
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

K-Spin Ising Model for Combinatorial Optimizations over Graphs:
A Reinforcement Learning Approach

Xiao-Yang Liu1 XL2427@COLUMBIA.EDU

Ming Zhu2,3∗ ZHUMINGPASSIONAL@GMAIL.COM
1Columbia University, New York, NY, USA.
2Institute of Automation, Chinese Academy of Sciences, Beijing, China.
3University of Chinese Academy of Sciences, Beijing, China. *

Abstract
Many graph-based combinatorial optimization (GCO) problems are NP-complete and can be for-
mulated by the Ising model. Reinforcement learning (RL) algorithms are promising due to their
powerful search abilities. The sampling method in RL is the Monte Carlo Markov chain (MCMC),
which collects many samples on a trajectory, while we can only obtain one objective value for a
GCO problem if using the Ising model. In this paper, we propose a K-spin Ising model for GCO
problems, which integrates well with RL algorithms. First, we propose a K-spin Ising model and use
its Hamiltonian as the loss function, which collects samples on trajectories. Second, we give the
K-spin Hamiltonian functions for several GCO problems. Third, we evaluate our RL approach for
the graph maxcut problem on both synthetic and benchmark datasets. Our approach outperforms the
commercial solver Gurobi [2] with a speedup of 100× and 10× in small-scale (100 ∼ 3, 000 nodes)
and large-scale (5, 000 ∼ 10, 000 nodes) graph instances, respectively. On the benchmark dataset,
our approach obtains nearly the same best-known results over five compared methods.

1. Introduction

Motivation: Most graph-based combinatorial optimization (GCO) problems are NP-complete.
Conventional methods include branch-and-bound [5], cutting plane [15], and randomized search
algorithms such as simulated annealing [10]. Many GCO problems can be formulated using the Ising
model [14]. We aim to integrate Ising model with reinforcement learning (RL) and define a loss
function based on this method.
Challenges: First, the sampling method in RL is the Monte Carlo Markov chain (MCMC) [4],
which collects many samples on a trajectory, while we can only obtain an objective value for a GCO
problem if using the Ising model. Second, the performance of existing methods may not be good
especially in large graph instances.
Contributions: In this paper, we propose a K-spin Ising model for GCO problems, which integrates
well with RL algorithms. First, we propose a K-spin Ising model and use its Hamiltonian [13] as the
loss function, that is defined on the sampled trajectories and is MCMC in RL. Therefore the Ising
model and RL are integrated together in our approach. Second, we provide the K-spin Hamiltonian
functions for three GCO problems (graph maxcut, graph partitioning, and minimum vertex cover).
Third, we evaluate the K-spin Ising model based RL approach in the graph maxcut problem on both
synthetic and benchmark datasets, which exhibits powerful ability in solving GCO problems.
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Existing Works: To solve GCO problems, researchers may first formulate it as mixed integer linear
programming (MILP). Then the MILP is relaxed to linear programming (LP), and the simplex
method [17] is used to obtain LP solutions. However, the LP solutions may generally not be all
integers; and therefore, branch-and-bound or cutting plane is used to obtain integer solutions.

Current machine learning methods usually use DRL [11] or supervised/imitation learning methods
[16] to generate policies. DRL methods do not require labels, but supervised/imitation learning
methods do require. Dai et al. [11] proposed an approach to learn greedy algorithms that exploit the
structure of recurring problems, which combines DRL and graph embedding [9]. The solution starts
from a partial solution, and a new node with the maximum Q-value is added iteratively until a whole
solution is obtained. Chen et al. [6] proposed a method to learn a local search for binary optimization
using Monte Carlo policy gradient. Most of them build MDP models for GCO problems and then
use DRL to obtain a policy. The expectation of cumulative rewards may diverge in GCO problems,
which may lead to inaccurate evaluation of actions. Supervised/imitation learning [16] requires the
labels calculated by some other algorithms or solvers, which highly affect the performance.

2. Reinforcement Learning Using K-Spin Ising Model

We show the basic denotations of graphs. Let G = (V,E,w) denote a weighted graph, where V is
the node set, E is the edge set, |V | = N , |E| = M , and w : E → R+ is the edge weight function,
i.e., w(u, v) is the weight of edge (u, v) ∈ E. w(u, v) > 0 if (u, v) is an edge and 0 otherwise.

