (33), we conclude that

T “ rOpζ9{2

d

ζLLxy
µxµy

` κx ` κy ` ζ
2q,

where we used µy ď µx, which we recall that was assumed to hold without loss of generality. We
note that the dependence on ε is log3pε´1q and the log contains a polylog expression on D and the
smoothness and strong convexity constants of f .

Lemma 26 (Guarantees of Lines 1-5) Running Lines 1-5 of Algorithm 1 with T1 “ rOp
b

ζ
µxηx

q

and T2 “ rOpζ
5
2

b

ζ `
Lxy`Ly
µy

q ensures that gappx̂, ŷq ď ε.

Proof We show the lemma by first finding sufficient error criteria ε1 and ε2 for obtaining gappx̂, ŷq ď
ε and then we compute the number of iterations T1 and T2 required to achieve these error criteria.
Error criterion Let fx

def
“ fp¨, yq and fy “ fpx, ¨q, then using Statement 4 of Theorem 6, we

have that

gappx̂, ŷq ď dpx̂, x˚qpLppfxq `
Lxy
µy

Lppfyqq ` dpŷ, y
˚qpLppfyq `

Lxy
µx

Lppfxqq

ď Cpdpx̂, x˚q ` dpŷ, y˚qq

(34)

where Lppfxq and Lppfyq denote the Lipschitz constant of fx and fy respectively and

C “ maxtLppfxq `
Lxy
µy

Lppfyq, Lppfyq `
Lxy
µx

Lppfxqu.

Recall that by assumption, we have that ∇xfpx̂
˚, ŷ˚q “ ∇yfpx̂

˚, ŷ˚q “ 0. We leverage this fact in
order to bound the Lipschitz constants. We have for some x P X

Lppfyq “ max
yPY

}∇yfypyq} “ max
yPY

}∇yfpx, yq ˘∇yfpx̂
˚, yq ´ Γyŷ˚∇yfpx̂

˚, ŷ˚q}

ď max
yPY

Lydpŷ
˚, yq ` Lxydpx, x̂

˚q ď DpLy ` Lxyq
(35)

and similarly
Lppfyq “ max

xPX
}∇xfxpxq} ď DpLx ` Lxyq. (36)
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Since x̂ is an ε1-minimizer of the problem minxPX φpxq and ŷ is an ε2-minimizer of the problem
minyPY ´fpx̂, yq, Statement 3 of Theorem 6 implies that

d2px̂, x˚q ` d2pŷ, y˚q ď
4ε2

µy
`

2ε1

µx

ˆ

2Lxy
2

µy2
` 1

˙

. (37)

Using (37), we obtain

gappx̂, ŷq ď C

ˆ

4ε2

µy
`

2ε1

µx

ˆ

2Lxy
2

µy2
` 1

˙˙

.

It suffices to choose

ε1 ď
εµx
4C

ˆ

2Lxy
2

µy2
` 1

˙´1

, ε2 ď
µyε

8C
, (38)

in order to ensure that gappx̂, ŷq ď ε.
Complexity By Theorem 4, computing x̂ with RiemaconAbs takes, by the choice of the corre-
sponding ε1, computed in (38):

T1 “ rO

˜

d

ζ

µxηx

¸

.

Using Theorem 4 and by definition of λy, we have that running RiemaconAbs in Line 4 requires

T2
2 “ rO

˜
d

ζ
Lxy ` Ly

µy
` ζ2

¸

iterations. Further, computing a σ-minimizer of minyPY F̂ypyq, where F̂ypyq
def
“ ´fpx̂, yq` 1

2λy
d2py, ȳq

using PRGD costs T2
1 “ rOpκ̃ζRq, where

κ̃
def
“

Ly

µy ` λ
´1
y
`

ζ{λy

µy ` λ
´1
y
ď 1` ζ

is the condition number of F̂y. Note we used λ´1
y “ pmaxtLxy, Lyu ` 9ξµyq ě Ly. We now show

that R ď 2D in order to bound ζR ď ζ2D “ Opζq. We bound R ď LppF̂yq{pLy ` λ´1
y q, where

LppF̂yq is the Lipschitz constant of F̂ypyq for y P Y and ȳ P Y . Note that ∇yfpx̂
˚, ŷ˚q “ 0 by

assumption. Hence, for all x P X

LppF̂yq ď max
yPY

}∇yF̂ pyq}

“ max
yPY

} ´∇yfpx̂, yq ´ λ
´1
y logypȳq ` Γyŷ˚∇yfpx̂

˚, ŷ˚q}

ď max
yPY

} ´∇yfpx̂, yq ˘∇yfpx̂
˚, yq ` Γyŷ˚∇yfpx̂

˚, ŷ˚q} `max
yPY

λ´1
y dpy, ȳq

ď pLy ` Lxy ` λ
´1
y qD.

And thus it holds that R ď 2D. Therefore, the total complexity of computing ŷ is

T2 “ T2
1T2

2 “ rO

˜

ζ
5
2

d

ζ `
Lxy ` Ly

µy

¸

.
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Lemma 27 (Guarantees of Lines 7-8) Running Lines 7-8 of Algorithm 1 with T3 “ rO
´b

ζ
µyηy

¯

and T4 “ rOpζ
5
2
?
κx ` ζq ensures that gapkpx̃kq ď ε̂1.

