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Abstract
This paper considers the best policy identification (BPI) problem in online Constrained Markov
Decision Processes (CMDPs). We are interested in algorithms that are model-free, have low regret,
and identify an optimal policy with a high probability. Existing model-free algorithms for online
CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee
to an optimal policy and provide only average performance guarantees when a policy is uniformly
sampled at random from all previously used policies. In this paper, we develop a new algorithm,
named Pruning-Refinement-Identification (PRI), based on a fundamental structural property of
CMDPs we discover, called limited stochasticity. The property says for a CMDP with N constraints,
there exists an optimal policy with at most N stochastic decisions.

The proposed algorithm first identifies at which step and in which state a stochastic decision
has to be taken and then fine-tunes the distributions of these stochastic decisions. PRI achieves trio
objectives: (i) PRI is a model-free algorithm; and (ii) it outputs a near-optimal policy with a high
probability at the end of learning; and (iii) in the tabular setting, PRI guarantees Õ(

√
K)1 regret and

constraint violation, which significantly improves the best existing regret bound Õ(K 4
5 ) under a

model-free algorithm, where K is the total number of episodes.

1. Introduction

Learning in Constrained Markov Decision Processes (CMDPs) [1] has become an active research
topic recently. Existing solutions include both model-based [2–6, 8, 10] and model-free algorithms
[7, 12, 13]. This paper focuses on model-free approaches for CMDPs due to their computation and
memory efficiency. A fundamental drawback of existing model-free algorithms for online CMDPs is
that they provide only average performance guarantees for a policy uniformly sampled at random
from all previously used policies during learning, so they fail to identify an optimal or a near-optimal
policy.2 Therefore, a natural question arises:

Is it possible to identify an optimal or a near-optimal policy in online CMDPs with the
model-free approach with optimal regret?

1. Notation: f(n) = Õ(g(n)) denotes f(n) = O(g(n)logkn) with k > 0. The same applies to Ω̃.
2. In this paper, a policy is a mapping from a state at a given step to an action distribution, without any other additional

input information. An algorithm that uses multiple policies, e.g. randomly sampling one policy from many policies, is
explicitly called a mixed policy.
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There are two key challenges to answering this question: (i) CMDP problems are typically
represented as Linear Programming (LP) problems, resulting in stochastic optimal policies. Model-
free online CMDP algorithms often employ the primal-dual approach, utilizing Lagrange multipliers
to balance reward maximization and constraint violation. However, these methods yield "greedy
policies" for fixed Lagrange multipliers, which aren’t necessarily optimal. Consequently, model-free
algorithms such as Triple-Q [11] offer performance guarantees only in terms of averages over various
greedy policies determined by different Lagrange multipliers, failing to converge to a single policy.
(ii) The best-known regret bound of model-free algorithms for episodic, online CMDPs is Õ(K

4
5 )

[12]. It is also known that model-based algorithms can achieve a smaller and order-wise tight regret
Õ(
√
K) [6]. The open question is whether a model-free algorithm can reach Õ(

√
K) regret in online

CMDPs?
This paper tackles both challenges, providing affirmative responses to both questions. We

introduce a novel algorithm, Pruning-Refinement-Identification (PRI). The main contributions of this
paper include:

• PRI is the first model-free PAC RL algorithm for CMDPs, achieving optimal regret and
minimal constraint violation.

• PRI outputs a near-optimal policy with a high probability at the end. The learned policy has
Õ(1/

√
K) optimality gap with probability 1− Õ(1/

√
K).

• In the tabular setting, PRI guarantees Õ(
√
K) regret and constraint violation, which signifi-

cantly improves the best existing regret bound Õ(K
4
5 ) under a mode-free algorithm, where K

is the total number of episodes. Unlike existing regret bounds, the dominating term in terms of
K in the regret bound does not depend on the sizes of the state space and action space.