2.1. Ising Formulation
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Figure 1: Ising model
on a ring.

Consider a 1D Ising model with a ring structure and an external magnetic
field hi, as shown in Fig. 1, there are N nodes with (N +1) = 1 mod N ;
a node i has a spin xi ∈ {+1,−1} (where +1 for up and −1 for down).
Two adjacent sites i and i+ 1 have an energy w(i, i+ 1) or −w(i, i+ 1)
if they have the same direction or different directions, respectively.

The whole system will evolve into the ground state with the minimum
Hamiltonian [8] :

argmin
x

H(x) = −
N∑
i=1

hixi︸ ︷︷ ︸
HA

+ α
N∑
i=1

−w(i, i+ 1)xixi+1︸ ︷︷ ︸
HB

,(1)

where α is a weight, HA is defined on each node’s effect on its own, and
HB is defined on each two adjacent nodes’ interactions.
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Figure 2: Graph maxcut problem, Ising model (left) vs. K-spin Ising model (right).
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We take the graph maxcut problem as an example, which is defined as follows. Given a
graph G = (V,E,w), split V into two subsets V + (with edge set E+) and V − (with edge set
E−), and the the cut set is δ = {(i, j)|i ∈ V +, j ∈ V −}. The goal is to maximize the cut value:
max

∑
(i,j)∈δ w(i, j).

We reformulate graph maxcut using an Ising model, which has the following Hamiltonian:

min
x

H(x) =
∑

(i,j)∈E

w(i, j)xixj =
∑

(i,j)∈E+

w(i, j) +
∑

(i,j)∈E−

w(i, j)−
∑

(i,j)∈δ

w(i, j)

=
∑

(i,j)∈E

w(i, j)− 2
∑

(i,j)∈δ

w(i, j),
(2)

where
∑

(i,j)∈E w(i, j) is a constant, xixj = 1 if (i, j) ∈ E+ or E− and xixj = −1 otherwise.
For an illustrative example in the left graph of Fig. 2, the edge set is E = {(1, 2), (1, 4), (2, 3),

(2, 4), (3, 5)} and the weights are w(1, 2) = w(1, 4) = w(2, 3) = w(2, 4) = w(3, 5) = w(4, 5) = 1.
The edge set of black nodes is E+ = {(1, 4)}, and the edge set of white nodes is E− = ∅. The edges
connect the two subsets are δ = {(1, 2), (2, 3), (2, 4), (3, 5), (4, 5)}. The solution is x ∈ {−1,+1}5
and the Hamiltonian in (1) becomes

min
x

H(x) = x1x2 + x1x4 + x2x3 + x2x4 + x3x5 + x4x5. (3)

2.2. K-spin Ising Formulation

We only present the K-spin Ising formulation for graph maxcut here, while the formulation of the
other problems is moved to Appendix A and B. For the right graph in Fig. 2, we add edges for the
k-th and (k+1)-th iterations. Take node 1 as an example, in the k-th iteration, node 1 connects node
2, so we set node 2 of the (k + 1)-th iteration as the end point denoted by the red dash line; and in
similar, we set node 4 of the (k + 1)-th iteration as the end point denoted by the black dash line. The
1st and 2nd steps have the follow Hamiltonian

min
x

H(x1,x2) = H(x1) +H(x2) + (x1
1x

2
2 + x1

1x
2
4 + x1

2x
2
1 + x1

2x
2
3 + x1

2x
2
4

+ x1
3x

2
2 + x1

3x
2
5 + x1

4x
2
2 + x1

4x
2
5 + x1

5x
2
3 + x1

5x
2
4). (4)

We consider the agent starts from the initial point x1, and moves (K - 1) steps to a new point xK .
In each two consecutive steps, we use edges to connect their nodes and add weights for them. The
weights decrease with iterations by a discount factor γ ∈ (0, 1]. In this way, we obtain the generic
K-spin Ising model, and the Hamiltonian is:

min
x1,··· ,xK

H(x1, · · · ,xK) =

K∑
k=1

H(xk) + βHC(x
1, · · · ,xK),

=

K∑
k=1

HA(x
k) + α

K∑
k=1

HB(x
k) + βHC(x

1, · · · ,xK), (5)

where β is a weight, and HC(x
1, · · · ,xK) is a new term that measures the interactions along two

successive iterations:

