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Abstract
In this paper, we extend the connection between linear programming formulations of MDPs and
policy gradient methods for infinite horizon MDPs presented in [20] to finite horizon MDPs. The
main tool we use for this extension is a reduction from optimization formulations of finite horizon
MDPs to infinite horizon MDPs. Additionally, we show using a reparameterization argument that
the KKT conditions for the non-convex policy optimization problem for the finite horizon setting
are sufficient for global optimality. Further, we use the reduction to extend the Quasi-Newton
policy gradient algorithm of [13] to the finite horizon case and achieve performance competitive
with value iteration by exploiting backward induction for policy evaluation. To our knowledge, this
serves as the first policy gradient-based method for finite horizon MDPs that is competitive with
value iteration-based approaches.

1. Introduction

There are two main approaches to finding the optimal policy of a Markov Decision Process (MDP).
The first approach essentially involves fixed point iterations of the Bellman equation [2] like value
iteration, policy iteration, and Q learning [3, 4, 14]. The second approach leverages optimization
formulations of the MDP problem to develop algorithms to find the optimal policy or value function
by solving an optimization problem, which is usually a linear program or a convex program with
entropic regularization [15, 16, 18]. A complete summary of the optimization formulations for
infinite horizon MDPs and the connection to policy gradient approaches can be found in [20].

The focus of most of the prior work has been on the infinite horizon case. Optimization formu-
lations for finite horizon MDPs have received lesser attention primarily due to the effectiveness of
applying backward induction to directly obtain the optimal value function in a finite number of iter-
ations. Prior work [5, 6] develops linear programming formulations for the finite horizon case, but
the discussion does not include the regularized setting, nor does it link to policy optimization. How-
ever, recent advances in Quasi-Newton policy gradient-based approaches [11, 12] motivate studying
this class of techniques in the finite horizon setting. In this article, we present LP formulations for
the finite horizon MDP in a style similar to [20], and link these LPs to the policy optimization prob-
lem. We further show global optimality for the regularized problem, and apply the Quasi-Newton
policy gradient method of [13] to obtain a policy gradient-based method for finite horizon MDPs.
By using backward induction for policy evaluation, we significantly improve the performance of the
policy gradient algorithm. We summarize our contributions below.
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Contributions

• In Section 3, we present equivalences between the primal, dual, and policy optimization for-
mulations of the finite horizon MDP in both the unregularized and regularized settings. The
main tool to show these equivalences is a reduction from the finite horizon MDP to the infinite
horizon MDP, which allows us to extend the corresponding equivalences in [20] to the finite
horizon case.

• In Section 4, we show that the KKT conditions for the non-convex policy optimization prob-
lem for the finite horizon MDP are sufficient for optimality. As a consequence, we conclude
that locally optimal policies are also globally optimal.

• In Section 5, we apply the Quasi-Newton policy gradient method from [13] for the finite
horizon MDP via the reduction to the infinite horizon case. We improve the algorithm by
using backward induction for the policy evaluation step, which is much faster than a matrix
inversion. Since this method requires roughly a constant number of interations to converge (5-
6), this is the first policy gradient-based approach for finite horizon MDPs that is competitive
with direct backward induction.

2. Notation and Preliminaries

A finite horizon Markov decision processM with discrete state and action space is characterized
byM = (S,A, T, P, r, g,γ), where S is the discrete state space, with each state denoted by s; A
is the discrete action space, with each action denoted by a; T is the finite time horizon; P a,t is
a probability transition matrix for each action a ∈ A and each timestemp 0 ≤ t < T . We use
P a,t
s→s′ to denote the probability of transitioning from state s to s′ if action a is taken at timestep

t. r ∈ R|S|(T−1)×|A| is the matrix of rewards where ra(s,t) denotes the reward for taking action a

in state s at timestep t (we use the indexing shorthand of r(s,t) to denote r(s+t·|S|)). g ∈ R|S| is
the vector of terminal rewards where gs denotes the reward for reaching state s at the final time T .
γ ∈ [0, 1] is the discount factor. We denote by ∆ the probability simplex over the space of actions,

∆ :=

{
η ∈ R|A| :

∑
a∈A

ηa = 1, ηa ≥ 0 ∀a ∈ A
}
.

A policy π is a set of probability distributions over the action space indexed by the state s and also
the timestep 0 ≤ t < T . We denote by πa

(s,t) the probability of taking action a under policy π when
in state s at timestep t. For notational convenience, we still treat π as a second-order tensor, with
dimension |A| × |S| (T − 1). We again use the notation π(s,t) as shorthand for π(s+|S|∗t). We use
this indexing shorthand throughout the paper. The set of all valid policies is therefore ∆|S|(T−1).
Note that both the policy π and transition probabilities P are non-stationary and can depend on the
timestep t.