2. Related Work

Model-based and Model-free algorithms for online CMDPs. As mentioned in the introduction,
most existing results on online CMDPs consider regret minimization. For example, [2, 6, 10]
proposed model-based algorithms for episodic tabular CMDPs. [3, 8] proposed efficient algorithms
with zero or bounded constraint violation. For model-free algorithms, [13] developed Triple-Q
that achieves sublinear regret and zero constraint violation in episodic tabular CMDPs. Similar
results have been established for linear CMDPs [5, 7] and infinite-horizon average CMDPs [4, 12].
However, these existing model-free algorithms for online CMDPs does not converge to an optimal or
a near-optimal policy. Very recently, [9] considered BPI for online CMDPs. They formulated the
CMDP problem as a min-max game and the proposed algorithm converges to a near-optimal policy
at the last iteration with optimistic mirror descent. However, the paper does not provide any regret
guarantee when learning the near-optimal policy. Table 1 summarizes the recent results on online,
episodic CMDPs.

3. Problem Formulation

We consider an episodic CMDP, denoted by (S,A, H,P, r, gn, n ∈ [N ]), where S is the state space
(|S| = S), A is the action space (|A| = A), {rh}Hh=1, {gnh}Hh=1, n ∈ [N ] are reward, n-th utility
functions, and P = {Ph(·|x, a)}Hh=1 are the transition kernels. For simplicity, we assume that in each
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Table 1: The Exploration-Exploitation Tradeoff in Episodic CMDPs.

Algorithm Regret Constraint Violation BPI?

Model-based

OPDOP [5] Õ(H3
√
S2AK) Õ(H3

√
S2AK) No

OptDual-CMDP [6] Õ(H2
√
S3AK) Õ(H2

√
S3AK) No

OptPrimalDual-CMDP [6] Õ(H2
√
S3AK) Õ(H2

√
S3AK) No

CONRL [2] Õ(H3
√
S3A2K) Õ(H3

√
S3A2K) No

OptPess-LP [8] Õ(H3
√
S3AK) 0 No

OptPess–PrimalDual [8] Õ(H3
√
S3AK) O(1) No

OPSRL[3] Õ(
√
S4H7AK) 0 No

Model-free
Triple-Q[12] Õ(1δH

4S
1
2A

1
2K

4
5 ) 0 No

PRI Õ(
√
H2K) Õ(

√
H2K) Yes

episode, the agent starts from the same initial state x1 = xini. It is straightforward to generalize the
results to the case when the initial state is sampled with a given distribution but the notation becomes
cumbersome. We also assume that rh : S × A → [0, 1] and gnh : S × A → [0, 1] are deterministic
for notation simplicity. Our results can be easily generalized to random reward/utility signals.

During each episode, the agent interacts with the environment as follows: at each step h, the agent
takes action ah after observing state xh, receives reward rh(xh, ah) and N utility values gnh(xh, ah)
(n ∈ [N ]), and then observes a new state (xh+1), which evolves by following the transition kernel
Ph(·|xh, ah). The episode terminates after H steps.

Given a stochastic policy π, which is a collection of H functions {πh : S ×A → [0, 1]}Hh=1,
the agent takes action a with probability πh(a|x) when being in state x at step h . The reward
value function of policy π, denoted by V π

h (x), is the expected total reward when starting from an

arbitrary state x at step h to the end of the episode: V π
h (x) = Eπ

[∑H
i=h ri(xi, ai)

∣∣∣xh = x
]
, where

the expectation is taken with respect to the policy π and randomness from the transition kernels.
Accordingly, the reward Q-function, denoted by Qπ

h(x, a), is the expected total reward when the
agent starts from an arbitrary action-action pair (x, a) at step h and follows policy π to the end of the
episode: Qπ

h(x, a) = rh(x, a) + Eπ

[∑H
i=h+1 ri(xi, ai)

∣∣∣xh = x, ah = a
]
.