Proof We show the lemma by first finding sufficient error criteria ε3 and ε4 for obtaining gapkpx̃kq ď
ε̂1 and then computing the number of iterations T3 an T4 required to achieve these error criteria.
Error criterion Let Gxpxq

def
“ fpx, yq` 1

2ηx
d2pxk, xq and Gypyq

def
“ fpx, yq` 1

2ηx
d2pxk, xq, then

we have

gapkpx̃kq
1
ď gapkpx̃k, ỹkq

2
ď dpx̂, x˚kq

ˆ

LppGxq `
Lxy
µx

LppGyq

˙

` dpŷ, y˚k q

ˆ

LppGxq
Lxy
µy

` LppGyq

˙

3
ď Ckpdpx̂, x

˚
kq ` dpŷ, y

˚
k qq

4
ď Ck

b

2pd2px̂, x˚kq ` d
2pŷ, y˚k qq.

(39)

Here 1 and 2 hold by Statements 1 and 4 in Theorem 6, respectively, and 3 holds with

Ck “ max

"

LppGxq `
Lxy
µx

LppGyq, LppGxq
Lxy
µy

` LppGyq,

*

.

Finally, 4 follows from a`b ď
a

2pa2 ` b2q. We bound the Lipschitz constant ofGx by bounding
the following, for all x P X

}∇xF px, yq} “ }∇xfpx, yq ˘∇xfpx, ŷ
˚q ´

1

ηx
logxpxkq ´ Γxx̂˚∇xfpx̂

˚, ŷ˚q} ď DpLx ` Lxy ` η
´1
x q,

and thus LppGxq ď DpLx ` Lxy ` η´1
x q. Similarly, we obtain LppGyq ď DpLy ` Lxyq. Since

ỹk is an ε3-minimizer of the problem minyPY ψpyq and x̃k is an ε4-minimizer of the problem
minxPX tfpx, ỹkq `

1
2ηx

d2pxk, xqu, Statement 3 in Theorem 6 implies that

d2px̃k, x
˚
kq ` d

2pỹk, y
˚
k q ď

4ε4

µx ` η
´1
x
`

2ε3

µy

ˆ

2Lxy
2

pµx ` η
´1
x q

2
` 1

˙

. (40)

Then, using (40) and (39), we have that

gapkpx̃kq ď
?

2Ck

d

4ε4

µx ` η
´1
x
`

2ε3

µy

ˆ

2Lxy
2

pµx ` η
´1
x q

2
` 1

˙

.

We have that ε̂1 “
ε1pηxµxq

3
2

4
?
ξ

Hence, choosing

ε3 “
µyε1

2pµxηxq
3

64C2
kξ

´

2Lxy2

µx`η
´1
x
` 1

¯ , ε4 “
pµx ` η

´1
x qpµxηxq

3ε1
2

128C2
kξ

. (41)

suffices to satisfy gapkpx̃kq ď ε̂1.
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Complexity By Theorem 4, and using ε3 computed in (41), we have that computing ỹk takes

T3 “ rO

˜
d

ζ

µyηy

¸

iterations. Further, by Theorem 18, we have

T4 “ rOpζRζ
3
2

a

κ̃x ` ζq,

where κ̃x is the condition number of Gxpxq. Further, let F̂xpxq
def
“ fpx, ŷq ` 1

2ηx
d2pxk, xq `

1
2λx

d2px, x̄q, where λx “ pLx ` ζη´1
x ` 9ξµxq. We bound the Lipschitz constant LppF̂xq for all

x P X by bounding

}∇F̂xpxq} ď }∇xfpx, ŷq ´ η
´1
x logxpxkq ´ λ

´1
x logxpx̄q ´ Γxx̂˚∇xfpx̂

˚, ŷ˚q}

ď DpLx ` Lxy ` η
´1
x ` λ´1

x q.
(42)

Thus LppF̂xq ď DpLx ` Lxy ` η
´1
x λ´1

x q. Hence,

R “
LppF̂xq

Lx ` ζη
´1
x ` ζλ´1

x
ď
dpLx ` Lxy ` η

´1
x ` λ´1

x q

Lx ` ζη
´1
x ` ζλ´1

x
ď 2D.

And so ζR ď ζ2D “ Opζq. Further, the condition number of Gxpxq can be bounded by

κ̃x “
Lx

µx ` η
´1
x ` λ´1

x
`

ζpη´1
x ` λ´1

x q

µx ` η
´1
x ` λ´1

x
ď 1` ζ.

Finally, we obtain
T4 “ rOpζ5{2

a

κx ` ζq.

Lemma 28 (Guarantees of Lines 10-11) Let gap` refers to the gap of the problem min maxtfpx, yq`
1

2ηx
d2pxk, xq´

1
2ηy
d2py`, yqu. Running Lines 10-11 of Algorithm 1 with T5 “ rOpζ3

a

Lxηx ` Lyηy ` ζq

ensures that gap`pȳ`q ď ε̂3.