We now introduce policy-averaged quantities – the transition matrix P π,t under policy π and
the reward rπ under policy π:

P π,t
s→s′ :=

∑
a∈A

P a,t
s→s′π

a
(s,t), and rπ(s,t) :=

∑
a∈A

ra(s,t)π
a
(s,t).
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P π,t
s→s′ denotes the probability of transitioning from state s to state s′ at timestep t under policy π,

and rπ(s,t) denotes the expected reward at state s and timestep t under policy π.
The value function vπ for an MDP under policy π is defined as the expected future cumulative

reward starting from a state s at timestep t and taking actions under policy π,

vπ(s,t) := E

[
γT−tgsT +

T−1∑
k=t

γk−trak(sk,k) | st = s

]
, (1)

where the randomness in the expectation is from ak ∼ π(sk,k) and sk+1 ∼ P ak,k
sk→∗ for t ≤ k < T .

Note that vπ(s,T ) = gs for all policies π. The goal of the finite horizon MDP problem is to find a
policy that maximizes the value function of all states at all timesteps 0 < t ≤ T . For convenience,
we define the following block quantities – P̃a ∈ R|S|(T−1)×|S|(T−1) and ga ∈ R|S|·(T−1) as

P̃a :=


0 P a,0 0 . . . 0
0 0 P a,1 . . . 0
...

...
. . . . . .

...
0 . . . . . . 0 P a,T−2

0 . . . . . . 0 0

 and ga :=


0
0
...

P a,T−1g

 .

The quantity ga can be thought of as a reward correction term, which adds the expected terminal
reward in the final step T to the reward at timestep T − 1 if action a is always taken at timestep
T − 1. Additionally, we define Ka := I − γP̃a. Note that Ka is also a square matrix of size
|S| (T − 1). Finally, we define the negative conditional entropy for a non-negative vector ρ ∈ R|A|

+

as h (ρ) :=
∑

a∈A ρa log ρa∑
b∈A ρb

. Note that this function is strictly convex on the simplex.

3. Main Results

We first present the main equivalences between optimization problems for the unregularized finite
horizon MDP in Theorem 1, which are extensions of the equivalences for the infinite horizon case
(Theorems 2.1 and 2.2 of [20]).

Theorem 1 For a finite horizon MDPM, the following optimization formulations are equivalent.

Primal min
v∈R|S|·(T−1)

eT v, s.t. Kav ≥ ra + γga ∀a ∈ A, (2)

Dual max
µ∈R|A|×|S|·(T−1)

+

∑
a∈A

(µa)T (ra + γga) , s.t. e =
∑
a∈A
KT

a µ
a, (3)

Policy Opt max
π∈∆|S|·(T−1)

eT vπ, s.t. Kπv
π = rπ + γgπ, (4)

where e ∈ R|S|(T−1)
++ is a fixed vector with positive entries.

Analogously, we present equivalences for the regularized case as extensions to Theorems 3.1
and 3.2 of [20].
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Theorem 2 For an entropy regularized finite horizon MDPM, the following optimization formu-
lations are equivalent.

Primal min
v∈R|S|·(T−1)

eT v, s.t. v ≥ β−1 log

(∑
a∈A

expβ
[
ra + γga + γP̃av

])
, (5)

Dual max
µ∈R|A|×|S|·(T−1)

+

∑
a∈A

(µa)T (ra + γga)− β−1
∑

s∈S,0≤t<T

h
(
µ(s,t)

)
, s.t. e =

∑
a∈A
KT

a µ
a,

(6)

Policy Opt max
π∈∆|S|·(T−1)

eT vπ, s.t. Kπv
π = rπ + γgπ − β−1hπ. (7)

where β is the regularization coefficient and e ∈ R|S|(T−1)
++ is a fixed vector with positive entries.

An important observation to highlight is that the policy optimization problems (4) and (7) are non-
convex, while the primal and dual problems are convex. The main tool we use to prove Theorems 1
and 2 is a reduction from the finite horizon MDPM to an infinite horizon MDP M̃ that we present
below as Theorem 3. Note that [6] presents a similar reduction, but in the setting without a terminal
reward g .

Theorem 3 Given a finite horizon MDP M = (S,A, T, P, r, g,γ), we can construct an infinite

horizon MDP M̃ =
(
S̃,A, P̃ , r̃, γ

)
such thatM and M̃ have identical primal LP formulations

where:

• S̃ has size |S| (T − 1) + 1 with T − 1 groups of |S| states, each corresponding to the state of
the finite horizon MDP at a particular timestep, along with one additional terimnal state.

• The transition matrices and rewards are defined as

P̃ a :=



0 P a,0 0 . . . 0 0
0 0 P a,1 . . . 0 0
...

...
. . . . . .

...
...

0 . . . . . . 0 P a,T−2 0
0 . . . . . . 0 0 1|S|
0 . . . . . . 0 0 1


and r̃ :=


ra(∗,0)
ra(∗,1)

...
ra(∗,T−1) + γP a,T−1g

0

 .