Similarly, we can define the N utility value functions as W π,n
h (x) = Eπ

[∑H
i=h g

n
i (xi, ai)

∣∣∣xh = x
]

and utility Q-functions as Cπ,n
h (x, a) = gnh(x, a) + Eπ

[∑H
i=h+1 g

n
i (xi, ai)

∣∣∣xh = x, ah = a
]
. The

objective of the CMDP is to find an optimal policy that maximizes the expected total reward while
making sure the n−th expected total utility is no less than ρn for all n ∈ [N ]:

π∗ ∈ argmax
π

V π
1 (xini) s.t. W π,n

1 (xini) ≥ ρn ∀n ∈ [N ]. (1)

To avoid triviality, we assume ρn ∈ [0, H]. For simplicity, we use V π
1 to represent V π

1 (xini) and
W π,n

1 to represent W π,n
1 (xini).

We evaluate an online RL algorithm for CMDP using regret and constraint violation over
K episodes: Regret(K) = KV π∗

1 (xini) − E
[∑K

k=1 V
πk
1 (xini)

]
and Violationn(K) = Kρn −

E
[∑K

k=1W
πk,n
1 (xini)

]
, where πk is the policy used in episode k.
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4. PRI (Pruning-Refinement-Identification)

Before formally introducing our algorithm, we first present two structural properties of the optimal
solution to the CMDP problem (1). These properties have been overlooked in the literature but serve
as the foundation of our proposed algorithm. Consider a CMDP problem with N constraints. It is
well-known that the problem can be formulated as a linear programming (LP) problem [1]:

max
{qh(x,a)}

∑
h,x,a

qh(x, a)rh(x, a) (2)

s.t.:
∑
h,x,a

qh(x, a)g
(n)
h (x, a) ≥ ρn ∀n ∈ [N ] (3)

∑
a

qh+1(x, a) =
∑
x′,a′

Ph(x|x′, a′)qh(x′, a′) ∀x ∈ S, h ∈ [H] (4)

∑
a

q1(xini, a) = 1,
∑
a

q1(x, a) = 0, x ̸= xini (5)

qh(x, a) ≥ 0, (6)

where qh(x, a) denotes the probability that state-action pair (x, a) is visited at step h, called the
occupancy measure. Each feasible solution {qh(x, a)}h,x,a to the problem leads to a corresponding
Markov policy: πh(a|x) = qh(x,a)∑

a qh(x,a)
.

In this paper, we call probability distribution πh(·|x) decision at state x at step h. So a policy
consists of S ×H decisions. A decision πh(·|x) is called greedy if πh(a|x) = 1 for some a ∈ A and
stochastic otherwise.

Lemma 1 (Limited Stochasticity) If q∗ = {q∗h(x, a)}h,x,a is an optimal solution to the CMDP
problem (2)-(6) and is an extreme point, then there are at most HS +N nonzero values in q∗. This
implies that the optimal policy derived from q∗ includes at most N stochastic decisions.

The detailed proof can be found in Appendix D. The following corollary, which is a well-known
result, is a direct consequence of the lemma.

Corollary 1 For unconstrained MDP problems, one of the optimal policies is a greedy policy.

Proof One of the optimal solutions to the LP is an extreme point. Since N = 0, all decisions from
an optimal policy must be greedy according to Lemma 1.

Given an occupancy measure q and its induced policy π, we define Dh,x(q) = {a : qh(x, a) > 0} ,
which is the set of actions that will be taken with a nonzero probability in state x at step h under the
policy π induced by q. Note that if πh(·|x) is a greedy decision, then |Dh,x(q)| = 1; and if π(·|x) is
greedy, then |Dh,x(q)| > 1. Let Mq =

∏
h,x |Dh,x(q)|, and let πm represent the mth greedy policy

(m = 1, · · · ,Mq) constructed from ⊗h,xDh,x(q) such that πm
h (a|x) = 1 only if a ∈ Dh,x(q). Note

that a greedy policy is a policy under which all decisions are greedy. Next, we will show that a
Markov policy is equivalent to a mixed policy of many greedy policies in the following lemma,
whose proof can be found in Appendix D.2.
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Lemma 2 (Decomposition) Given any Markov policy π and its corresponding occupancy measure
q, there exists a set of M greedy policies and a probability distribution {am}m=1,··· ,M such that the
mixed policy, which selects a greedy policy πm at the start of an episode with probability am and
subsequently follows it, has the same occupancy measure q as the original policy π.