HC(x
k−1,xk) = −

∑
i∈V k−1

∑
j∈V k

Jk
i,jx

k−1
i xk

j , (6)
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Algorithm 1: Reinforcement Learning Using K-Spin Ising Model

Input: L (number of epochs), M (number of trajectories), T (length of a trajectory), η (learning rate)
K (number of steps in K-spin Ising model, K < T )
Training: train policy network πθ

01: Build policy network πθ and randomly initialize it;
02: for epoch l = 1, . . . , L
03: for m = 1, . . . ,M
04: Randomly generate a binary vectors, x1

l,m;
05: for t = 2, . . . , T

06: p = πθ(x
t−1
l,m );

07: Obtain xt
l,m by sampling based on Bernoulli(p);

08: Calculate HA(xt
l,m), HB(xt

l,m), and HC(xt−1
l,m ,xt

l,m);
09: if t ≥ K

10: Calculate HC(xt−K
l,m , · · · ,xt

l,m) by (7);
11: Calculate Hamiltonian Ht

l,m(θ) of K-spin Ising model by (5);
12: θ = θ + η∇θ

1
M(T−K+1)

∑M
m=1

∑T
t=K Ht

l,m(θ);
Testing:
13: Initialize a binary vector x;
14: Obtain probability vector: p = πθ(x);
15: for t = 1, . . . , T
16: xt = Bernoulli(p)
17: return xT ;
Output: xT .

and

HC(x
1, · · · ,xK) =

K∑
k=2

HC(x
k−1,xk), (7)

where Jk
i,j = γk−1w(i, j).

2.3. Proposed Algorithm

We use policy gradient methods instead of Q-function based methods such as DQN [18] and PPO
[20] for two reasons. First, the cumulative rewards may diverge in GCO problems. Second, the
Q-function is the mathematical expectation of the cumulative rewards, and therefore is not well
defined and may not exist.

The pseudocode of our algorithm is shown in Alg. 1. We use Bernoulli(p) to denote the Bernoulli
distribution with probability vector p. Lines 1 ∼ 12 show the training stage, and lines 13 ∼ 17 show
the testing stage.

First, we describe the training stage. Line 1 initializes the policy network. Lines 2 and 3 mean
that there are L epochs and M trajectories. Line 4 generates an initial solution (binary vector). Line
5 means the length of the sampling trajectory is T . Lines 6 and 7 obtains the probability vector p
and the new solution xt

l,m by sampling which follows the Bernoulli distribution, respectively. Line 8
∼ 11 calculate the Hamiltonian. Line 12 updates the parameters of the policy network.

Second, we describe the testing stage. Line 13 generates an initial solution (binary vector). Line
14 obtains a probability vector. Line 15 means that there are T steps for obtaining a new solution.
Line 16 obtains a solution by sampling based on Bernoulli distribution. Line 17 returns the new
solution.
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Table 1: Results for graph maxcut on synthetic instances
Nodes Edges Ours Gurobi Improvement Speedup
100 460 336 (4s) 336 (494s) +0% 123.50×
300 2036 1419 (7s) 1405 (3600s) +1.00% 514.29×
500 3624 2508 (7s) 2477 (3600s) +1.25% 514.29×
700 4036 2896 (9s) 2862 (3600s) +1.19% 400.00×
900 5122 3690 (10s) 3600 (3600s) +2.50% 360.00×
1000 6368 4497 (11s) 4447 (3600s) +1.12% 327.27×
3000 25695 17340 (35s) 17123 (3600s) +1.13% 102.86×
5000 50543 33308 (60s) 30081 (3600s) +10.73% 60.00×
7000 79325 51648 (92s) 46514 (3600s) +11.04% 39.13×
9000 96324 61121 (109s) 58066 (3600s) +10.80% 33.03×
10000 100457 66337 (123s) 59694 (3600s) +11.13% 29.27×
20000 205364 134824 (211s) − (3600s) − −