We present here a rough proof sketch for Theorem 3. A detailed proof can be found in the appendix.
The transition probabilities are the natural probabilities from the finite horizon MDP, except for the
final step which always goes into the terminal absorbing state. The final step transition probabilities
P a,T−1 instead show up in the reward definition. The reward for taking action a in state s in group
St is naturally defined to be ra(s,t) for 0 ≤ t < T − 1. The major difference is in the rewards for
taking an action in the final group ST−1 which is defined as ra(s,T−1)+γ

(
P a,T−1g

)
s
. The additional

correction term to the reward can be interpreted as adding in the average contribution of the terminal
reward g of taking action a at timestep T − 1 in state s. Note that if g = 0, this correction would
also be 0. Finally, we also define the reward of taking any action at the terminal absorbing state to
be 0.

Theorems 1 and 2 directly follow by applying the reduction Theorem 3 to Theorems 2.1 and 2.2
and Theorems 3.1 and 3.2 of [20] respectively. For completeness, we detail the full proofs in the
appendix.
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4. Global Optimality

In section 3, we showed that the non-convex policy optimization formulation for a finite horizon
MDP is equivalent to a linear program. As a consequence, one would expect that the policy opti-
mization problem possesses some structure that allows us to characterize optimal policies. This is
formalized in the following result.

Theorem 4 The KKT conditions for the non-convex policy optimization problem (4) are sufficient
for optimality.

A rough proof sketch is as follows. The equivalence between (3) and (4) is shown via a non-
degenerate reparameterization of the dual LP from µ to π ∈ ∆|S|·(T−1) and a weight variable
w ∈ R|S|·(T−1)

+ . Specifically, the policy π is equivalent to the normalized dual variables µ, and
w are the normalizing constants. The constraints in the problem allow the weight variable to be
eliminated, resulting in the final policy optimization problem (4). Since the reparameterization is
non-degenerate and invertible, KKT points of the dual LP map to KKT points of the intermediate
problem and consequently the policy optimization problem. Since KKT conditions are sufficient
for LPs, the result follows. We present a similar result for the regularized case.

Theorem 5 The KKT conditions for the non-convex regularized policy optimization problem (7)
are sufficient for optimality.

The proof is almost identical to the proof of Theorem 4, but we use the fact that (6) is a convex
problem (since h is a strictly convex function) to conclude that the KKT conditions for the reparam-
eterizated problem are sufficient.

Note that the KKT conditions are necessary for optimality for general constrained optimization
problems, but few classes of problems also enjoy sufficiency of these conditions, like convex prob-
lems that satisfy certain regularity conditions or linear programs like the dual LP formulation (3).
This result shows the sufficiency of the KKT conditions for a non-convex problem by effectively
lifting into a higher space and then performing a non-degenerate reparameterization that results in a
linear program in the unregularized case and a convex program in the regularized case.

5. Quasi-Newton Policy Gradient

Using the reduction presented in section 3 Theorem 3, we can apply the Quasi-Newton Policy
Gradient Algorithm (Algorithm 2.1 in [13]) to the finite horizon MDP, by using P̃ a as the state
transition matrix for the infinite horizon MDP. This algorithm uses the diagonal of the policy Hessian
to precondition policy gradient steps, which leads to quadratic convergence to the optimal policy.
Details of the algorithm can be found in [13]. A summary of the convergence for a synthetic finite
horizon MDP can be found in Section 5.1.

Since the MDP is a finite horizon MDP, the policy evaluation step, which is line 6 in Algorithm
2.1 of [13], can be performed more efficiently via backward induction (Algorithm 1) instead of
solving a linear system (see [2] for a detailed treatment of dynamic programming and backward
induction). This takes O(|S|2 (T−1)) time compared to solving the system which would take O(n3)
time where n = |S| (T − 1) is the size of the transition matrix. We additionally observe empirically
that the algorithm converges in very few Newton steps, effectively requiring only a constant number
of calls to the backward induction routine in Algorithm 1. Therefore, this policy gradient-based
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algorithm is competitive with the direct value iteration approach for finding the optimal policy.
We summarize the modified Quasi-Newton Policy Gradient algorithm for finite horizon MDPs in
Algorithm 2.

Algorithm 1 Backward Induction for Policy Evaluation in a Regularized Finite Horizon MDP

Input: Finite Horizon MDPM with entropy regularization β, input policy π ∈ ∆|S|·(T−1).
Output: Value function under policy π, that we denote vπ ∈ R|S|·(T−1).

1: Set vπ(s,T ) ← gs ∀s ∈ S.
2: Initialize t← T − 1.
3: while t ≥ 0

4: Set vπ(s,t) ←
∑

a π
a
(s,t)

(
ra(s,t) + γ

∑
s′ P

a,t
s→s′v

π
(s′,t+1)

)
− β−1h

(
π(s,t)

)
∀s ∈ S.

5: Update t← t− 1.
6: end
7: return v∗

Algorithm 2 Quasi-Newton Policy Gradient for Finite Horizon MDPs

Input: Finite Horizon MDP M with entropy regularization β, initial policy πinit ∈ ∆|S|·(T−1),
learning rate η, convergence threshold ϵtol.

