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Abstract
Follow-The-Leader (FTL) is a simple online learning algorithm that is often overlooked. This paper
investigates the FTL algorithm and two of its variant. The Optimistic FTL (OFTL) algorithm in the
context of online learning with hints and the Follow The Approximate Leader (FTAL) with adaptive
curvature. We provide a general regret inequality for OFTL that explicitly captures the effect of the
hints and the curvature of the cost functions. This directly leads to a regret bound for FTAL. We
generalize prior regret bounds of FTAL by incorporating adaptive curvature and movement of the
iterates. We demonstrate the applicability of our results by deriving regret bounds for the online
portfolio selection problem using FTAL with adaptive curvature. We further show the applicability
of OFTL by obtaining a uniform regret bound for online linear regression. Our analysis contributes
to a better understanding of FTL and its variants in various online learning scenarios.

1. Introduction

We focus on online convex optimization (OCO). Here, a player interacts with an environment for T
rounds. In each round, the player selects an action from a convex set, wt ∈ D ⊆ Rn. The environment
picks a convex function ft : D → R. The player incurs a ft(wt) cost and observes ft. The player’s
objective is to minimize

∑T
t=1 ft(wt). The regret of the player compared to the cost of fixed point

w ∈ D is RT (w) =
∑T

t=1 ft(wt)− ft(w). A straightforward strategy for the player is to select wt

using Follow The Leader (FTL). FTL can be succinctly expressed as wt ∈ argminw∈D
∑t−1

s=1 fs(w).
Unfortunately, FTL can have O(T ) regret even with linear functions [21, Example 2.10]. This

occurs because FTL’s iterates can be forced into alternating between opposite corners of D in every
iteration, making it “unstable”. Nevertheless, FTL has O(log T ) regret when the functions are
strongly convex [21, Corollary 7.24]. Even for linear functions, FTL’s regret is O(log T ) if the
decision set’s boundary exhibits sufficient curvature [13, 14].

In the framework of optimistic online learning, at each round t the player is presented with a hint
function, mt, which can be utilized in the selection of wt. Following this, the cost function, ft, is
disclosed, and the player incurs a cost of ft(wt). If mt serves as a beneficial hint for ft, it could
potentially lead to a reduction in regret. The Optimistic FTL (OFTL) can be succinctly expressed
as wt ∈ argminw∈D mt(w) +

∑t−1
s=1 fs(w). One can construct surrogate convex functions and run

FTL/OFTL on them instead. This approach leads to the Follow The Approximate Leader (FTAL).
This paper examines OFTL and FTAL for problems with adaptive curvature on both bounded

and unbounded domains. We illustrate the relevance of our findings by considering two specific
problems: online portfolio selection, which exhibits adaptive curvature and a bounded domain, and
online linear regression, which has constant curvature and an unbounded domain.

© S.R. Putta & S. Agrawal.



REGRET BOUNDS FOR OPTIMISTIC FTL

1.1. Our Contributions

In this paper, we introduce a general regret inequality for OFTL that explicitly considers the curvature
of the cost functions and hints. When applied to quadratic surrogate functions, it leads to a regret
bound for FTAL. By incorporating adaptive curvature, we extend the previous regret bounds for
FTAL that were obtained by Hazan et al. [11]. We demonstrate the practicality of our findings by
deriving new regret bounds for the online portfolio selection problem, and a uniform regret bound
for online linear regression comparable to similar results in [8].

1.2. Notation

Let Rn
+ be the non-negative orthant of Rn and ∆n = {w ∈ Rn

+ :
∑n

i=1wi = 1} be the probability
simplex. Let D be a convex set. If D is bounded, its diameter is D = maxw,w′∈D ∥w − w′∥.
The Bregman Divergence of a function F is BF (x∥y) = F (x) − F (y) − ∇F (y)⊤(x − y). Let
∇t = ∇ft(wt) and βt = βt(wt). For a PSD matrix X , the minimum non-zero singular value of X
is σmin(X), and its Moore-Penrose pseudo inverse is X+.

2. Optimistic Follow The Leader

Let gt(w) =
∑t

s=1 fs(w). Algorithm 1 describes OFTL.

Algorithm 1: Optimistic Follow The Leader

for t = 1 to T do
Receive the hint function mt

Compute wt = argmin ∥w∥ such that w ∈ arg min
w∈D

mt(w) +
∑t−1

s=1 fs(w)

Receive ft
end

2.1. New Regret Inequality

Let w′
t be the iterates obtained if we ran FTL instead of OFTL, i.e., w′

t are the iterates with mt(w) = 0.

Theorem 1 For any w ∈ D, any sequence of convex cost functions f1, . . . , fT and hint functions
m1, . . . ,mT such that argminw∈D

∑t−1
s=1 fs(w) and argminw∈D mt(w) +

∑t−1
s=1 fs(w) are non

empty, the iterates of Optimistic FTL (Algorithm 1) satisfies the inequality :

RT (w) ≤
T∑
t=1

(
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)− Bgt−1(wt∥w′

t)
)

If we set mt(w) = 0, we immediately obtain a regret bound for FTL.

Corollary 2 For any w ∈ D and any sequence of convex functions f1, . . . , fT such that
argminw∈D

∑t−1
s=1 fs(w) is non empty, the iterates of FTL (Algorithm 1 with mt(w) = 0) satisfy:

RT (w) ≤
T∑
t=1

∇⊤
t (wt − wt+1)− Bgt(wt+1∥wt) =

T∑
t=1

ft(wt)− ft(wt+1)− Bgt−1(wt+1∥wt)

A comparison of our regret bound with prior results appears in Appendix A.1.
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3. Follow The Approximate Leader

In this section, we set the hint mt(w) = 0. Consider cost functions that have a quadratic lower-bound
with adaptive curvature:

Assumption 3 Assume the cost functions ft satisfy:

ft(w) ≥ ft(w
′) +∇ft(w

′)⊤(w − w′) +
βt(w

′)

2
(∇ft(w

′)⊤(w − w′))2 ∀w,w′ ∈ D

Define the function f̂t(w) = ft(wt) +∇ft(wt)
⊤(w − wt) +

βt(wt)
2 (∇ft(wt)

⊤(w − wt))
2.