We will first consider the case where the LP has a unique optimal solution. Leveraging these
two observations from Lemma 1 and 2, we propose a novel three-phase algorithm (Algorithm 1),
including policy pruning, policy refinement, and policy identification, called PRI. If the LP has more
than one solution, we will introduce a multi-solution pruning algorithm to the policy pruning phase
of PRI to resolve the issue. The algorithm and the analysis can be found in Appendix B.

The algorithm is presented in Algorithm 1, which includes
√
K + 2K episodes,

√
K episodes

for pruning, K episodes for refinement and K episodes for identification. In the first phase (policy
pruning), we run Triple-Q for

√
K episodes, we denote {πk,h}Hh=1 as the policy used by Triple-Q

in the kth episode, and it is a greedy policy. For fixed (h, x, a) in the policy pruning phase, we use
Ñh(x, a) to count the number of episodes in which the greedy policy we follow is πh(a|x) = 1,
which is the number of greedy policies (among the

√
K greedy policies) that would take action a

if the agent visits state x at step h. Because of the sub-linear regret and zero violation guaranteed
by Triple-Q, we expect that Nh(x,a)√

K
is close to zero if π∗

h(a|x) = 0 and is a non-negligible positive

value if otherwise. Therefore, with a high probability, D̃h,x = Dh,x(q
∗), where D̃h,x is gradually

updated in Algorithm 1 (Lines 8-10).
At each round of the second phase (policy refinement), the following optimization is solved.

Decomposition-Opt: max
{am}Mm=1

M∑
m=1

amV̄ πm

1

s.t.:

∣∣∣∣∣
M∑

m=1

amW̄ πm,n
1 − ρn

∣∣∣∣∣ ≤
√

H2 log (tϵ′K)

ϵ′t
√
K

∀n,∑
m

am = 1, am ≥ ϵ′ ∀m.

(7)

After the first phase, PRI obtains M greedy policies. In the second phase, PRI learns the weights
{am} so that a mixed policy that chooses policy πm with probability am is statistically identical to
the optimal policy. This is achieved by learning the reward and utility value functions of the greedy
policies and then solving an approximated version of the CMDP (Decompsotion-Opt (7)). After
learning sufficiently accurate {am} in the second phase, PRI learns the occupancy measure under the
mixed policy defined by {am} and constructs a Markov policy π̃ based on the learned occupancy
measure.

An informal statement of the main results is presented below. The formal statements of the
theorems and the proofs will be presented in the appendix.

Main Results: With a high probability, PRI yields policy π̃ such that

• {(h, x, a) : π̃h(a|x) > 0} = {(h, x, a) : π∗
h(a|x) > 0},

• PRI guarantees O(
√
K) regret and constraint violation over the

√
K + 2K. episodes, and

• |π̃h(a|x) − π∗
h(a|x)| = O(1/

√
K) for all (h, x, a), and π̃h(a|x) = π∗

h(a|x) if π∗
h(a|x) ∈

{0, 1}.
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Algorithm 1: PRI

[Phase 1: Policy Pruning] for t = 1, · · · , logK do
Initialize Ñh(x, a) = 0 for all h, x and a. Reinitialize all parameters in Triple-Q
for k = 1, · · · ,

√
K do

For all (h, x, a), Ñh(x, a)← Ñh(x, a) + πk,h(a|x), execute Triple-Q for one episode.
end
D̃(t) = ∅
for all (h, x, a) do
D̃(t)(h, x)← D̃(h, x)

⋃
{a} if Ñh(x,a)√

K
≥ ϵ

2 .

end
end
Obtain D̃ by majority vote on D̃(t). Obtain M greedy policies from D̃ where
M =

∏
h,x |D̃(h, x)|.