Table 2: Results for graph maxcut on the Gset dataset.
Graph Nodes Edges BLS DSDP KHLWG RUN-CSP PI-GNN Ours Improvement
G14 800 4694 3064 - 2922 3061 2943 3064 +0%
G15 800 4661 3050 2938 3050 2928 2990 3050 +0%
G22 2000 19990 13359 12960 13359 13028 13181 13359 +0%
G49 3000 6000 6000 6000 6000 6000 5918 6000 +0%
G50 3000 6000 5880 5880 5880 5880 5820 5880 +0%
G55 5000 12468 10294 9960 10236 10116 10138 10242 −0.51%
G70 10000 9999 9541 9456 9458 - 9421 9530 −0.12%

3. Performance Evaluation

We implement our RL approach on a DGX-2 server with NVIDIA A100 GPUs. We only show the
results of graph maxcut here. Table 1 shows the result on synthetic data with the number of nodes
from 100 to 20, 000. We compare our approach with the SOTA solver Gurobi [2], and its time limit is
set to 1 hour. For the instances with 100 ∼ 3, 000 nodes, our approach has a little better performance
than Gurobi with the speedup of 100× ∼ 500×. For the instances with 5, 000 ∼ 10, 000 nodes, the
performance of our approach is about 10% better than Gurobi. For the instances with 20, 000 nodes,
Gurobi cannot obtain any solution, but our approach obtains solutions within 4 minutes.

Table 2 presents results of our RL approach and 5 compared approaches in seven instances from
Gset [1]. The compared methods include, SDP (DSDP) [7], breakout local search (BLS) [3], Tabu
search (KHLWG) [12], recurrent GNN (RUN-CSP) [21], and physical-inspired GNN (PI-GNN)
[19]. Compared to the best-known solution, our approach has the same performance in the first five
instances, and has a little worse performance in the last two instances (G55 and G70).

4. Conclusion and Future Works

In this paper, we propose a K-spin Ising model for graph-based combinatorial optimizations (GCO).
These problems are formulated by K-spin Ising model. We provide a novel loss function, the
Hamiltonian of the K-spin Ising model. Experimental results show that our approach achieves good
performance on both synthetic and benchmark datasets. We only implemented this method in the
graph maxcut problem, and the implementation for other problems is not finished until now. While
we provided the implementation process for them, including the Ising and K-spin Ising formulations
in Appendix A and B. Implementing them will be future works.
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Appendix A. Problem Formulation for Graph Partitioning

Given a graph G with an even number N = |V | of nodes, partition V into two subsets (V + and V −)
of equal size N/2 such that the number of edges connecting the two subsets is minimized.

We consider a node i ∈ V , and let xi be a binary variable with +1 denoting in the subset V + and
-1 denoting in the subset V −. The Hamiltonian is

HA =

(∑
i

xi

)2

, (8)

HB =
∑

(i,j)∈E

1− xixj
2

=
∑
i<j

w(i, j)
1− xixj

2
. (9)

The 1st and 2nd steps of K-spin Ising formulation for graph partitioning have the follow Hamil-
tonian

min
x

H(x1,x2) = H(x1) +H(x2) + β
∑
i<j

w(i, j)
1− x1ix

2
j

2
. (10)

Appendix B. Problem Formulation for Minimum Vertex Cover

Given a graph G, find the smallest number of vertices that can be colored such that every edge is
incident to a colored vertex.

We consider a vertex i, and let xi be a binary variable with 1 denoting the vertex is colored and 0
otherwise. The Hamiltonian is

HA =
∑
i

xi, (11)

HB =
∑

(i,j)∈E

(1− xi)(1− xj) =
∑
i<j

w(i, j)(1− xi)(1− xj). (12)

k k+1
1

2

3 1

2

3 1

2

3

Figure 3: Minimum vertex cover problem, Ising model (left) vs. K-spin Ising model (right).

In Fig. 3, the selected vertices (vertex 1 and 2) are colored as black. The 1st and 2nd steps of
K-spin Ising formulation for minimum vertex cover have the follow Hamiltonian

min
x

H(x1,x2) = H(x1) +H(x2) +
∑
i<j

w(i, j)(1− x1i )(1− x2j ). (13)
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