Proof We show the lemma by first finding a sufficient error criterion ε5 for obtaining gap`px̄`, ȳ`q ď
ε̂3, and then we computing the number of iterations T5 required to achieve it. This bound implies
the result since by Statement 1 of Theorem 6, it is gap`pȳ`q ď gap`px̄`, ȳ`q.
Error criterion Write hpx, yq def

“ fpx, yq` 1
2ηx

d2px, xkq´
1

2ηy
d2py, y`q. Then, we can bound the

Lipschitz constant of hp¨, ȳ`q as

Lpphp¨, ȳ`qq “ max
xPX

}∇xhpx, ȳ`q}

“ max
xPX

}∇xfpx, ȳ`q ´ η
´1
x logxpxkq ˘∇xfpx, ŷ

˚q ´ Γxx̂˚∇xfpx̂
˚, ŷ˚q}

ď Dpη´1
x ` Lx ` Lxyq.

(43)
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and similarly, for any x P X , we bound the Lipschitz constant of hpx̄`, ¨q as follows

Lpphpx̄`, ¨qq ď max
yPY

}∇yhpx̄`, yq} ď Dpη´1
y ` Ly ` Lxyq. (44)

we have that for

C` “ Dmax

#

Lxypη
´1
x ` Lx ` Lxyq

µx
` η´1

y ` Ly ` Lxy,
Lxypη

´1
y ` Ly ` Lxyq

µy
` η´1

x ` Lx ` Lxy

+

,

and defining

ε5
def
“
ε3

2pµyηyq

32ξC2
`

,

the following holds, as desired:

gap`px̄`, ȳ`q

1
ď dpx̄`, x

˚
` q

ˆ

Lxy
µx

Lpphp¨, ȳ`qq ` Lpphpx̄`, ¨qq

˙

` dpȳ`, y
˚
` q

ˆ

Lxy
µy

Lpphp¨, x̄`qq ` Lpphpȳ`, ¨qq

˙

2
ď C`rdpx̄`, x

˚
` q ` dpȳ`, y

˚
` qs

3
ď C`

?
2ε5

4
ď ε3pηyµyq

´3{2{p8
a

ξq
5
“ ε̂3.

(45)
We used Statement 4 in Theorem 6 for 1 and the definition of C` in 2 . Theorem 24 implies
d2px̄`, x

˚
` q ` d

2pȳ`, y
˚
` q ď ε5 which was used for 3 along with pa` bq2 ď 2ab ` 2b2. We defined

ε5 in order to satisfy 4 . The definition of the accuracy ε̂3 that we require in RiemaconAbs was
used in 5 .
Complexity By Theorem 24, and the definition of ε5, computing ȳ` takes

T5 “ rOpζRζ
2
a

κ̃x ` κ̃y ` ζq,

iterations of RABR, where κ̃x is the condition number of hp¨, ȳ`q and κ̃y is the condition number of
hy. Using (43) and the definition of ηx, we have

R ď
maxyPY Lpphp¨, yqq

Lx `
ζ
ηx

ď
Dpη´1

x ` Lx ` Lxyq

Lx `
ζ
ηx

ď 2D

and similarly, by (44) and the definition of ηy it holds

R ď
maxxPX Lpphpx, ¨qq

Ly `
ζ
ηy

ď 2D.

Hence, we have ζR ď ζ2D “
rOpζq. Given that κ̃x ď ηxLx ` ζ and κ̃y ď Lyηy ` ζ, we conclude

that
T5 “ rOpζ3

a

Lxηx ` Lyηy ` ζq.

43



ACCELERATED METHODS FOR RIEMANNIAN MIN-MAX ENSURING BOUNDED GEOMETRIC PENALTIES

I.5. The NCSC, CC and SCC Cases

By means of regularization, we can reduce the CC and SCC cases to the SCSC case and use Al-
gorithm 1 to solve such problems. Interestingly, we require regularization in both variables even if
the function is strongly g-convex with respect to one of them, because regularizing in both variables
guarantees dppx0, y0q, px̂

˚
ε , ŷ

˚
ε qq ď dppx0, y0q, px

˚, y˚qq and this is a crucial property in our analysis
to reduce geometric penalties, see Theorem 25. We used px̂˚ε , ŷ

˚
ε q to denote the global saddle point

of the regularized problem.

Corollary 29 (SCC or CC to SCSC) [Ó] Let f : M ˆ N Ñ R be a function as defined in Sec-
tion 1.1 and let M and N be Hadamard manifolds. Via regularization, Algorithm 1 obtains an
ε-saddle point of f after the following number of calls to the gradient and metric-projected oracles,
in the pµx, 0q-SCSC case:

rO

¨

˝ζ9{2

d

ζ2 L

µx
`
LyD

2

ε
`
ζD2LxyL

εµx

˛

‚“ rO

ˆ

ζ11{2 LD
?
µxε

˙

.

Similarly, if the function is p0, 0q-SCSC, i.e., it is CC, via regularization, Algorithm 1 takes

rO

¨

˝ζ9{2

d

LxD
2

ε
`
LyD

2

ε
`
ζLxyD

2

ε

ˆ

LD2

ε
` ζ

˙

˛

‚“ rO

¨

˝

d

ζ9LD2

ε
`
D2

b

ζ11LxyL

ε

˛

‚.

We note that similarly to the Euclidean case, if Lxy “ 0 we naturally recover the accelerated
convergence of optimizing one problem on each variable separately, up to geometric constants and
log factors. If Lxy “ Lx “ Ly, we obtain that, up to geometric penalties and log factors, the
convergence rates result in the product of the accelerated rates for each problem individually.

Further, using RAMMA-WC, a modification of RAMMA described in Theorem 34 we can find
an ε-stationary point of φ.