Output: Estimate of the optimal policy π̂ ∈ ∆|S|·(T−1).
1: Construct the infinite horizon MDP M̃ fromM according to the reduction in Theorem 3.
2: Obtain π̂ by runnning Algorithm 2.1 from [13] on input M̃, πinit, η, ϵtol, with the policy evalu-

ation step (line 6) replaced by Algorithm 1.
3: return π̂

5.1. Experimental results

We implement Algorithm 2 on synthetic MDPs similar to the experiments conducted by [13]. In
Section 5.1, we use a finite horizon MDP with 100 states, 50 actions, and a time horizon of T = 10
steps. For each state, the transition probabilities for σ fraction of target states are chosen uniformly
at random. The transition probabilities for the remaining 1 − σ fraction of transitions are set to
0. The rewards are chosen as rt(s,a) = UsU(s,a) where Us and U(s,a) are sampled uniformly at
random from [0, 1]. We use a regularization coefficient of 0.001. This is similar to the setup used by
[13]. We observe from the results in Section 5.1 that 6 iterations of the Quasi-Newton method are
sufficient for convergence. Therefore, this empirically shows that Algorithm 2 is competitive with
direct backward induction.

6. Conclusion

In this work, we derive equivalences between primal, dual, and policy optimization formulations
for finite horizon MDPs along similar lines as [20]. The main technique development is a reduction
from the finite horizon MDP to the infinite horizon MDP that allows us to immediately obtain the
equivalences from the results of [20]. We exploit these equivalences to prove sufficiency of the KKT
conditions for the non-convex policy optimization problem in both unregularized and regularized
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Figure 1: Convergence of Quasi-Newton policy gradient (Algorithm 2) for a synthetic finite hori-
zon MDP with |S| = 100, T = 10 and |A| = 50, for different values of the sparsity
parameter σ in the MDP transition matrix. The figure on the right plots the quantity
log |log |policy error|| vs iteration count. For quadratic convergence, this plot should be
parallel to a line with slope log 2, which is what we roughly observe.

settings. Additionally as a consequence of the reduction, we develop the first policy gradient-based
optimization algorithm that is competitive with direct backward induction for finite horizon MDPs
by applying the Quasi-Newton approach introduced in [13], with faster policy evaluation via back-
ward induction.

An interesting avenue of future work is to connect this analysis to the study of policy gradient
flow for finite horizon stochastic optimal control [21] in the continuous setting, perhaps by taking a
limit of the timesteps in the finite horizon MDP analysis. Additionally, further specializing policy
gradient-based approaches to surpass backward induction for finite horizon MDPs is also a direction
for future work.
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Appendix A. Related Work

LP Formulations of MDPs Linear programming formulations of MDPs have received much at-
tention in the literature [10, 15, 16]. The primary benefit of these formulations is to use approximate
LP solvers to obtain significant speedups over traditional value iteration-based methods. [7] extend
this discussion to the non-stationary but infinite horizon setting. The finite horizon setting, however,
has received much lesser attention. [5, 6] formulate LPs for the finite horizon setting, but their dis-
cussion is limited to LP solvers and does not connect to policy gradient. Additionally, they do not
study the regularized setting.

Policy Gradient Methods Policy gradient methods [9, 17, 19] are a popular class of algorithms
for reinforcement learning owing to their empirical efficacy, flexibility in dealing with large state
and action spaces, and amenability with function approximation. However, much of the progress
in this class of algorithms has been empirically motivated, and the theory behind these algorithms
lags behind significantly. In the context of infinite horizon MDPs, [1] have developed convincing
theories with regards to convergence rates, sample complexities, and approximation guarantees of
policy gradient under tabular and parameteric settings. However, the theory behind policy gradi-
ent for finite horizon MDPs is much more limited. [8] present policy gradient methods for finite
horizon-constrained MDPs, and much of their theory is focused on constraint analysis.

Appendix B. Proofs of Theoretical Results

B.1. Proof of Theorem 3

Proof LetM and M̃ be as in the theorem. The primal LP formulation of the infinite horizon MDP
M̃ (for example, see eq. (2.2) of [20]) is:

min
v∈R|S|·(T−1),vend

∑
s∈S,0≤t<T

e(s,t)v(s,t) + eendvend (8)

subject to:
ra(∗,0)
ra(∗,1)

...
ra(∗,T−1) + γP a,T−1g

0

 ≤


I −γP a,0 0 . . . 0 0
0 I −γP a,1 . . . 0 0
...

...
. . . . . .

...
...

0 . . . . . . I −γP a,T−2 0
0 . . . . . . 0 I −γ1|S|
0 . . . . . . 0 0 1




v(∗,0)
v(∗,1)

...
v(∗,T−1)

vend

∀a ∈ A.

where vend corresponds to the value function at the additional terminal state, and e and eend are
positive. Note that v is the value function for the infinite horizon MDP in this problem. The final
row of the constraint is simply vend ≥ 0, while the remaining constraints can be succinctly written
as

ra + γga ≤ Kav − γvend


0
...
0

1|S|

 ∀a ∈ A. (9)
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These constraints directly imply that v∗end = 0. To see why, assume for the sake of contradiction
that v∗end > 0. Since it is feasible, it must satisfy the remaining constraints (9). Therefore, vend = 0
must also be feasible. But the objective value is necessarily smaller by taking vend = 0, so we arrive
at a contradiction. Consequently, v∗end must be 0. As a result, we recover the primal LP for the finite
horizon problem (2) by eliminating vend from (8), and this completes the proof.