[Phase 2: Policy Refinement] if M = 1 then
Output the greedy policy.

end
else

Set V̂ πm

1 = 0, Ŵ πm,n
1 = 0, and am = 1

M for all n and m.
end
for round t = 1, · · · ,

√
K do

for m = 1, · · · ,M do
for k = 1, · · · , am

√
K do

Execute greedy policy πm for one episode.
if k ≤ ϵ′

√
K then

Set V̂ πm

1 ← V̂ πm

1 +V πm

k,1 and Ŵ πm,n
1 ← Ŵ πm,n

1 +W πm,n
k,1 for all n, where V πm

k,1

and W πm,n
k,1 are the total reward and utility of type n received in the kth episode.

end
end

Set V̄ πm

1 =
V̂ πm

1

tϵ′
√
K

and W̄ πm,n
1 =

Ŵπm,n
1

tϵ′
√
K

for all n. Update {am} by solving
Decomposition-Opt (7).

end
end
[Phase 3: Policy Identification] Initialize Nh(x, a) = 0 for all h, x and a.
for t = 1, · · · ,

√
K do

for m = 1, · · · ,M do
for k = 1, · · · , am

√
K do

for h = 1, · · · , H do
Take action ah given by policy πm, i.e. πm(ah|xh) = 1,
Nh(xh, ah)← Nh(xh, ah) + 1.

end
end

end
end
For all (h, x, a), set π̃h(a|x) = Nh(x,a)∑

ã∈A Nh(ã,x)
, output policy π̃.
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Appendix A. Main Results

In this section, we provide our main results assuming that the LP associated with the CMDP problem
has a unique solution. This assumption can be relaxed and the results can be found in Section
B. Letπ∗ be the unique optimal policy and {qπ∗

h (x, a)} is the corresponding occupancy measure.
Furthermore, let {πm} (m = 1, · · · ,M ) be the set of greedy policies associated with the optimal
policy as defined in Lemma 2, and {a∗m} the associated weights. We also make the following
additional assumptions.

Assumption 1 The ϵ and ϵ′ used in PRI satisfy qπ
∗

h (x, a) ≥ ϵ for any (h, x, a) such that π∗
h(a|x) >

0, and minm a∗m ≥ ϵ′ > 0.

Assumption 2 There exist two positive constants cv and cw such that given a feasible occupancy
measure qπ to the LP and the corresponding reward value function and utility value function V π

and W π,n, we have either V π∗
1 − V π

1 ≥ cv||qπ
∗ − qπ||1 or for some n ∈ [N ],W π∗,n

1 −W π,n
1 ≥

cw||qπ
∗ − qπ||1, where ∥ · ∥1 is the L1-norm.

Recall a feasible occupancy measure defines a unique Markov policy. The assumption above states
that when a policy’s occupancy measure is different from that of the unique optimal policy, then
either the reward value function or one of the utility reward functions should also be different from
that under the optimal policy.

Assumption 3 Under any greedy policy π, for all x and h, we have

Pr (xh = x) =
∑
x′,a′

qπh−1(x
′, a′)Ph(x|x′, a′) > pmin.

This assumption above says all states should be visited with a non-negligible probability under any
greedy policy. It is worth noting that this assumption can be removed if we apply the extension
version of PRI, which is stated in section B. To prove our main result, we first recall the regret and
constraint violation guaranteed under Triple-Q [12] in the following lemma.

Lemma 3 For sufficiently large K, over K episodes, Triple-Q guarantees Õ(K0.8) regret and zero
constraint violation, and furthermore,

Pr

(
Kρn −

K∑
k=1

W πk,n
1 ≤ 0

)
= 1−O

(
1

K2

)
. (8)

In the following theorem, we show that PRI can correctly classify stochastic and greedy decisions
with a high probability after the pruning phase.

Theorem 4 (Pruning) Let D∗ = {(h, x, a) : π∗
h(a|x) > 0} and D̃ =

{
(h, x, a) : Ñh(x,a)√

K
≥ ϵ

2

}
.

Under Assumptions 1 and 3, after policy pruning, we have

Pr
(
D̃h,x = Dh,x(q

∗), ∀(h, x)
)
= 1− Õ

(
K−0.1

)
. (9)
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The detailed proof is deferred to Appendix E. Note that since the pruning phase includes
√
K

episodes, the regret and constraint violation are both bounded by H
√
K.