Algorithm 2: Follow The Approximate Leader

for t = 1 to T do
Compute the current iterate wt = argmin ∥w∥ such that w ∈ arg min

w∈D

∑t−1
s=1 f̂s(w)

Receive ft. Let ∇t = ∇ft(wt) and βt = βt(wt).
Construct lower-bound f̂t(w) = ft(wt) +∇⊤

t (w − wt) +
βt

2 (∇
⊤
t (w − wt))

2

end

3.1. New Regret Inequality

We have f̂t(w) ≤ ft(w) for all w ∈ D and f̂t(wt) = ft(wt). This implies RT (w) ≤
∑T

t=1 f̂t(wt)−
f̂t(w). Since FTAL runs FTL on f̂t(w), we can apply Corollary 2 to obtain a regret bound for FTAL.

Theorem 4 For any w ∈ D and any sequence of convex cost functions f1, . . . , fT that satisfy
Assumption 3, the iterates of FTAL (Algorithm 2) satisfy:

RT (w) ≤
n

2mint βt

(
log

(
G2
TM2

T mint βt
n2

+ 1

)
+ 1

)
Where M2

T =
∑T

t=1 ∥wt − wt+1∥22 and G2
T =

∑T
t=1 βt∥∇t∥22

A comparison of our regret bound with prior results appears in Appendix A.2

4. Application: Online Portfolio Selection

The online portfolio selection problem is a repeated game of sequential investment between an
investor (the player) and a market (the environment) consisting of n assets (stocks). In each round,
the investor selects a wt ∈ ∆n and later observes the returns rt ∈ Rn

+ from the market. The investor’s
loss function is ft(w) = − log(r⊤t w). Let r̂ = mint,i rt[i], be the smallest return observed by the
player. We make the no junk bonds assumption.

Assumption 5 For all t, we have ∥rt∥∞ = 1. There is an unknown constant r > 0 (called the
market variability parameter) such that r̂ ≥ r.

We summarize our contributions along with relevant prior work using FTL style algorithms in
Table 1. Here, QT represents the quadratic variation of rt, defined as QT =

∑T
t=1 ∥rt− r̄T ∥22, where

r̄T = 1
T

∑T
t=1 rt and L⋆

T = minw∈∆n

∑T
t=1 ft(w). A detailed comparison with prior work is in

Appendix A.3.
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Table 1: Prior work and our contributions(⋆) in Online Portfolio Selection
Algorithm Regret Run-time (per round)

FTL[11] r̂−2n log(T ) n3T

ONS/FTAL [1, 11] r−1n log(T ) n3

FTAL+Adaptive Curvature⋆ r̂−1n log(T ) n3

Exp-Concave FTL [9, 10] r̂−2n log(QT + n) n3T

FTRL [9, 10] r−3n log(QT + n) n3

FTRL+Adaptive Curvature⋆ r̂−2n log(QT + n) n3

ONS [22] r−1n log(r−2L⋆
T + r−3n) n3

FTRL+Adaptive Curvature⋆ r̂−1n log(r̂−2L⋆
T + r̂−3n) n3

4.1. New Adaptive Curvature Lower-bound and Regret bounds

Under Assumption 5, we have that 0 < r ≤ r̂ ≤ r⊤t w ≤ 1 for all w ∈ ∆n. So, we apply the result:

Lemma 6 [24] For all x, y ∈ (0, 1], we have: y
x − 1− log

( y
x

)
≥ 1

2
(x−y)2

x

This leads to an adaptive curvature quadratic lower-bound with βt(w) = r⊤t w:

Lemma 7 Under Assumption 5, for all w,w′ ∈ ∆n, we have for ft(w) = − ln(r⊤t w):

ft(w) ≥ ft(w
′) +∇ft(w

′)⊤(w − w′) +
(r⊤t w

′)

2
(∇ft(w

′)⊤(w − w′))2

Using the FTAL algorithm (Algorithm 2) with this lower-bound, we have:

Theorem 8 For any w ∈ ∆n and any sequence of returns r1, . . . , rT such that Assumption 5 holds,
the iterates of FTAL (Algorithm 2), with ∇t = −rt/(r

⊤
t wt) and βt = r⊤t wt satisfy the inequality:

RT (w) ≤
n

2r̂

(
log

(
2T 2

n
+ 1

)
+ 1

)
Consider the following FTRL with ℓ2 regularization:

wt = arg min
w∈∆n

1

2
∥w∥22 +

t−1∑
s=1

(
fs(ws)−

r⊤s (w − ws)

(r⊤s ws)⊤
+

(r⊤s (w − ws))
2

2(r⊤s ws)

)
(1)

Theorem 9 For any w ∈ ∆n and any sequence of returns r1, . . . , rT such that Assumption 5 holds,
the iterates of Equation 1 satisfy RT (w) = O

(
n
r̂2

log(QT + n)
)

This matches Exp-Concave FTL [10] while having O(n3) run time.

Lemma 10 Under Assumption 5, the cost functions ft(w) = − log(r⊤t w) are n/r̂2-smooth on ∆n.
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Due to cost functions having the smoothness property, we can show that the iterates of Equation 1
have a regret bounded by O(logL⋆

T ).

Theorem 11 For any w ∈ ∆n and any sequence of returns r1, . . . , rT such that Assumption 5 holds,
the iterates of Equation 1 satisfy RT (w) = O

(
n
r̂ log

(
L⋆
T

r̂2
+ n

r̂3

))
, where L⋆

T = min
w∈∆n

∑T
t=1 ft(w)

5. Application: Online Linear Regression

In the online linear regression problem, at each round t, a feature vector xt ∈ Rn is revealed to
the player. The player then picks an estimator wt ∈ Rn and predicts the value ŷt = x⊤t wt. The
environment then reveals the value yt, and the player pays the cost ft(w) = 1

2(x
⊤
t wt − yt)

2. We can
analyze the regret using optimistic OCO, as the feature vector xt could be used to create a hint.

5.1. New regret bound

We consider the same forecaster as [8], that runs OFTL (algorithm 1) on the costs ft(w) = 1
2(x

⊤
t w−

yt)
2 and uses hint mt(w) =

1
2(x

⊤
t w)

2. Let Xt =
∑t

s=1 xsx
⊤
s and Yt =

∑t
s=1 ysxs. We have:

Theorem 12 For any w ∈ Rn and any sequence of pairs (x1, y1), . . . , (xT , yT ), the iterates of
OFTL (Algorithm 1) with ft(w) = 1

2(x
⊤
t w − yt)

2, mt(w) = 1
2(x

⊤
t w)

2 and D = Rn, satisfy the

regret the inequality
∑T

t=1
1
2(x

⊤
t wt−yt)

2− 1
2(x

⊤
t w−yt)

2 ≤ (maxt y2t )n
2

(
log
(

X 2
TM′2

T

n2(maxt y2t )
+ 1
)
+ 1
)

,

Where X 2
T =

∑T
t=1 ∥xt∥22 and M′2

T =
∑T

t=1 ∥wt − w′
t+1∥22. This implies the regret bound:

≤ (maxt y
2
t )n

2

(
log

(∑T
t=1 ∥xt∥22
n2

(
T∑
t=1

∥xt∥22
σmin(Xt)2

)
+ 1

)
+ 1

)

Since this holds for all w ∈ Rn, it is a uniform regret bound. Moreover, it is also scale-invariant
to multiplying features by a scalar constant. However, the σmin(Xt) term in the regret bound may be
small, leading to large regret. However, for many sequences of feature vectors xt this term could be
reasonable. Moreover, this bound has the optimal leading term (maxt y

2
t )n in front of the logarithm.