B.2. Proof of Theorem 1

Proof The statement directly follows by first applying the reduction in Theorem 3, and then using
Theorems 2.1 and 2.2 from [20] on the resulting infinite horizon MDP. The resuling dual and policy
optimization problems are exactly (3) and (4). For completeness, we present a direct proof of the
equivalences below, without needing to appeal to the reduction.

We follow a similar presentation to [20] but derive the LP formulations for the finite horizon
MDP instead. Note that much of the derivation is identical, except for the fact that the value function,
policy, averaged reward, and transition probabilities are now also indexed by the timestep along with
the state, effectively multiplying the state space by a factor of the time horizon T . We begin with the
Bellman optimality equation for the optimal value function of an MDP with a finite state horizon.

v∗(s,t) = max
a∈A

[
ra(s,t) + γ

∑
s′∈S

P a,t
s→s′v

∗
(s,t+1)

]
∀s ∈ S, 0 ≤ t < T, (10)

v∗(s,T ) = gs ∀s ∈ S.

Note that the primary differences between this and the Bellman optimality equation for the
infinite horizon case is the presence of the boundary condition on v∗(s,T ), and the t + 1 index in
the recursive term. We turn to a linear programming characterization of the optimal value function
that is equivalent to the Bellman optimality equation for the finite horizon MDP. This equivalence
is known and derived in [16] for example. The optimal value function v∗ is the solution to the
following LP

min
v∈R|S|·T

∑
s∈S,0≤t≤T

e(s,t)v(s,t) (11)

subject to:

v(s,t) ≥ ra(s,t) + γ
∑
s′∈S

P t,a
s→s′v(s′,t+1) ∀s ∈ S, ∀a ∈ A, 0 ≤ t < T

v(s,T ) = gs ∀s ∈ S,

where e ∈ R|S|(T−1) is an arbitrary positive fixed weight vector. In matrix notation, it takes the
simpler form (2)

min
v∈R|S|·(T−1)

eT v

subject to:

Kav ≥ ra + γga ∀a ∈ A.

11
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Next, we introduce a matrix of dual variables µ ∈ R|A|×|S|·(T−1)
+ corresponding to each of the

inequality constraints in (2). The Lagrangian L takes the form

L (v, µ) =
∑

s∈S,0≤t<T

e(s,t)v(s,t) +
∑

s∈S,0≤t<T,a∈A
µa
(s,t)

[
ra(s,t) + γ

∑
s′∈S

P a,t
s→s′v(s′,t+1) − v(s,t)

]
(12)

=
∑

s∈S,0≤t<T

e(s,t) −
∑
a∈A

µa
(s,t) + γ

∑
s′,a

µa
(s′,t−1)P

a,t−1
s′→s

 v(s,t) +
∑

s∈S,0≤t<T,a∈A
µa
(s,t)r

a
(s,t)

+
∑

s∈S,a∈A

(
µa
(s,T−1) · γ

∑
s′∈S

P a,T−1
s→s′ v(s′,T )

)
.

In the second step above, we collected terms that multiply a factor of v(s,t) for a given state s and
timestep t. This explicitly shows that the Lagrangian is an affine function of the primal variables v.
We can write the Lagrangian succinctly in matrix notation as follows:

L (v, µ) = eT v +
∑
a∈A

(µa)T
(
ra + γga −

(
I − γP̃a

)
v
)

(13)

=

(
e−

∑
a∈A

(
I − γP̃ T

a

)
µa

)T

v +
∑
a∈A

(µa)T (ra + γga) .

Again, we explicitly write the Lagrangian in two forms where it is clear that it is an affine function of
both µ and v. The primal-dual problem is then simply the following min-max optimization problem

max
µ∈R|A|×|S|·(T−1)

+

min
v∈R|S|·(T−1)

L (v, µ) . (14)

To obtain the dual LP of (2), we explicitly solve the inner minimization of the primal-dual formula-
tion (14). As we noted earlier, L is an affine function of v. Therefore, its minimum is −∞ unless
the linear coefficient in front of v is 0. We can find this coefficient by taking a gradient,(

∂L
∂v

)
s,t

= e(s,t) −
∑
a∈A

µa
(s,t) + γ

∑
s′∈S,a∈A

µa
(s′,t−1)P

a,t−1
s′→s ∀s ∈ S, 0 ≤ t < T. (15)

Where we have implicitly defined µ∗
(∗,−1) = 0 for notational convenience. Observe that the states

indexing the transition probability have switched (indicated in red). This subtle difference is im-
portant and will play a crucial role in the connection to the policy optimization formulation. The
optimal value of the inner minimization is simply the affine constant in the expression of L. This is
equal to

∑
s∈S,0≤t<T,a∈A µa

(s,t) · ra(s,t)+
∑

s∈S,a∈A µa
(s,T−1) ·γ

∑
s′∈S P a,T−1

s→s′ gs′ . Solving the inner

12
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problem, we obtain the dual LP,

max
µ

∑
s∈S,0≤t<T,a∈A

µa
(s,t) · ra(s,t) +

∑
s∈S,a∈A

(
µa
(s,T−1) · γ

∑
s′∈S

P a,T−1
s→s′ gs′

)
(16)

subject to:

µ ≥ 0,

e(s,t) =
∑
a

µa
(s,t) − γ

∑
s′,a

µa
(s′,t−1)P

a,t−1
s′→s ∀s ∈ S, 0 ≤ t < T.