The following theorem shows that the regret and constraint violation during the refinement phase
are both Õ(

√
K). Note that Õ(

√
K) regret and constraint violation imply that the learned mixed

policy is close to optimal. The proof can be found in Appendix F.

Theorem 5 (Refinement) Assume D̃ = D∗ after policy pruning. Under Assumption 1 to 3, with
probability 1− Õ( 1√

K
), the regret and constraint violation during the policy refinement phase are

both Õ(H
√
K).

The refinement phase learns a near optimal mixed policy, which is a combination of M greedy
policies for M ≤ 2N . In the following theorem we show that the identification phase is to find a
single near-optimal policy by using the occupancy measure of the mixed policy. The proof can be
found in Appendix G.

Theorem 6 (Identification) Assume D̃ = D∗ after policy pruning. Under Assumption 1 to 3,
with probability 1 − Õ( 1

K ), the regret and constraint violation during the policy identification
phase are both O(

√
K). Furthermore, |π̃h(a|x) − π∗

h(a|x)| = O(
1√
K
) if 0 < π∗

h(a|x) < 1 and
π̃h(a|x) = π∗

h(a|x)| if π∗
h(a|x) ∈ {0, 1}.

By summarizing the results from the three theorems above, we have the regret and the constraint
violation over the

√
K + 2K episodes are Õ(H

√
K) with probability 1− Õ( 1

K0.1 ). Consider the
regret, the pruning phase includes

√
K episodes, resulting in at most H

√
K regret. Theorem 5 and

Theorem 6 show that the regret in the refinement and identification phases are both Õ(H
√
K). Note

that the order-wise bounds are independent of S and A, unlike those in the literature. However, there
is an implicit dependence on S and A as the results hold only when K is sufficiently large and how
large K needs to be depends on S and A.

Appendix B. Extension to CMDPs with Multiple Optimal Solutions

In this section, we consider the case where the optimal policy is not unique so the LP has multiple
optimal solutions. Here, the RL agent’s objective is to learn one of these optimal policies. According
to Lemma 1, an optimal solution associated with an extreme point of the LP involves no more than
HS +N stochastic decisions. Additionally, any optimal policy can be viewed as a combination of
the optimal policies associated with the extreme points. We define the set of optimal policies as Π∗

and the subset associated with extreme points as Π∗,e. We expand our assumptions to the case of
multiple solutions as follows.

Assumption 4 The ϵ used PRI satisfies min(h,x,a):πh(a|x)̸=0 q
π
h(x, a) ≥ ϵ ∀π ∈ Π∗,e.

Assumption 5 Given any occupancy measure q′ and the induced Markov policy π′, there exists an
optimal policy π∗ ∈ Π∗ such that V π∗

1 − V π′
1 ≥ cv||qπ

∗ − q′||1 or for some n,W π∗,n
1 −W π′,n

1 ≥
cw||qπ

∗ − q′||1, where cv and cw are two positive constants.

Note that if π′ is an optimal policy, then the assumption holds trivially with π∗ = π′. Under
Assumptions 3-5, the following theorem shows that a unique optimal policy is identified after
Multi-Solution Pruning. The algorithm result in at most H2SAK0.25 regret and constraint violation.

9
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Theorem 7 Under Assumption 4 and 5, with probability 1−O(1/K0.02), for sufficiently large K,
multi-solution pruning outputs a unique optimal policy with at most N stochastic decisions. The
regret and constraint violation during multi-solution pruning are bounded by H2SAK0.25 with
probability one.

More discussions and the detailed proof are deferred to Appendix H.1 due to the page limit. We note
that adding this multi-solution pruning to PRI only increases the regret and constraint violation by
HSAK0.25 which is order-wise smaller than Õ(H

√
K) in terms of K. Therefore, the regret and

constraint violation remains to be Õ(H
√
K) for sufficiently large K.