Theorem 30 [Ó] Let X ĂM,Y Ă N be Hadamard manifolds. Let f : X ˆ Y Ñ R be µy-SC in
y and let f be pLx, Ly, Lxyq-smooth. Then the output of RAMMA-WC is an ε-stationary point (see

Theorem 32) of φ with probability at least 2/3 after rO
´

ζ 4 ∆0L
ε2

b

ζ ` L
µy

¯

calls to the gradient and
projection oracle.

Proof of Theorem 29. Let px̄, ȳq P X ˆ Y be the initial point of our algorithm, and define the
following regularized function

fεpx, yq
def
“ fpx, yq `

ε

4D2d
2px̄, xq ´

ε

4D2d
2pȳ, yq.

Interestingly, we require the use of this function for both the CC and the SCC case. That is, we
require regularizing both variables even when the function is strongly g-convex with respect to one.
This is done in order to show that the global saddle point of the regularized problem px̂˚ε , ŷ

˚
ε q is not

further away from the initial point px̄, ȳq than the global saddle point px̂˚, ŷ˚q of the unregularized
problem , i.e. d2px̄, x̂˚ε q`d

2pȳ, ŷ˚ε q ď d2px̄, x̂˚q`d2pȳ, ŷ˚q “ D2 which is required in order bound
the geometric penalties. Now let px̂, ŷq be an ε{2 saddle point of fε, i.e.

max
yPY

fεpx̂, yq ´min
xPX

fpx, ŷq ď
ε

2
.
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Let y˚px̂q “ arg maxyPY fpx̂, yq, then

max
yPY

fεpx̂, yq ě fεpx̂, y
˚px̂qq “ fpx̂, y˚px̂qq `

ε

4D2d
2px̄, x̂q ´

ε

4D2d
2pȳ, ŷ˚q ě fpx̂, y˚px̂qq ´

ε

4
.

Similarly, for x˚pŷq “ arg minxPX fpx, ŷq, we have minxPX fεpx, ŷq ď fpx˚pŷq, ŷq ` ε
4 . Combin-

ing these inequalities, we conclude

max
yPY

fpx̂, yq´min
xPX

fpx, ŷq “ fpx̂, y˚px̂qq´fpx˚pŷq, ŷq ď max
yPY

fεpx̂, yq´min
xPX

fεpx, ŷq`
ε

4
`
ε

4
ď ε.

Hence if px̂, ŷq is an ε{2-saddle point of fε it is an ε-saddle point of f . By Theorem 36 and by the
definition of X and Y , we have that the saddle point of fε satisfies d2px̄, x̂˚ε q ` d2pȳ, ŷ˚ε q ď D2

which is required to use Algorithm 1 on fε. Recall that the complexity of the algorithm is

rOpζ9{2

d

ζL̃Lxy
µ̃xµ̃y

` κ̃x ` κ̃y ` ζ
2q,

where the variables noted with a tilde are the constants of fε.
We first analyze the SCC case. We have µ̃x “ µx ` ε{p2D2q, µ̃y “ ε{p2D2q, L̃x ď Lx `

ζε{p2D2q and therefore the condition numbers are

κ̃x “
Lx ` ζ

ε
2D2

µx `
ε

2D2

ď
Lx
µx
` ζ and κ̃y “

Ly ` ζ
ε

2D2

µy `
ε

2D2

ď
2LyD

2

ε
` ζ.

Note that Lxy is not influenced by regularization. First, assume that Lxy ě L̃x, then L̃ “ Lxy
(recall that Lx “ Ly without loss of generality)

ζL̃Lxy
µ̃xµ̃y

ď
2ζLxy

2D2

µxε
“

2ζLLxyD
2

µxε
.

Now assume that Lxy ď L̃x, then L̃ “ Lx ` ζ
ε

2D2 and

ζL̃Lxy
µ̃xµ̃y

“
ζLxypLx ` ζ

ε
2D2 q

µ̃xµ̃y
ď

2ζLxyLD
2

µxε
`
ζ2Lxy
µ̃x

ď
2ζLxyLD

2

µxε
`
ζ2L

µx
.

All in all, we have

rO

˜

ζL̃Lxy
µ̃xµ̃y

` κ̃x ` κ̃y ` ζ
2

¸

“ rO

ˆ

ζ2L

µx
`
D2

ε

ˆ

ζLxyL

µx
` Ly

˙˙

“ rO

ˆ

ζ
L

µx

ˆ

LD2

ε
` ζ

˙˙

.

The resulting complexity is

rO

¨

˝ζ9{2

d

ζ2L

µx
`
ζLxyLD

2

µxε

˛

‚“ rO

ˆ

ζ11{2 LD
?
µxε

˙

.

Now we proceed to analyze the CC case. We have µ̃x “ µx ` ε{p2D2q, µ̃y “ ε{p2D2q,
L̃x ď Lx ` ζε{p2D

2q and therefore the condition numbers are

κ̃x “
Lx ` ζ

ε
2D2

µx `
ε

2D2

ď
2LxD

2

ε
` ζ and κ̃y “

Ly ` ζ
ε

2D2

µy `
ε

2D2

ď
2LyD

2

ε
` ζ.
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First, assume that Lxy ě L̃x, then L̃ “ Lxy (recall that Lx “ Ly without loss of generality)

ζL̃Lxy
µ̃xµ̃y

ď
4ζLLxyD

4

ε2

Now assume that Lxy ď L̃x, then L̃ “ Lx ` ζ
ε

2D2 and

ζL̃Lxy
µ̃xµ̃y

ď
4ζLxyLxD

4

ε2
`

2ζ2LxyD
2

ε
.