Again, we simplify the presentation by rewriting in matrix notation. First, we can write the equality
constraints as a single vector constraint as follows


e(∗,0)
e(∗,1)

...
e(∗,T−1)

 =
∑
a∈A


I 0 0 . . . 0

−γ
(
P a,0

)T
I 0 . . . 0

0 −γ
(
P a,1

)T
I . . . 0

...
...

. . .
...

...
0 0 . . . −γ

(
P a,T−2

)T
I




µa
(∗,0)

µa
(∗,1)
...

µa
(∗,T−1)

 .

The probability transition matrices appear transposed precisely because of the switch in the indices
s′ and s that we highlighted previously. Notice that the block matrix in the sum is exactly equal to
KT

a . Therefore, the dual LP in matrix form can be succinctly written as

max
µ∈R|A|×|S|·(T−1)

+

∑
a∈A

(µa)T (ra + γga)

subject to:

e =
∑
a∈A
KT

a µ
a,

which is exactly (3).
Finally, we prove the equivalence between the dual LP (3) and the policy optimization for-

mulation. To do this, we first introduce an intermediate optimization problem by applying a non-
degenerate reparameterization to the dual problem (3). Specifically, we apply the transformation
(w, π) = T (µ), where w ∈ R|S|·(T−1)

+ and π ∈ ∆|S|·(T−1). Note that the total number of effective
variables is the same – w is |S| (T − 1) variables and π can be described by |S| (T − 1) · (|A| − 1)
due to the simplex constraint, resulting in a total of |S| (T − 1) |A| variables, which is the same as
µ ∈ R|A|×|S|·(T−1)

+ . The transformation T is given by:

w(s,t) =
∑
a∈A

µa
(s,t) and πa

(s,t) =
µa
(s,t)

w(s,t)
. (17)

It is easy to see that for w > 0, this transformation is invertible and differentiable, and is therefore
non-degenerate. The optimization problem that results from applying this reparameterization to the

13
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dual problem (3) is (after expanding out matrices in terms of indices),

max
π,w

∑
s∈S,0≤t<T,a∈A

w(s,t)π
a
(s,t)r

a
(s,t) +

∑
s∈S,a∈A

(
w(s,T−1)π

a
(s,T−1) · γ

∑
s′∈S

P a,T−1
s→s′ gs′

)
(18)

subject to:

w ≥ 0,

π ∈ ∆|S|·(T−1) ∀s ∈ S, 0 ≤ t < T,

e(s,t) =
∑
a

w(s,t)π
a
(s,t) − γ

∑
s′,a

w(s′,t−1)π
a
(s′,t−1) · P

a,t
s′→s ∀s ∈ S, 0 ≤ t < T.

Simplifying the objective, we get

∑
s∈S,0≤t<T,a∈A

w(s,t)π
a
(s,t)r

a
(s,t) +

∑
s∈S,a∈A

(
w(s,T−1)π

a
(s,T−1) · γ

∑
s′∈S

P a,T−1
s→s′ gs′

)
= wT rπ + γ

(
w(∗,T−1)

)T
P π,T−1g

= wT (rπ + γgπ) .

Similarly, the constraint simplifies to

e(s,t) = w(s,t) − γ
∑
s′,a

w(s′,t−1)π
a
(s′,t−1)P

a,t
s′→s

= w(s,t) − γ
∑
s′

w(s′,t−1)P
π,t−1
s′→s

=⇒ e = KT
πw.

Now, we recall the Bellman equation for a finite horizon MDP to describe the value function under
the policy given by π,

vπ(s,t) =
∑
a

πa
(s,t)

(
ra(s,t) + γ

∑
s′

P a,t
s→s′v

π
(s′,t+1)

)
∀s ∈ S, 0 ≤ t < T. (19)

We can simplify this to,

vπ(s,t) = rπ(s,t) + γ
∑
s′

P π,t
s→s′v

π
(s′,t+1)

=⇒ rπ(s,t) = vπ(s,t) − γ
∑
s′

P π,t
s→s′v

π
(s′,t+1).

In matrix notation, this becomes

rπ = Kπv
π − γgπ

=⇒ rπ + γgπ = Kπv
π.

14
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Therefore, we can eliminate the weight variable from the reparameterization of the LP to get the
following optimization problem:

max
π

eT vπ

subject to:

Kπv
π = rπ + γgπ,

π ∈ ∆|S|·(T−1).