Appendix C. Experiments

Synthetic CMDP
This section presents numerical evaluations of the proposed algorithm. We first evaluated our

algorithm for a synthetic CMDP with a single constraint. The transition kernels, rewards, and utilities
are chosen such that the problem has a unique optimal solution and satisfies Assumption 3. The
objective is to maximize the cumulative reward while guaranteeing that the cumulative utility is at
least 2. Comparison between Triple-Q and PRI can be found in Figure 1 and 2. Experiment details
can be found in the Appendix I.1.

We can observe that PRI converges significantly faster than Triple-Q. Remarkably, both regret
and constraint violation level off at the beginning of policy refinement after approximately 110, 000
episodes. However, the regret of Triple-Q continues to increase sublinearly. PRI significantly
outperforms Triple-Q on regret. At the end of the 1, 100, 000 episodes, Triple-Q has a regret of
2.05× 105 and constraint violation of −3.86× 104. In contrast, the regret and constraint violation
under PRI are −1.73× 103 and 1.06× 104, respectively. Thus, the regret is significantly lower than
Triple-Q. Since the full CMDP model is given, we can obtain the optimal solution by using the linear
programming approach. The cumulative reward and cumulative utility under PRI are are 1.57301,
and 2.00008, which are very close to the optimal solution 1.57306 and 2.

Figure 1: Regret for a synthetic CMDP with a unique solution, the shaded region represents the 95%
confidence interval.

Grid-world
In our second experiment, which is a grid-world environment (refer to Appendix I.2 for details),

we compared Triple-Q with PRI, and the results are shown in Figure 3 and 4. This problem has
multiple optimal policies. Therefore, we used the extended PRI wth multi-solution-pruning. PRI

10
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Figure 2: Constraint Violation for a synthetic CMDP with a unique solution, the shaded region
represents the 95% confidence interval.

consists of 200, 000 episodes for the initial phase, followed by 200, 000 episodes for each multi-
solution pruning phase. Both policy refinement and policy identification phases include 5, 000, 000
episodes each. For reference, we ran Triple-Q for the same number of episodes. The outcomes
concerning regret and constraint violation are visualized in Figure 3 and 4. We can observe that
Triple-Q has a regret of 3.19× 106 and a constraint violation of −5.26× 105, whereas PRI achieves
1.54× 105 regret and 2.98× 103 constraint violation, indicating substantially lower regret with PRI.

Figure 3: Regret for the grid world environment, the shaded region represents the 95% confidence
interval.

Figure 4: Constraint Violation for the grid world environment, the shaded region represents the 95%
confidence interval.

11
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Appendix D. Proofs of the Technical Lemmas

D.1. Proof of Lemma 1 (Limited Stochasticity)

Lemma 1 If q∗ = {q∗h(x, a)}h,x,a is an optimal solution to the CMDP problem (2)-(6) and is an
extreme point, then there are at most HS +N nonzero values in q∗. This implies that the optimal
policy derived from q∗ includes at most N stochastic decisions.

Proof The LP has HSA decision variables {qh(s, a)} in total. So at an extreme point, at least HSA
constraints become tight. In other words, at least HSA constraints become equalities under solution
q∗. Since there are only HS +N constraints defined in (3)-(5), at least

HSA−HS −N = HS(A− 1)−N

constraints in (6) become tight (equality) under q∗. Therefore, there are at least HS(A − 1) −N
zeros in q∗ or at most HS +N nonzero values in q∗.

Now suppose the optimal policy obtained from q∗ has less than HS −N greedy decisions. Then
q∗ would have at least

HS −N − 1 + 2(N + 1) = HS +N + 1

nonzero values because each greedy decision requires one nonzero qh(x, a) and each stochastic
decision requires at least two nonzero qh(x, a). This leads to a contradiction.

D.2. Proof of Lemma 2 (Decomposition)

Lemma 2 Given any Markov policy π and its corresponding occupancy measure q, there exists a
set of M greedy policies and a probability distribution {am}m=1,··· ,M such that the mixed policy,
which selects a greedy policy πm at the start of an episode with probability am and subsequently
follows it, has the same occupancy measure q as the original policy π.