6. Conclusions

In this paper, we studied bounds for the Optimistic FTL algorithm that explicitly shows the effect
of the curvature of the cost functions and hints on regret. We derive a regret bound for the FTAL
algorithm for cost functions with an adaptive quadratic lower-bound. In contrast to prior work, this
regret bound holds for both bounded and unbounded domains. For bounded domains, FTAL has a
better data-dependant leading constant.

For the online portfolio selection problem, we first show a new adaptive curvature quadratic lower-
bound. Using this lower-bound with the FTAL algorithm, we show a O(r̂−1n log(T )) regret bound.
Using the same lower-bound with a ℓ2 regularized FTRL algorithm, we show a O(r̂−2n log(QT +n))
regret and a first-order O(r̂−1n log(r̂−2L⋆

T + r̂−3n)) regret bound, where r̂ = mint,i rt[i].
As a future research direction, it is interesting to explore if the adaptive curvature lower-bound

could be used to obtain an O(n log(T ))) regret algorithm that runs in O(n3) time per iteration.
A natural definition of variation in the returns of the online portfolio selection problem would be
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VT =
∑T

t=2 ∥rt − rt−1∥. Applying the variation regret bounds from [5] or Orabona [21, Corollary
7.38] for instance, does not give us regret bounds depending on VT . Thus, obtaining an O(log(VT ))
is also an open problem.

For the online linear regression problem, we use OFTL to obtain a uniform regret bound that
holds for all w ∈ Rn. While this bound has the optimal leading term, the term inside the logarithm is
not uniformly bounded for all sequences of feature vectors and may be very large. An open problem
posed in Gaillard et al. [8] asks if it is possible to obtain a doubly uniform regret bound that holds for
all w ∈ Rn and all features xt such that ∥xt∥ ≤ X .
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Appendix A. Prior Work

A.1. Optimistic FTL

Regret bounds in the optimistic online learning literature have mostly been limited to optimistic
FTRL with linear costs [25], [21, Theorem 7.35]. Our regret bound in Theorem 1 generalizes these
bounds to convex cost functions and hints. Regret bounds for FTL were initially derived using
the Be-The-Leader (BTL) lemma Kalai and Vempala [17]. Their FTL regret bound is RT (w) ≤∑T

t=1 ft(wt)− ft(wt+1). Our regret bound includes an additional term, −Bgt−1(wt+1∥wt).
Orabona [21, Lemma 7.1] provides a general regret equality that can derive regret bounds for var-

ious online algorithms. It implies the FTL bound: RT (w) ≤
∑T

t=1 ft(wt)− ft(wt+1)+ gt−1(wt)−
gt−1(wt+1). Comparing this with Corollary 2, we have the extra term ∇gt−1(wt)

⊤(wt+1 −
wt). If the domain is unconstrained, this term is 0 as ∇gt−1(wt) = 0. In the constrained case,
∇gt−1(wt)

⊤(wt+1 − wt) ≥ 0. This term is necessary to obtain regret inequalities with the Bregman
divergence term. Even in Orabona [21, Lemma 7.4], this term is added to obtain regret inequalities.

Hazan et al. [11, Theorem 5] provide a regret bound for the special case of ridge functions, where
ft(w) = ht(w

⊤vt) for some scalar convex function ht. Given that D is bounded, h′t(v
⊤
t w) ≤

b, h′′t (v
⊤
t w) ≥ a for all w ∈ D, and |vt| ≤ R, they demonstrate that the regret of FTL is

O
(
nb2

a log
(
1 + DRaT

bn

))
. We can derive this bound by applying these assumptions to Corollary 2.
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A.2. FTAL

In the particular case where D is bounded, βt(w) = β and ∥∇ft(w)∥ ≤ G for all w ∈ D, the bound
in Theorem 4 becomes O (n/β log(DGTβ/n)). For functions that are α exp-concave, the above
bound becomes O

((
α−1 +GD

)
n log (T/n)

)
. These bounds recover the FTAL bounds appearing

in Hazan et al. [11]. ONS [11] uses weaker constant-curvature lower-bounds that have the worst case
curvature constant βmin = infw∈D β(w) instead of adaptive curvature. If D is bounded, then picking
the learning rate, leads to the regret bound O

(
n/βmin log

(
D2β2

min(
∑T

t=1 ∥∇t∥22)/n2 + 1
))

.

The quantity preceding FTAL’s regret scales as (mint βt)
−1, whereas for ONS, it scales as

(βmin)
−1. Since (mint βt)

−1 is a data-dependent quantity, it could be significantly smaller than
(βmin)

−1. Second, ONS can only be applied when D is bounded, whereas FTAL can be applied in
bounded and unbounded settings. Note that FTAL needs to know the gradient ∇ft(wt) and curvature
βt(wt) at each round to obtain the regret bound of Theorem 4. If D is bounded, ∥∇ft(w)∥ ≤ G and
βt(w) is unavailable, the MetaGrad algorithm of [28] has regret bound of O (n/βmin log (DGT/n)).

A.3. Online Portfolio Selection

Regret bounds for this problem can be divided into two categories:

Regret independent of r: Cover [6] showed that the Universal Portfolio(UP) has a regret bound of
O(n log(T )), but computing it requires O(n4T 14) run time per round[16]. There have been several
works that explore the trade-off between run-time and regret [19, 20, 23, 27, 30]. Recently, [15] gave
an algorithm that uses the volumetric barrier along with FTRL that has O(n log(T )) regret and has
a run time of O(n2T ). See [15] for a detailed explanation of prior work in this area.

Regret dependent on r: Helmbold et al. [12] showed that the Exponentiated Gradient(EG) al-
gorithm has a regret of O(r−1

√
T log(n). However, r needs to be known to achieve this rate.