Together, we have that

rO

˜

ζL̃Lxy
µ̃xµ̃y

` κ̃x ` κ̃y ` ζ
2

¸

“ rO

ˆ

ζLLxyD
4

ε2
`
ζ2LxyD

2

ε
`
D2pLx ` Lyq

ε

˙

.

Thus, the complexity is bounded by

rO

¨

˝ζ9{2

¨

˝

d

LxD
2

ε
`
LyD

2

ε
`
ζLxyD

2

ε

ˆ

LD2

ε
` ζ

˙

˛

‚

˛

‚“ rO

ˆ

ζ11{2LD
2

ε

˙

.

I.6. Convergence of RAMMA-WC

When fpx, yq is not g-convex with respect to x, finding a saddle point can be intractable. Even if
fpx, ¨q is a constant function, the problem reduces to an non-g-convex problem. However, we can
still find a stationary point of φpxq def

“ maxyPY fpx, yq. We consider a notion of stationarity based
on the gradient of the Moreau envelope of φ as defined in the following.

Definition 31 (Moreau envelope) Let f : M Ñ R Y t`8u be a g-convex, proper and lower
semicontinuous function, where M is a uniquely geodesic Riemannian manifold of sectional cur-
vature in rκmin, κmaxs. Then the Moreau envelope of f at x with parameter η is Mηf : M Ñ R
defined as

Mηf pxq
def
“ inf

z

"

fpzq `
1

2η
d2px, zq

*

.

We note that since fp¨, yq is Lx-smooth in X , it is also Lx-weakly g-convex, and thereby φ is
also Lx-weakly g-convex in X by essentially the same argument in Theorem 35. We now define
our notion of stationarity.

Definition 32 Consider a ρ-weakly g-convex function f : M Ñ R and a g-convex and compact
set X ĂM. We call x̂ P X an ε-stationary point of f in X , if

}∇Mηf px̂q} ď ε,

where ∇Mηf pxq is the gradient of the Moreau envelope of f with parameter η.
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Algorithm 5 Riemannian Inexact Proximal Point Algorithm RIPPA-WC(f , x0, T or ε, η, X ,
subroutine)
Input: Function f : M Ñ R that is ρ-weakly g-convex in X , initialization x0 P X Ă M, T ,

η P r0, ρ´1q, uniquely geodesic set X ĂM
1: σ Ð ηε2{p24p1` pµηq´1qq, with µ “ ´ρ` η´1

2: for t “ 1 to T do
3: xt`1 Ð σ-minimizer of x ÞÑ tfpxq ` 1

2ηd
2px, xtqu

4: end for
5: Sample τ from t1, . . . , T u uniformly

Output: xτ

In the following, we introduce our algorithm RIPPA-WC, which converges to a stationary point of
a weakly g-convex function with probablity ě 2{3.

Theorem 33 Consider a function f : M Ñ R, where M is a Riemannian manifold of sectional
curvature in rκmin, κmaxs. Let X ĂM be a uniquely geodesic subset of M and let f be ρ-weakly
g-convex in X . Then, after

T “ O

ˆ

fpx0q ´minxPX fpxq

ε2η

˙

iterations, Algorithm 5 outputs an ε-stationary point of f with probability at least 2{3.

Proof We write x˚t`1 for the exact optimizer of htpxq
def
“ fpxq ` 1

2ηd
2 px, xtq, hence

fpx˚t`1q `
1

2η
d2px˚t`1, xtq “ min

xPX
tfpxq `

1

2η
d2px, xtqu ď fpxtq

fpx˚t`1q `
1

2η
d2px˚t`1, xtq ´ fpxt`1q ´

1

2η
d2pxt`1, xtq ď fpxtq ´

1

2η
d2pxt`1, xtq ´ fpxt`1q

1

2η
d2pxt`1, xtq

1
ď fpxtq ´ fpxt`1q ` σ

(46)
where 1 by the inexactness criterion in the definition of xt`1. Note that htpxq is µ-strongly convex
with µ def

“ ´ρ` η´1, hence we have

d2
`

xt`1, x
˚
t`1

˘

ď
2

µ

`

htpxt`1q ´ htpx
˚
t`1q

˘

ď
2σ

µ
. (47)

Using the fact that pa` bq2 ď 2a2 ` 2b2 as well as (46) and (47) we conclude

d2pxt, x
˚
t`1q ď 2d2pxt, xt`1q ` 2d2pxt`1, x

˚
t`1q

ď 4ηrfpxtq ´ fpxt`1q ` σs `
4σ

µ
.
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Summing the previous inequality from t “ 0, . . . , T ´ 1 and dividing by Tη2, we obtain

1

η2T

T´1
ÿ

t“0

d2pxt, x
˚
t`1q ď

4pfpx0q ´ fpxT qq

ηT
`

4σ

η
p1`

1

ηµ
q

1
ď

4∆f

ηT
`
ε2

6
,

where ∆f
def
“ fpx0q´fpx

˚q and x˚ P arg minxPX fpxq. Here 1 follows by the definition of σ and
by fpx˚q ď fpxT q. Choosing xτ uniformly from txtutPrT s, we can write

1

T

T´1
ÿ

t“0

d2pxt, x
˚
t`1q “ E

“

d2pxτ , x
˚
τ`1q

‰

.