This is exactly the non-convex policy optimization problem (4). Reformulating in terms of only the
policy, we get

max
π∈∆|S|·(T−1)

eT (Kπ)
−1 (rπ + γgπ) . (20)

This completes the proof.

B.3. Proof of Theorem 2

Proof Similar to the proof of Theorem 1, the statement directly follows by first applying the reduc-
tion in Theorem 3, and then using Theorems 3.1 and 3.2 from [20] on the resulting infinite horizon
MDP. The resuling dual and policy optimization problems are exactly (6) and (7). Again for com-
pleteness, we present a direct proof of the equivalences below, without needing to appeal to the
reduction.

We begin by introducing entropy regularization in the Lagrangian (13):

Lβ (v, µ) = eT v +
∑
a∈A

(µa)T
(
ra + γga −

(
I − γP̃a

)
v
)
− β−1

∑
s∈S,0≤t<T

h
(
µ(s,t)

)
(21)

=

(
e−

∑
a∈A

(
I − γP̃ T

a

)
µa

)T

v +
∑
a∈A

(µa)T (ra + γga)− β−1
∑

s∈S,0≤t<T

h
(
µ(s,t)

)
.

Note that since h is 1-strongly convex (and consequently−h is 1-strongly concave), the regularized
Lagrangian is β−1−strongly concave in µ. Additionally, it is also affine (and therefore convex) in
v. The primal-dual problem is again simply:

max
µ∈R|A|×|S|·(T−1)

+

min
v∈R|S|·(T−1)

Lβ (v, µ) . (22)

Using this regularized primal-dual as a starting point, we can derive primal and dual formulations of
the regularized MDP. Since Lβ is convex in v and concave in µ, we can switch the order of the min
and max in (22). To get the primal problem, we explicitly compute the maximum over µ. To do this,
we apply the reparameterization (17), µa

(s,t) = w(s,t)π
a
(s,t) with π ∈ ∆|S|·(T−1). The primal-dual

problem becomes

min
v∈R|S|·(T−1)

max
π∈∆|S|·(T−1),w≥0

eT v + wT
(
rπ + γgπ −Kπv − β−1hπ

)
.

15
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The maximum over π only applies to the expression in parenthesis multiplying w. In fact, this
maximum over π is in the form of the Gibbs variational principle, and the solution can be expressed
in closed form as

max
π∈∆|S|·(T−1)

rπ + γgπ −Kπv − β−1hπ = β−1 log

(∑
a∈A

exp (β [ra + γga −Kav])

)
.

Now, one can interpret the variables w as Lagrange multipliers corresponding to inequality con-
straints given by β−1 log

(∑
a∈A exp (β [ra + γga −Kav])

)
≤ 0. We can expand Ka, and bring

out a term exp (βv) from the sum, to transform this constraint into

v ≥ β−1 log

(∑
a∈A

expβ
[
ra + γga + γP̃av

])
.

The primal problem takes the form

min
v∈R|S|·(T−1)

eT v

subject to:

v ≥ β−1 log

(∑
a∈A

expβ
[
ra + γga + γP̃av

])
,

which is exactly (5).
An alternative starting point for the regularized MDP problem is the regularized Bellman opti-

mality equation. This is essentially the standard Bellman optimality equation (10), but with the max
over actions replaced by a softmax. Specifically, we use the logsumexp function with inverse tem-
perature β > 0 to represent the softmax. The regularized Bellman optimality equation is therefore

v∗(s,t) = β−1 log

(∑
a∈A

expβ

[
ra(s,t) + γ

∑
s′∈S

P a,t
s→s′v

∗
(s′,t+1)

])
∀s ∈ S, 0 ≤ t < T, (23)

v∗(s,T ) = gs ∀s ∈ S.

In matrix notation,

v∗ = β−1 log

(∑
a∈A

expβ
[
ra + γga + γP̃av

∗
])

.

Notice that this form of the regularized Bellman optimality equation corresponds naturally with the
constraints in the primal problem derived above.

To obtain the regularized dual problem, we use a similar argument as in the proof of Theorem 1.
Specifically, we observe that Lβ is an affine function of v. So, the inner minimization has optimal
value −∞ unless the linear multiplier in front of v is 0, in which case the optimal value is the
affine constant. In (21), the affine constant is exactly that in (13) but with the additional entropy

16
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regularization term that does not depend on v. So, we can write the dual problem as

max
µ∈R|A|×|S|·(T−1)

+

∑
a∈A

(µa)T (ra + γga)− β−1
∑

s∈S,0≤t<T

h
(
µ(s,t)

)
subject to:

e =
∑
a∈A
KT

a µ
a,

which is exactly (6).
Before moving on, we introduce the regularized Bellman equation for the value function under

a given policy π. We obtain this equation by adding the entropy regularizer term to the recursive
definition of the value function in the standard Bellman equation (19).

vπ(s,t) =
∑
a

πa
(s,t)

(
ra(s,t) + γ

∑
s′

P a,t
s→s′v

π
(s′,t+1)