Using the AdaHedge algorithm [7] that automatically tunes learning rates, it is possible to get
O(r̂−1

√
T log(n)). This is better than EG as r̂ ≥ r and r does not need to be known.

The FTL regret bound from [11, Theorem 5] can be applied directly to the portfolio selection
problem, which yields a regret of O(r̂−2n log(T )). If r is known, then using a constant curvature
lower-bound, [1, 11] show that ONS and FTAL can have a O(r−1n log(T )) regret. In this paper,
we show that using an adaptive curvature lower-bound, FTAL can have a regret of O(r̂−1n log(T ))
without knowing r. Note that MetaGrad can obtain the regret bound O(r−1n log(T )) without
knowing r. However, the adaptive curvature FTAL is simpler compared to MetaGrad.

While algorithms with regret independent of r offer superior worst-case performance guarantees,
they tend to be overly conservative. Empirical studies, such as those conducted by [1, 12, 18]
demonstrate that EG and ONS outperform Cover’s UP. Furthermore, Hazan and Kale [9, 10] propose
algorithms akin to FTL/FTAL that exhibit regret of order O(logQT ). Here, QT represents the
quadratic variation of rt, defined as QT =

∑T
t=1 ∥rt − r̄T ∥22, where r̄T = 1

T

∑T
t=1 rt. Using our

adaptive curvature quadratic lower-bound, we can show a regret of O(r̂−2n log(QT + n).
Additionally, [22, Theorem 1] show that if the cost functions are smooth, ONS can achieve an

O(logL⋆
T ) regret, where L⋆

T = minw∈∆n

∑T
t=1 ft(w). Using our adaptive curvature lower-bound

we show a regret of r̂−1n log(r̂−2L⋆
T + r̂−3n).

10
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A.4. Online Linear Regression

A detailed introduction to this topic can be found in [3, Chapter 11] and [4]. Of particular interest
is the Vovk-Azoury-Warmuth (VAW) forecaster introduced by [29] and [2]. It can be interpreted
as an optimistic FTRL that uses 1

2(x
⊤
t w) as the hint function. The iterates are computed as: wt =

argminw∈Rd
1
2∥w∥

2
2 +

1
2(x

⊤
t w)

2 +
∑t−1

s=1
1
2(x

⊤
s w− ys)

2. The regret for this algorithm is RT (w) ≤
∥w∥22
2 + n

2 log
(
1 + T

n maxt ∥xt∥22
)
(maxt y

2
t ) ∀w ∈ Rn.

[8] study the un-regularized version of the VAW forecaster, that is an optimistic FTL, obtained
by running algorithm 1 with mt(w) =

1
2(x

⊤
t w)

2 and ft(w) =
1
2(x

⊤
t w − yt)

2. They give a uniform
regret [8, Theorem 11] bound that depends on σmin(

∑t
s=1 xsx

⊤
s ). We give a similar regret bound

that is much simpler to obtain than theirs.
The regret bound of [8] is:

RT (w) ≤ n(max
t

y2t )(1 + log(T )) + n(max
t

y2t )

(
1

n

∑
τ∈T

log

(
X 2

σmin(Xτ )

))
︸ ︷︷ ︸

OT (1)

Here X = maxt ∥xt∥2, Xt =
∑t

s=1 xsx
⊤
s is the t’th gram matrix and T is the set of indices τ such

that rank(Xτ−1) ̸= rank(Xτ ). Thus, once the gram matrices are full rank, the OT (1) term stops
growing, however, it could be quite large for some sequences of xt.

If xt+1 is in the span of the eigenvectors of Xt, then rank(Xt) = rank(Xt+1) and σmin(Xt) ≤
σmin(Xt+1). On the other hand, if xt+1 is not in the span of the eigenvectors of Xt, then rank(Xt) +

1 = rank(Xt+1). Thus, we can bound the sum
∑T

t=1
∥xt∥22

σmin(Xt)2
in the regret bound of Theorem 12:

T∑
t=1

∥xt∥22
σmin(Xt)2

≤ X 2
T∑
t=1

1

σmin(Xt)2
≤ X 2

∑
τ∈T

tτ
σmin(Xτ )2

≤ X 2T max
τ∈T

1

σmin(Xτ )2

Here tτ is the number of gram matrices that have the same rank as Xτ , where τ ∈ T . Applying this
bound and simplifying our result, we get:

RT (w) ≤ n(max
t

y2t )(1 + log(T )) + n(max
t

y2t )

(
max
τ∈T

log

(
X 2

nσmin(Xτ )

))
︸ ︷︷ ︸

OT (1)

Thus, in the same vein as the regret bound of [8], our regret bound also has an OT (1) term stops
growing once the gram matrices are full rank.

[8] study the un-regularized version of the VAW forecaster. They give a uniform regret bound
that depends on σmin(

∑t
s=1 xsx

⊤
s ). We give a similar regret bound that is much simpler to obtain.

Appendix B. Auxiliary Results

Let dom(F ) be the domain of function F . Recall the definition of Bregman divergence BF (x∥y) =
F (x)− F (y)−∇F (y)⊤(x− y).

Lemma 13 For any v, w ∈ dom(∇F ) and u ∈ dom(F ) we have:

BF (u∥w)− BF (u∥v)− BF (v∥w) = (∇F (w)−∇F (v))⊤(v − u)

11
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Proof We can obtain the right-hand side by a straightforward expansion of the Bargeman divergences
on the left-hand side.

Let I be the n× n identity matrix. We state the following lemma, which is a tighter version of
Lemma 11 in Hazan et al. [11]

Lemma 14 [11, Lemma 11] Let x1, . . . , xt be a sequence of vectors in Rn. Define Ht = ϵI +∑t
s=1 xsx

⊤
s . Then, the following holds:

T∑
t=1

x⊤t H
−1
t xt ≤ n log

(
1 +

∑T
t=1 ∥xt∥22
nϵ

)

In Lemma 11 of [11], they give the bound n log(1 + T supt ∥xt∥22/ϵ)
We state a lemma from Putta and Agrawal [24].

Lemma 15 [24] For all x, y ∈ (0, 1], we have: y
x − 1− log

( y
x

)
≥ 1

2
(x−y)2

x

In order to obtain the O(logQT ) regret bound, we state a slightly modified version of a theorem
from Hazan and Kale [10].