By Markov’s inequality we have that

P
`

d2pxτ , x
˚
τ`1q ď 3Erd2pxτ , x

˚
τ`1qs

˘

ě
2

3
.

Hence, for T ě 24∆f

ε2η
, we have with probability at least 2{3 that,

1

η2
d2pxτ , x

˚
τ`1q ď

3

η2T

T´1
ÿ

t“0

d2pxt, x
˚
t`1q ď

12∆f

ηT
`
ε2

2
ď ε2

and hence 1
ηdpxτ , x

˚
τ`1q ď ε. Note that by Danskin’s Theorem ∇Mηf pxτ q “

1
η logxτ px

˚
τ`1q.

Hence, since dpxτ , x˚τ`1q “ } logxτ px
˚
τ`1q} “ η}∇Mηf pxτ q} we have that }∇Mηf pxτ q} ď ε with

probability at least 2{3, which concludes the proof.

Using RIPPA-WC, we find a stationary point of φ. However, solving the resulting proximal
problems is challenging. In the following, we introduce RAMMA-WC, which specifies how to
implement prox subroutines similarly to RAMMA.

Definition 34 (RAMMA-WC) Consider an algorithm which consists of running RAMMA with
the following modifications: Set ηx

def
“ 1{p3 maxtLxy, Lxuq, T1

def
“ rOp

∆φ

ηxε2
q with ∆φ

def
“ φpx0q ´

minxPX φpxq. Replace Line 3 in RAMMA with RIPPA-WCpφpxq, x0, T1, ηx,Lines 6-9q. remove
Line 4. We refer to this algorihm as RAMMA-WC.

Proof of Theorem 30. Note that any L̄-smooth function is also L̄-weakly g-convex, hence, we
have that φ is at most Lx-weakly g-convex. While it does not improve the final complexity, we use
ρ ď Lx as the weak convexity constant of φ for the sake of generality. In RAMMA-WC, we run
Algorithm 5 on φpxq “ maxyPY fpx, yq “ fpx, y˚pxqq for T1 iterations. Hence, we have from
Theorem 33 that the output x̂ P X of Theorem 33 satisfies the following, with probability at least
2/3:

}∇Mηφpx̂q} ď ε1.

In the following, we discuss the complexity of solving the prox subroutine of Algorithm 5 ac-
counting for the changes to the inner loops of RAMMA. First, note that the total complexity of
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RAMMA-WC is T “ T1pT3T5 ` T4q. Here T3 is the complexity of running RiemaconAbs on
Ψpyq “ maxxPX ´tfpx, yq ´

1
2ηx

d2px, xkqu, T4 is the complexity of running RiemaconAbs on
x ÞÑ fpx, ỹkq`

1
2ηx

d2pxk, xq and T5 is the complexity of running RABR on fpx, yq` 1
2ηx

d2px, xkq´

1
2ηy
d2py, y`q. We have by Theorem 33 that T1

def
“ O

´

∆φ

ε2ηx

¯

. Since minyPY Ψpyq is an optimization

probem in y, its complexity is not affected by changes in x. Hence we have T3 “ rOp
b

ζ
µyηy

q as
in the SCSC case (see Theorem 27). Now consider the min-max problem we want to solve using
RABR, i.e.,

min
xPX

max
yPY

"

hpx, yq
def
“ fpx, yq `

1

2ηx
d2px, x̄q ´

1

2ηy
d2py, ȳq

*

.

First note that while fp¨, yq is no longer strongly g-convex, the choice of ηx ensures that L̄xy ď
1
2

?
µ̄xµ̄y is still satisfied for hpx, yq. In order to compute the value of T5, we need to know the

condition numbers κxphq, κyphq of h with respect to x and y, respectively. We have κyphq “
O pLyηy ` ζ q as in the analysis of the SCSC case (see Theorem 28). In the following, we show that
by our choice of ηx, κxphq and also stays as in the SCSC case (see Theorem 28),

κxphq “
Lx ` ζη

´1
x

´ρ` η´1
x

ď
3

2
pLxηx ` ζ q “ O pLxηx ` ζ q .

Hence we still have T5 “ rOpζ 3
a

Lxηx ` Lyηy ` ζ q. In order to obtain the complexity of T4, we
consider the following optimization problem,

min
xPX

"

Fkpxq
def
“ f px, ỹkq `

1

2ηx
d2 pxk, xq

*

.

First, note that due to the regularization term, Fk is p´ρ` η´1
x q-strongly convex and can be solved

via RiemaconAbs and we have by Theorem 27 that T4 “ rOpζ 3.5
a

κpFkq ` ζ q, where κpFkq is the
condition number of Fk. Noting that

κpFkq “
Lx ` η

´1
x ζ

´ρ` η´1
x

“ O

ˆ

Lx
max tρ, Lxyu

` ζ

˙

,

it follows that T4 “ rOpζ 3.5
b

Lx
maxtρ,Lxyu

` ζ q. We now go on to compute T1T3T5:

T1T3T5 “ rO

˜

ζ 3.5∆φ

ε2

d

Lxηx ` Lyηy ` ζ

η2
xηyµy

¸

“ rO

˜

ζ 3.5∆φ

ε2

d

Lx
ηxηyµy

`
Ly
η2
xµy

`
ζ

η2
xηyµy

¸

.