)
− β−1h

(
π(s,t)

)
∀s ∈ S, 0 ≤ t < T. (24)

We introduce a vector hπ ∈ R|S|(T−1) with each entry equal to the entropy of policy distribution at
each state and timestep. Specifically, hπ(s,t) = h

(
π(s,t)

)
. We rewrite (24) in matrix notation:

Kπv
π = rπ + γgπ − β−1hπ. (25)

We can now show that the regularized dual problem (6) and the regularized policy optimization
problem (7) are equivalent. We again introduce the reparameterization (17) in the regularized dual
to obtain

max
π∈∆|S|·(T−1),

w∈R|S|·(T−1)
+

∑
a∈A,
s∈S,

0≤t<T

w(s,t)π
a
(s,t)r

a
(s,t) +

∑
s∈S,a∈A

(
w(s,T−1)π

a
(s,T−1) · γ

∑
s′∈S

P a,T−1
s→s′ gs′

)

− β−1
∑

s∈S,0≤t<T

w(s,t)h
(
π(s,t)

)
subject to:

e(s,t) = w(s,t) − γ
∑
s′,a

w(s′,t−1)π
a
(s′,t−1)P

a,t
s′→s.

Simplifying with matrix notation, we get

max
π∈∆|S|·(T−1),w∈R|S|·(T−1)

+

wT
(
rπ + γgπ − β−1hπ

)
subject to:

e = KT
πw.

Using a similar argument as in the proof of Theorem 1, we can eliminate the weight variable w by
solving the constraint and plugging into the objective to get,

max
π∈∆|S|·(T−1)

eT (Kπ)
−1 (rπ + γgπ − β−1hπ

)
.

17
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Now compare the objective to the regularized Bellman equation (24). Indeed, the objective simpli-
fies exactly to eT vπ. We get

max
π∈∆|S|·(T−1),vπ∈R|S|·(T−1)

eT vπ

subject to:

Kπv
π = rπ + γgπ − β−1hπ,

which is exactly the regularized policy gradient optimization problem (7), and this completes the
proof.

B.4. Proof of Theorem 4

Proof Let π∗ be a KKT point of (4). Based on the proof of Theorem 1, we know that (π∗, w∗) is
a KKT point of (18) where w∗ =

(
KT

π∗
)−1

e. Let µ∗ be uniquely defined by the reparameterization
(17) applied to (π∗, w∗). Since this reparameterization is invertible and differentiable, µ∗ is a KKT
point of the dual LP (3). But (3) is an LP, so µ∗ is optimal. Since the objective functions of (3), (18)
and (4) are all equivalent, we conclude that π∗ is optimal for the policy optimization problem (4).

We briefly justify why a differentiable and invertible reparameterization preserves the KKT
conditions below. Consider the general constrained problem in n dimensions with m constraints
given by functions gi : Rn → R,

min
x∈Rn

f(x)

subject to:

gi(x) ≤ 0, ∀i ∈ [m] .

The pair (x∗, λ∗) for λ∗ ∈ Rm is a KKT point if it satisfies the KKT conditions,

∇f(x∗) +
∑
i∈[m]

λ∗
i∇gi(x∗) = 0,

gi(x
∗) ≤ 0,∀i ∈ [m] ,

λ∗
i ≥ 0, ∀i ∈ [m] ,

λ∗
i gi(x

∗) = 0,∀i ∈ [m] .

Now consider the equivalent problem obtained by applying the reparameterization or change of
variables x = T (y) where T : Rn → Rn is differentiable and invertible,

min
y∈Rn

f(T (y))

subject to:

gi(T (y)) ≤ 0, ∀i ∈ [m] .

18
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The corresponding KKT conditions for a pair (y∗, µ∗) with µ∗ ∈ Rm are,

J(y∗)T∇f(T (y∗)) +
∑
i∈[m]

µ∗
i J(y

∗)T∇gi(T (y∗)) = 0,

gi(T (y
∗)) ≤ 0,∀i ∈ [m] ,

µ∗
i ≥ 0,∀i ∈ [m] ,

µ∗
i gi(T (y

∗)) = 0,∀i ∈ [m] ,

where J(y∗) = ∂T
∂y (y

∗) is the Jacobian of the transformation T evaluated at y∗. Since J is invertible
by assumption, the first stantionarity condition reduces to∇f(T (y∗))+∑i∈[m] µ

∗
i∇gi(T (y∗)) = 0.

Therefore, it is clear that (T (y∗∗), µ∗) is a KKT point for the original problem. Additionally, since
the objective is the same for both optimization problems, a KKT point (y∗, µ∗) for the transformed
problem has the same objective value as the equivalent KKT point (T (y∗), µ∗) for the original prob-
lem. So finally, if the KKT conditions are sufficient for global optimality in the original problem,
they will be sufficient for global optimality in the transformed problem.

B.5. Proof of Theorem 5

Proof The argument is identical to that in the proof of Theorem 4, but we work with the regularized
dual problem (6) and policy optimization problem (7). We use the same reparameterization T as
defined in (17).
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