Theorem 16 [10, Theorem 1.1] Let the cost functions be ft(w) = ht(w
⊤vt) for a scalar function

ht. Consider the iterates:

wt = arg min
w∈D

1

2
∥w∥22 +

t−1∑
s=1

hs(w
⊤vs)

If ∥vt∥ ≤ R, ∥w∥ ≤ D for all w ∈ D, h′t(w
⊤
t vt) ∈ [−a, 0] and h′′t (w

⊤vt) ≥ b for all w ∈ D, then:

RT (w) ≤ O

(
a2n

b
log(1 + bQT + bR2) + aRD log(1 +QT /R

2) +D2

)
Here QT = minµ

∑T
t=1 ∥vt − µ∥

In the statement of the theorem in [10], they assume that ht = h for all t and h′(w⊤vt) ∈ [−a, 0]
for all w ∈ D. However, they later note that the proof of the theorem is flexible enough to handle
different functions ht for different t. Furthermore, the proof only requires the bound a on the
magnitude of the first derivatives at the points wt, which the algorithm produces, and not the entire
domain D.

Srebro et al. [26] prove the following lemma about smooth functions.

Lemma 17 [26, Lemma 3.1] If a non-negative function f is H-smooth on the domain D, then
∥∇f(w)∥ ≤

√
4Hf(w) for all w ∈ D

Orabona et al. [22] show the following useful self-bounding result:

Lemma 18 [22, . Corollary 5] Let a, b, c, d, x > 0 satisfy x ≤ a log(bx+ c) + d, then:

x ≤ a log

(
2

(
ab log

(
2ab

e

)
+ db+ c

))
+ d

Here e is the base of the natural logarithm.

12
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Appendix C. Proof of Theorem 1

Theorem 1 For any w ∈ D, any sequence of convex cost functions f1, . . . , fT and hint functions
m1, . . . ,mT such that argminw∈D

∑t−1
s=1 fs(w) and argminw∈D mt(w) +

∑t−1
s=1 fs(w) are non

empty, the iterates of Optimistic FTL (Algorithm 1) satisfies the inequality :

RT (w) ≤
T∑
t=1

(
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)− Bgt−1(wt∥w′

t)
)

Proof w′
t are the iterates obtained if we had used FTL and wt are the actual iterates of OFTL. Recall

that gt(w) =
∑t

s=1 fs(w). Consider the term ft(wt) − ft(w). We add and subtract ft(w′
t+1) and

use the definition of Bregman divergence to obtain:

ft(wt)− ft(w) = ft(wt)− ft(w
′
t+1) + ft(w

′
t+1)− f(w)

= ∇ft(wt)
⊤(wt − w′

t+1)− Bft(w
′
t+1∥wt) +∇ft(w

′
t+1)

⊤(w′
t+1 − w)︸ ︷︷ ︸

(1)

−Bft(w∥w′
t+1)

Since gt(w)− gt−1(w) = ft(w), we have:

(1) = ∇ft(w
′
t+1)

⊤(w′
t+1 − w) = (∇gt(w

′
t+1)−∇gt−1(w

′
t+1))

⊤(wt+1 − w)

= (∇gt(w
′
t+1)−∇gt−1(wt))

⊤(wt+1 − w) + (∇gt−1(wt)−∇gt−1(w
′
t+1))

⊤(w′
t+1 − w)︸ ︷︷ ︸

(2)

Due to Lemma 13, the term (2) is:

(∇gt−1(wt)−∇gt−1(w
′
t+1))

⊤(w′
t+1 − w) = Bgt−1(w∥wt)− Bgt−1(w∥w′

t+1)− Bgt−1(w
′
t+1∥wt)

Substituting this back in the expression for ft(wt)− ft(w), we have:

ft(wt)− ft(w) = ∇ft(wt)
⊤(wt − w′

t+1)− Bft(w
′
t+1∥wt)− Bft(w∥w′

t+1)

+ Bgt−1(w∥wt)− Bgt−1(w∥w′
t+1)− Bgt−1(w

′
t+1∥wt)

+ (∇gt(w
′
t+1)−∇gt−1(wt))

⊤(wt − w)

= ∇ft(wt)
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)

+ Bgt−1(w∥wt)− Bgt(w∥w′
t+1)

+ (∇gt(w
′
t+1)−∇gt−1(wt))

⊤(w′
t+1 − w)

= (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)

+ Bgt−1(w∥wt)−∇mt(wt)
⊤(w − wt)︸ ︷︷ ︸

(3)

−Bgt(w∥w′
t+1)

+ (∇gt(w
′
t+1)−∇gt−1(wt)−∇mt(wt))

⊤(w′
t+1 − w)

In the last expression, note that all the ∇mt(wt) terms add to 0. Consider term (3):

Bgt−1(w∥wt)−∇mt(wt)
⊤(w − wt) = gt−1(w)− gt−1(wt)

− (∇gt−1(wt) +∇mt(wt))
⊤(w − wt)

= Bgt−1(w∥w′
t)− Bgt−1(wt∥w′

t) +∇gt−1(w
′
t)(w − wt)

− (∇gt−1(wt) +∇mt(wt))
⊤(w − wt)

13
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Substituting this back in the expression for ft(wt)− ft(w), we have:

ft(wt)− ft(w) = (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

+ Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1)

+ (∇gt(w
′
t+1)−∇gt−1(wt)−∇mt(wt))

⊤(w′
t+1 − w)

+ (∇gt−1(wt) +∇mt(wt)−∇gt−1(w
′
t))

⊤(wt − w)

= (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

+ Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1)

+ (∇gt−1(w
′
t)−∇gt(w

′
t+1))

⊤w

+ (∇gt−1(wt) +∇mt(wt))
⊤(wt − w′

t+1)

+∇gt(w
′
t+1)

⊤w′
t+1 −∇gt−1(w

′
t)
⊤wt

Since wt minimizes gt−1(w) +mt(w), we have (∇gt−1(wt) +∇mt(wt))
⊤(wt − w′

t+1) ≤ 0

≤ (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

+ Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1)

+ (∇gt−1(w
′
t)−∇gt(w

′
t+1))

⊤w

+∇gt(w
′
t+1)

⊤w′
t+1 −∇gt−1(w

′
t)
⊤wt

Taking the summation over the t terms
∑T

t=1 ft(wt)− ft(w), we have:

RT (w) ≤
T∑
t=1

(∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

+

T∑
t=1

Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1)︸ ︷︷ ︸
(4)

+
T∑
t=1

(∇gt−1(w
′
t)−∇gt(w

′
t+1))

⊤w︸ ︷︷ ︸
(5)

+

T∑
t=1

∇gt(w
′
t+1)

⊤w′
t+1 −∇gt−1(w

′
t)
⊤wt︸ ︷︷ ︸

(6)

Note that g0(w) = 0 and the hint after round T , i.e., mT+1(w) = 0. We can telescope term (4) to
get:

T∑
t=1

Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1) = Bg0(w∥w′
1)− BgT (w∥w

′
T+1) = 0− BgT (w∥w

′
T+1) ≤ 0

14
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Term (5) can be telescoped as:

T∑
t=1

(∇gt−1(w
′
t)−∇gt(w

′
t+1))

⊤w = (∇g0(w
′
1)−∇gT (w

′
T+1))

⊤w = −∇gT (w
′
T+1)

⊤w

Since mT+1(w) = 0, we have wT+1 = w′
T+1.Finally for term (6):

T∑
t=1

∇gt(w
′
t+1)

⊤w′
t+1 −∇gt−1(w

′
t)
⊤wt =

T−1∑
t=1

∇gt(w
′
t+1)

⊤(w′
t+1 − wt+1) +∇gT (w

′
T+1)

⊤wT+1

≤ ∇gT (w
′
T+1)

⊤w′
T+1

Here, we used the fact that w′
t+1 minimizes gt(w). So ∇gt(w

′
t+1)

⊤(w′
t+1 − w) ≤ 0 for all w ∈ D.

Combining the upper bounds for terms (5) and (6):

(5) + (6) ≤ gT (w
′
T+1)

⊤(w′
T+1 − w) ≤ 0

Thus, we have the result:

RT (w) ≤
T∑
t=1

(∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

Appendix D. Proof of Theorem 4

Theorem 4 For any w ∈ D and any sequence of convex cost functions f1, . . . , fT that satisfy
Assumption 3, the iterates of FTAL (Algorithm 2) satisfy:

RT (w) ≤
n

2mint βt

(
log

(
G2
TM2

T mint βt
n2

+ 1

)
+ 1

)
Where M2

T =
∑T

t=1 ∥wt − wt+1∥22 and G2
T =

∑T
t=1 βt∥∇t∥22

Proof Algorithm 2 runs FTL on on f̂t(w) where f̂t(w) is defined as:

f̂t(w) = ft(wt) +∇ft(wt)
⊤(w − wt) +

βt(wt)

2
(∇ft(wt)

⊤(w − wt))
2

As f̂t(w) ≤ ft(w) for all w ∈ D and f̂t(wt) = ft(wt), we have:

RT (w) =

T∑
t=1

ft(wt)− ft(w) ≤
T∑
t=1

f̂t(wt)− f̂t(w)

Applying Corollary 2, we have:

T∑
t=1

f̂t(wt)− f̂t(w) ≤
T∑
t=1

∇f̂t(wt)
⊤(wt − wt+1)− Bĝt(wt+1∥wt)

15
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Here ĝt(w) =
∑t

s=1 f̂s(w). Observe that ∇f̂t(wt) = ∇ft(wt) = ∇t. Moreover, we have:

Bĝt(wt+1∥wt) =
1

2
(wt+1 − wt)

⊤

(
t∑

s=1

βs(ws)∇fs(ws)∇fs(ws)
⊤

)
(wt+1 − wt)

=
1

2
(wt+1 − wt)

⊤

(
t∑

s=1

βs∇s∇⊤
s

)
(wt+1 − wt)

=
1

2
(wt+1 − wt)

⊤

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)
(wt+1 − wt)−

1

2
ϵ∥wt+1 − wt∥22

Thus, we have:

RT (w) ≤
T∑
t=1

∇⊤
t (wt − wt+1)−

1

2
(wt+1 − wt)

⊤

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)
(wt+1 − wt)

+
1

2
ϵ

T∑
t=1

∥wt+1 − wt∥22

Using the fact that a⊤x− 1
2x

⊤Ax ≤ 1
2a

⊤A−1a when A is a positive definite matrix.

≤ 1

2

T∑
t=1

∇⊤
t

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)−1

∇t +
ϵ

2
M2

T

≤ 1

2mint βt

T∑
t=1

βt∇⊤
t

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)−1

∇t +
ϵ

2
M2

T

Using Lemma 14 with xt =
√
βt∇t

≤ n

2mint βt
log

(
1 +

∑T
t=1 βt∥∇t∥22

nϵ

)
+

ϵ

2
M2

T

Picking ϵ = n
M2

T mint βt

≤ n

2mint βt
log

(
1 +

G2
TM2

T mint βt
n2

)
+

n

2mint βt

This completes the proof.

16
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Remark Note that ϵ is not a parameter of the algorithm. It only appears in the analysis. It can be
chosen to be any positive constant dependent on problem parameters. So, we can state an alternate
regret bound for FTAL:

RT (w) ≤ inf
ϵ>0

(
n

2mint βt
log

(
1 +

∑T
t=1 βt∥∇t∥22

nϵ

)
+

ϵ

2
M2

T

)
(2)

Appendix E. Results on FTRL

We show a general regret bound for FTRL similar to Corollary 2.

Corollary 19 Let F (w) be a strongly convex regularizer. Consider the iterates of the following
FTRL:

wt = arg min
w∈D

F (w) +
t−1∑
s=1

fs(w)

For any w ∈ D and any sequence of convex functions f1, . . . , fT , we have:

RT (w) ≤ F (w)− F (w1) +
T∑
t=1

∇ft(wt)
⊤(wt − wt+1)− Bgt+F (wt+1|wt)

Proof Since FTRL can be thought of as an FTL on the sequence of functions, f0, f1, . . . , fT where
f0 = F , we apply Corollary 2:

T∑
t=0

ft(wt)− ft(w) ≤
T∑
t=0

(
ft(wt)− ft(wt+1)−

t−1∑
s=0

Bfs(wt+1∥wt)

)

=⇒ F (w0)− F (w) +

T∑
t=1

ft(wt)− ft(w) ≤ F (w0)− F (w1)

+

T∑
t=1

(
ft(wt)− ft(wt+1)− Bgt−1+F (wt+1∥wt)

)
=⇒

T∑
t=1

ft(wt)− ft(w) ≤ F (w)− F (w1)

+

T∑
t=1

∇ft(wt)
⊤(wt − wt+1)− Bgt+F (wt+1|wt)

This completes the proof.

We can get a regret bound for FTRL similar to Theorem 4 where we add a regularizer to FTAL.