Recall that we assume wlog that Lx “ Ly.
Case 1 ρ ď Lxy, and µy ď Lxy, so we have ηy “ 1

ζµy`Lxy
and ηx “ L´1

xy . Then

Lx
ηxηyµy

`
Ly
η2
xµy

`
ζ

η2
xηyµy

“

˜

ζLxLxy `
LxL

2
xy

µy

¸

`

˜

L2
xyLy

µy

¸

`

˜

ζ 2L2
xy `

ζL3
xy

µy

¸

.

Case 2 ρ ď Lxy, and µy ą Lxy, so we have ηy “ 1
ζµy

and ηx “ L´1
xy . Then

Lx
ηxηyµy

`
Ly
η2
xµy

`
ζ

η2
xηyµy

“ pζLxLxyq `

˜

L2
xyLy

µy

¸

`
`

ζ 2L2
xy

˘

.
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Case 3 ρ ą Lxy, µy ď Lxy, so we have ηy “ 1
ζµy`Lxy

and ηx “ ρ´1. Then

Lx
ηxηyµy

`
Ly
η2
xµy

`
ζ

η2
xηyµy

“

ˆ

ρLxLxy
µy

` ρLxζ

˙

`

ˆ

Lyρ
2

µy

˙

`

ˆ

ζ 2ρ2 `
ζLxyρ

2

µy

˙

.

Case 4 ρ ą Lxy, µy ą Lxy, so we have ηy “ 1
ζµy

and ηx “ ρ´1. Then

Lx
ηxηyµy

`
Ly
η2
xµy

`
ζ

η2
xηyµy

“ pζρLxq `

ˆ

ρ2Ly
µy

˙

`
`

ζ 2ρ2
˘

.

For all cases combined, setting L “ maxtLx, Ly, Lxyu and using ρ ď L we have that

Lx
ηxηyµy

`
Ly
η2
xµy

`
ζ

η2
xηyµy

“ O

ˆ

ζL2 `
ζL3

µy

˙

.

Which yields

T1T3T5 “ rO

˜

ζ 4∆φL

ε2

d

ζ `
L

µy

¸

.

We have shown that the complexity is dominated by T1T3T5 and the resulting complexity is T “
rOp

ζ4∆φL

ε2

b

ζ ` L
µy
q, which concludes the proof.

I.7. Technical Results

Lemma 35 Let M,N be Riemannian manifolds and let X ĂM, Y Ă N be g-convex subsets that
are uniquely geodesic. Let f : X ˆ Y Ñ R be such that fp¨, yq is lower semicontinuous, fpx, ¨q
is upper semicontinuous, and fpx, yq is pµx, 0q-SCSC in X ˆ Y . Then φpxq def

“ supyPY fpx, yq is
µx-strongly g-convex in its domain. Also, if f is sup-compact, φpxq is well defined for all x P X
and it holds φpxq “ maxyPY fpx, yq.

Proof Let x1, x2 be two points in the domain of φ and let γ be the geodesic joining γp0q “ x1 and
γptq “ x2 with t P r0, 1s. Then, we have for all y P Y that

fpγptq, yq
1
ď tfpx1, yq ` p1´ tqfpx2, yq ´

tp1´ tqµx
2

d2px1, x2q

2
ď tφpx1q ` p1´ tqφpx2q ´

tp1´ tqµx
2

d2px1, x2q.

Here, 1 holds by µx-strong g-convexity of fp¨, yq and 2 uses the definition of φ. Since the
inequality holds for all y, it also holds for the supremum, proving that φ is µx strongly g-convex.

Now we show that if f is sup-compact for some x̃ P X , then φpxq “ maxyPY fpx, yq for
all x P X . To that aim, we show that the superlevel sets of fpx, ¨q are compact for all x P X .
We have that ty P Y|fpx̃, yq ě αu is compact because fpx̃, ¨q is sup-compact. We have that
YX “ ty P Y|fpx, yq ě α,@x P X u “

Ş

xPX ty P Y|fpx, yq ě αu is closed because fpx, ¨q is
upper semicontinuous. Further, YX Ă ty P Y|fpx̃, yq ě αu, hence YX is compact since it is the
intersection of a closed and a compact set. By the extreme value theorem, an upper semicontinuous
function reaches its maximum over a compact set, hence φpxq “ maxyPY fpx, yq.
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Lemma 36 [Ó] Consider a function f : M ˆ N Ñ R as described in Section 1.1. Further, let
hpx, yq “ fpx, yq ` 1

2ηd
2px̃, xq ´ 1

2ηd
2pỹ, yq with

px̃˚, ỹ˚q
def
“ arg min

xPM
arg max
yPN

hpx, yq.

Then, d2px̃, x̃˚q ` d2pỹ, ỹ˚q ď d2pỹ, ŷ˚q ` d2px̃, x̂˚q, where px̂˚, ŷ˚q is the unconstrained saddle
point of f .