Theorem 20 Assume cost function f1, . . . , fT satisfy Assumption 3.Consider the iterates of the
following FTRL:

wt = arg min
w∈D

ϵ

2
∥w∥22 +

t−1∑
s=1

f̂s(w)

17
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Here f̂t(w) = ft(wt) +∇ft(wt)
⊤(w − wt) +

βt(wt)
2 (∇ft(wt)

⊤(w − wt))
2. For any w ∈ D, the

iterates satisfy:

RT (w) ≤
ϵ

2
∥w∥22 +

n

2mint βt
log

(
1 +

∑T
t=1 βt∥∇t∥22

nϵ

)

Proof As f̂t(w) ≤ ft(w) for all w ∈ D and f̂t(wt) = ft(wt), we have:

RT (w) =
T∑
t=1

ft(wt)− ft(w) ≤
T∑
t=1

f̂t(wt)− f̂t(w)

Applying Corollary 19 with F (w) = ϵ
2∥w∥

2
2, we have:

T∑
t=1

f̂t(wt)− f̂t(w) ≤ F (w)− F (w1) +

T∑
t=1

∇f̂t(wt)
⊤(wt − wt+1)− Bĝt+F (wt+1∥wt)

Here ĝt(w) =
∑t

s=1 f̂s(w). Observe that ∇f̂t(wt) = ∇ft(wt) = ∇t. Moreover, we have:

Bĝt+F (wt+1∥wt) =
1

2
(wt+1 − wt)

⊤

(
t∑

s=1

βs(ws)∇fs(ws)∇fs(ws)
⊤ + ϵI

)
(wt+1 − wt)

=
1

2
(wt+1 − wt)

⊤

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)
(wt+1 − wt)

Thus, we have:

RT (w) ≤
ϵ

2
∥w∥22 +

T∑
t=1

∇⊤
t (wt − wt+1)−

1

2
(wt+1 − wt)

⊤

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)
(wt+1 − wt)

Using the fact that a⊤x− 1
2x

⊤Ax ≤ 1
2a

⊤A−1a when A is a positive definite matrix.

≤ ϵ

2
∥w∥22 +

1

2

T∑
t=1

∇⊤
t

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)−1

∇t

≤ ϵ

2
∥w∥22 +

1

2mint βt

T∑
t=1

βt∇⊤
t

(
t∑

s=1

βs∇s∇⊤
s + ϵI

)−1

∇t

Using Lemma 14 with xt =
√
βt∇t

≤ ϵ

2
∥w∥22 +

n

2mint βt
log

(
1 +

∑T
t=1 βt∥∇t∥22

nϵ

)
This completes the proof.

18
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Appendix F. Proofs in Section 4

Lemma 7 Under Assumption 5, for all w,w′ ∈ ∆n, we have for ft(w) = − ln(r⊤t w):

ft(w) ≥ ft(w
′) +∇ft(w

′)⊤(w − w′) +
(r⊤t w

′)

2
(∇ft(w

′)⊤(w − w′))2

Proof Under Assumption 5, we have 0 < r⊤t w ≤ 1 for all w ∈ ∆n. So, we can apply Lemma 6 with
y = r⊤t w and x = r⊤t w

′. Note that ∇ft(w) = −rt/(r
⊤
t w). This gives:

r⊤t w

r⊤t w
′ − 1− log

(
r⊤t w

r⊤t w
′

)
≥ 1

2

(r⊤t w
′ − r⊤t w)

2

r⊤t w
′

=⇒ − log(r⊤t w) ≥ − log(r⊤t w
′)− r⊤t (w − w′)

r⊤t w
′ +

1

2

(r⊤t (w − w′))2

r⊤t w
′

=⇒ ft(w) ≥ ft(w
′) +∇ft(w

′)⊤(w − w′) +
(r⊤t w

′)

2
(∇ft(w

′)⊤(w − w′))2

Completing the proof.

Theorem 8 For any w ∈ ∆n and any sequence of returns r1, . . . , rT such that Assumption 5 holds,
the iterates of FTAL (Algorithm 2), with ∇t = −rt/(r

⊤
t wt) and βt = r⊤t wt satisfy the inequality:

RT (w) ≤
n

2r̂

(
log

(
2T 2

n
+ 1

)
+ 1

)
Proof Applying Theorem 4 with ∇t = −rt/(r

⊤
t wt) and βt = r⊤t wt, we have:

M2
T ≤ 2T

G2
T =

T∑
t=1

∥rt∥22
r⊤t wt

≤ nT

mint βt
=⇒ G2

T min
t

βt ≤ nT

min
t

βt ≥ r̂

Substituting these quantities in the result of Theorem 4, we have the bound:

RT (w) ≤
n

2r̂

(
log

(
2T 2

n
+ 1

)
+ 1

)

Theorem 9 For any w ∈ ∆n and any sequence of returns r1, . . . , rT such that Assumption 5 holds,
the iterates of Equation 1 satisfy RT (w) = O

(
n
r̂2

log(QT + n)
)

19
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Proof The iterates are computed as:

wt = arg min
w∈∆n

1

2
∥w∥22 +

t−1∑
s=1

(
fs(ws)−

r⊤s (w − ws)

(r⊤s ws)⊤
+

(r⊤s (w − ws))
2

2(r⊤s ws)

)

We can apply Theorem 16 with vt = rt. The function ht(x) = ft(wt)− x−r⊤s ws

(r⊤s ws)⊤
+ (x−r⊤s ws)2

2(r⊤s ws)
. This

gives h′t(r
⊤
t wt) = −1

r⊤t wt
∈ [−1

r̂ , 0] and h′′t (r
⊤
t w) = −1

r⊤t wt
≥ 1. Thus we have ∥rt∥ ≤

√
n = R,

D = 1, a = 1
r̂ and b = 1. So, we have the regret bound:

RT (w) ≤ O

(
n

r̂2
log(1 +QT + n) +

√
n

r̂
log(1 +QT /n) + 1

)
Here QT = minµ

∑T
t=1 ∥rt − µ∥ =

∑T
t=1 ∥rt − r̄T ∥, where r̄T = 1

T

∑T
t=1 rt.

Lemma 10 Under Assumption 5, the cost functions ft(w) = − log(r⊤t w) are n/r̂2-smooth on ∆n.

Proof For any w,w′ ∈ ∆n, we have:

∥∇ft(w)−∇ft(w
′)∥2 =

∥∥∥∥ rt

r⊤t w
− rt

r⊤t w
′

∥∥∥∥
2

=
∥rt∥22∥w − w′∥2
(r⊤t w)(r

⊤
t w

′)
≤ n

r̂2
∥w − w′∥

Thus ft(w) is n/r̂2 smooth on ∆n.

Theorem 11 For any w ∈ ∆n and any sequence of returns r1, . . . , rT such that Assumption 5 holds,
the iterates of Equation 1 satisfy RT (w) = O

(
n
r̂ log

(
L⋆
T

r̂2
+ n

r̂3

))
, where L⋆

T = min
w∈∆n

∑T
t=1 ft(w)

Proof The iterates are computed as:

wt = arg min
w∈∆n

1

2
∥w∥22 +

t−1∑
s=1

(
fs(ws)−

r⊤s (w − ws)

(r⊤s ws)⊤
+

(r⊤s (w − ws))
2

2(r⊤s ws)

)
We can apply Theorem 20 with ϵ = 1, βt = r⊤t wt:

RT (w) ≤
1

2
∥w∥22 +

n

2mint βt
log

(
1 +

∑T
t=1(r

⊤
t wt)∥∇t∥22
n

)
(3)

Note that ∥w∥ ≤ 1, mint βt ≥ r̂ and (r⊤t wt) ≤ 1:

≤ 1

2
+

n

2r̂
log

(
1 +

∑T
t=1 ∥∇t∥22

n

)

From Lemma 10, we know ft is n/r̂2 smooth on ∆n. Under Assumption 5, ft are non-negative. So
we apply Lemma 17, which gives us the bound:

∥∇ft(wt)∥22 ≤
4n

r̂2
ft(wt)

20
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So, we have:
T∑
t=1

ft(wt)−
T∑
t=1

ft(w) ≤
1

2
+

n

2r̂
log

(
1 +

4

r̂2

T∑
t=1

ft(wt)

)
Now, we apply Lemma 18 with a = n/2r̂, b = 4/r̂2, c = 1, d = 1/2 +

∑T
t=1 ft(w) and

x =
∑T

t=1 ft(wt). So, we have for all w ∈ ∆n:

T∑
t=1

ft(wt)−
T∑
t=1

ft(w) ≤
1

2
+

n

2r̂
log

(
2

(
2n

r̂3
log

(
4n

er̂3

)
+

2

r̂2
+

4

r̂2

T∑
t=1

ft(w) + 1

))

Let w⋆ ∈ argminw∈∆n

∑T
t=1 ft(w) and L⋆

T = minw∈∆n

∑T
t=1 ft(w) =

∑T
t=1 ft(w

⋆). Using w⋆

in the above bound, we have:

RT (w) ≤ R(w⋆) ≤ 1

2
+

n

2r̂
log

(
2

(
2n

r̂3
log

(
4n

er̂3

)
+

2

r̂2
+

4

r̂2
L⋆
T + 1

))

Remark From Equation (3), we can obtain the regret bound RT (w) ≤ 1
2 + n

2r̂ log
(
1 + T

r̂

)
. We

can obtain a similar regret bound for FTAL using Equation (2) and plugging in ϵ = (2T )−1. This
gives: RT (w) ≤ 1

2 + n
2r̂ log

(
1 + T 2

r̂

)
.

Appendix G. Proof of Theorem 12

Let Xt =
∑t

s=1 xsxs and Yt =
∑t

s=1 ysxs.

Theorem 12 For any w ∈ Rn and any sequence of pairs (x1, y1), . . . , (xT , yT ), the iterates of OFTL
(Algorithm 1) with ft(w) =

1
2(x

⊤
t w − yt)

2, mt(w) =
1
2(x

⊤
t w)

2 and D = Rn, satisfy the regret the

inequality
∑T

t=1
1
2(x

⊤
t wt− yt)

2− 1
2(x

⊤
t w− yt)

2 ≤ (maxt y2t )n
2

(
log
(

X 2
TM′2

T

n2(maxt y2t )
+ 1
)
+ 1
)

, Where

X 2
T =

∑T
t=1 ∥xt∥22 and M′2

T =
∑T

t=1 ∥wt − w′
t+1∥22. This implies the regret bound:

≤ (maxt y
2
t )n

2

(
log

(∑T
t=1 ∥xt∥22
n2

(
T∑
t=1

∥xt∥22
σmin(Xt)2

)
+ 1

)
+ 1

)

Proof We use the regret bound from Theorem 1 and ignore the last term as it is non-negative:

RT (w) ≤
T∑
t=1

(∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

≤
T∑
t=1

(∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)
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Since ∇ft(wt) = (x⊤t wt − yt)xt and ∇mt(wt) = (x⊤t wt)xt, the term (∇ft(wt) − ∇mt(wt)) =
−ytxt. The Bregmen term is:

Bgt(w
′
t+1∥wt) =

1

2
(wt − w′

t+1)
⊤Xt(wt − w′

t+1)

=
1

2
(wt − w′

t+1)
⊤(Xt + ϵI)(wt − w′

t+1)−
1

2
∥wt − w′

t+1∥22

Thus, we have:

RT (w) ≤
T∑
t=1

(−ytxt)
⊤(wt − w′

t+1)−
1

2
(wt − w′

t+1)
⊤(Xt + ϵI)(wt − w′

t+1)

+
1

2
ϵ

T∑
t=1

∥wt − w′
t+1∥22

Using the fact that a⊤x− 1
2x

⊤Ax ≤ 1
2a

⊤A−1a when A is a positive definite matrix.

≤ 1

2

T∑
t=1

y2t x
⊤
t (Xt + ϵI)−1xt +

1

2
ϵM′

T
2

≤ (maxt y
2
t )

2

T∑
t=1

xt(Xt + ϵI)−1xt +
1

2
ϵM′

T
2

Using Lemma 14

≤ (maxt y
2
t )n

2
log

(
1 +

∑T
t=1 ∥xt∥22
nϵ

)
+

1

2
ϵM′

T
2

Thus, we have the regret bound:

RT (w) ≤ inf
ϵ>0

(
(maxt y

2
t )n

2
log

(
1 +

∑T
t=1 ∥xt∥22
nϵ

)
+

1

2
ϵM′

T
2

)

Picking ϵ =
n(maxt y2t )

M′
T
2

≤ (maxt y
2
t )n

2
log

(
1 +

X 2
TM′

T
2

n2(maxt y2t )

)
+

(maxt y
2
t )n

2

We can bound M′
T
2 as:

M′
T
2
=

T∑
t=1

∥w′
t+1 − wt∥22 =

T∑
t=1

∥X+
t Yt −X+

t Yt−1∥22 =
T∑
t=1

y2t ∥X+
t xt∥22

≤ (max
t

y2t )
T∑
t=1

∥xt∥22
σmin(Xt)2

22
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So, we have the regret bound:

RT (w) ≤
(maxt y

2
t )n

2

(
log

(∑T
t=1 ∥xt∥22
n2

(
T∑
t=1

∥xt∥22
σmin(Xt)2

)
+ 1

)
+ 1

)
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