Proof of Theorem 36. Note that by Theorem 13, h admits an unconstrained saddle point px̃˚, ỹ˚q.
We have that,

1

2η
d2px̃, x̃˚q ´

1

2η
d2pỹ, ŷ˚q `

1

2η
d2pỹ, ỹ˚q ´

1

2η
d2px̃, x̂˚q

ďfpx̃˚, ŷ˚q `
1

2η
d2px̃, x̃˚q ´

1

2η
d2pỹ, ŷ˚q ´ fpx̂˚, ỹ˚q `

1

2η
d2pỹ, ỹ˚q ´

1

2η
d2px̃, x̂˚q

“hpx̃˚, ŷ˚q ´ hpx̂˚, ỹ˚q ď 0.

It follows that
d2px̃, x̃˚q ` d2pỹ, ỹ˚q ď d2pỹ, ŷ˚q ` d2px̃, x̂˚q.

Proposition 37 [Ó] Consider a g-convex function f : X Ñ R, where X ĂM is a compact convex
subset of a Riemannian Manifold M. Then for x˚ P arg minxPX fpxq, it holds that

x∇fpx˚q, logx˚pyqq ě 0,@y P X . (48)

And analogously if f is g-concave and x˚ P arg maxxPX fpxq. That is

x∇fpx˚q, logx˚pyq ď 0,@y P X . (49)

Proof of Theorem 37. Let f be g-convex and x˚ P arg minxPX fpxq. Then F ptq def
“ fpx˚ `

tpx ´ x˚q for t P r0, 1s reaches it’s minimum at t “ 0. Hence we have that 0 ď F 1p0q “
∇xfpx˚q, logx˚pxqy. The proof for the g-concave case works analogously.

Lemma 38 For a µ-strongly g-convex function f : X Ñ R where X ĂM is a compact g-convex
subset we have

µ

2
d2px˚, yq ď fpyq ´ fpx˚q

µd2px, yq ď xlogxpyq,Γ
x
y∇fpyq ´∇fpxqy

“ xlogypxq,Γ
y
x∇fpxq ´∇fpyqy

(50)

where x˚ “ arg minxPX fpxq. Equivalently if f is µ-strongly g-concave then
µ

2
d2px˚, yq ď fpx˚q ´ fpyq

µd2px, yq ď x´ logxpyq,Γ
x
y∇fpyq ´∇fpxqy

“ x´ logypxq,∇fpxq ´ Γxy∇fpyqy

(51)

where x˚ “ arg maxxPX fpxq.
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Proof By strong convexity, we have

fpx˚q ď fpyq ` x∇fpx˚q,´ logx˚pyqy ´
µ

2
d2px˚, yq.

Using (48), we conclude that
µ

2
d2px˚, yq ď fpyq ´ fpx˚q.

Further, by strong convexity, we can write

fpxq ď fpyq ` x∇fpxq,´ logxpyqy ´
µ

2
d2px, yq

fpyq ď fpxq ` x∇fpyq,´ logypxqy ´
µ

2
d2px, yq.

Adding both inequalities, we get

µd2px, yq ď x∇fpyq,´ logypxqy ` x∇fpxq,´ logxpyqy

“ xΓxy∇fpyq ´∇fpxq, logxpyqy

“ xΓyx∇fpxq ´∇fpyq, logypxqy

where the last two equalities follow from transporting the scalar products to Tx and Ty respectively.
The proof for the strongly g-concave follows by the same argument.

Lemma 39 Assume f satisfies Assumption 1, define y˚pxq def
“ arg maxyPY fpx, yq, x

˚pyq
def
“

arg maxxPX fpx, yq, φpxq
def
“ maxyPY fpx, yq and Ψpyq

def
“ minxPX fpx, yq then

1. y˚p¨q is Lxy
µy

-Lipschitz.

2. x˚p¨q is Lxy
µx

-Lipschitz.

3. φpxq is µx-strongly g-convex.

4. Ψpyq is µy-strongly g-concave.

Proof By Theorem 37, we have

xlogy˚pxqpyq,∇yfpx, y
˚pxqqy ď 0, @y P Y (52)

xlogy˚pzqpyq,∇yfpz, y
˚pzqqy ď 0, @y P Y (53)

Sum up (52) with y “ y˚pzq transporting the scalar product to Ty˚pzq and (53) with y “ y˚pxq,

xlogy˚pzqpy
˚pxqq,∇yfpz, y

˚pzqq ´ Γy
˚pzq∇yfpx, y

˚pxqqy ď 0.

Then since fpx, ¨q is µy-strongly g-concave, we have by Theorem 38

µyd
2py˚pxq, y˚pzqq ` xlogy˚pzqpy

˚pxqq,Γy
˚pzq∇yfpx, y

˚pxqq ´∇yfpx, y
˚pzqy ď 0.
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Summing these two equations we get

µyd
2py˚pxq, y˚pzqq ` xlogy˚pzqpy

˚pxqq,∇yfpz, y
˚pzqq ´∇yfpx, y

˚pzqy ď 0.

Further,

dpy˚pxq, y˚pzqq ď d´1py˚pxq, y˚pzqqµy
´1xlogy˚pzqpy

˚pxqq,∇yfpx, y
˚pzq ´∇yfpz, y

˚pzqqy

ď µy
´1}∇yfpx, y

˚pzq ´∇yfpz, y
˚pzqq}

ď
Lxy
µy

dpx, zq,

where we used gradient Lipschitzness. This concludes the proof for Statement 1. The proof of
Statement 2 works in the same way using strong g-convexity instead of strong g-concavity. The
proofs of Statements 3 and 4 follow directly by Theorem 35.
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