Proof To simplify the notation, we will prove the lemma for the case where |Dh,x(q)| ∈ {1, 2},
i.e., any stochastic decision takes two possible actions and assume A = {0, 1}. The extension to the
general case is trivial.

Under a Markov policy {πh}Hh=1, the actions are independently chosen given state x and step h.
Suppose we will execute the Markov policy for K episodes. We will generate K matrices {Bk}Kk=1

of size H × S such that Bk(h, x) is a realization of a random variable with distribution πh(·|x). All
these values are independently generated. Now to execute policy π at episode k, at state x and step h,
the agent takes action a such that Bk(h, x) = a. This is statistically the same as sampling an action
using πh(·|x) when reaching state x at step h.

We note that each binary matrix Bk corresponds to a greedy policy from the Mq greedy policies
and vice versa. Furthermore, the binary matrix associated with greedy policy πm is generated with
probability

am =
∏
h,x

 ∑
a∈Dh,x(q)

πh(a|x)πm
h (a|x)

 ,

because ∑
a∈Dh,x(q)

πh(a|x)πm
h (a|x) =

∑
a∈Dh,x(q)

πh(a|x)I(πm
h (a|x) = 1),

12
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which is the probability that action selected by the greedy policy πm is also selected under policy
π. Therefore, if we consider a mixed policy that chooses policy πm with probability am, then it is
statistically the same as policy π and has the same occupancy measure q.

Appendix E. Proof of Theorem 4 (Pruning)

In this part, we are going to show the detailed proof of Pruning.

Theorem 1 Let D∗ = {(h, x, a) : π∗
h(a|x) > 0} and D̃ =

{
(h, x, a) : Ñh(x,a)√

K
≥ ϵ

2

}
. Under As-

sumptions 1 to 3, after policy pruning, we have

Pr
(
D̃h,x = Dh,x(q

∗), ∀(h, x)
)
= 1− Õ

(
K−0.05 logK

)
.

Proof At the end of the first phase, i.e.,
√
K episodes, we consider a mixed policy π̂ that selects

the policy used in the kth episode, πk, with probability 1/
√
K. We assume that all constraints are

satisfied under π̂, which occurs with probability 1 − O(K−2). The reward value function of the
policy π̂ is

V π̂
1 =

1√
K

√
K∑

k=1

V πk
1 (10)

and V π∗ − V π̂
1 ≥ 0 because the constraints are satisfied under π̂. Note that policy π̂ is not a Markov

policy. We next prove that the occupancy measure induced by policy π̂ is a valid solution to the LP
problem:

∑
a

qπ̂h(x, a) =
∑
a

1√
K

√
K∑

k=1

qπk
h (x, a)

=
1√
K

√
K∑

k=1

∑
a

qπk
h (x, a)

=
1√
K

√
K∑

k=1

∑
x′,a′

qπk
h−1(x

′, a′)Ph(x|x′, a′)

=
∑
x′,a′

Ph(x|x′, a′)
1√
K

√
K∑

k=1

qπk
h−1(x

′, a′)

=
∑
x′,a′

Ph(x|x′, a′)qπ̂h−1(x
′, a′).

Besides, it is easy to verify that ∀h, x, a, qπ̂h(x, a) ≥ 0. Thus the policy π̂ is a valid policy for the LP
problem.

Recall that Dh,x(q) = {a : qh(x, a) > 0} . We have D̃h,x(q) = Dh,x(q
∗), ∀(h, x) is equivalent

to D∗ = D̃.
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We further define event

E =

{
∃(h, x, a) ∈ D∗,

Ñh(x, a)√
K

<
ϵ

2

}
,

i.e., the event that at the end of the pruning phase, the algorithm eliminates an action used by the
optimal policy. Note that πk’s are greedy policies (πk,h(a|x) ∈ {0, 1}). Therefore, we have

Ñh(x, a) =

√
K∑

k=1

πk,h(a|x).

Thus, assuming this event E occurs, we can obtain

qπ̂h(x, a)

=
1√
K

√
K∑

k=1

qπk
h (x, a)

=
1√
K

√
K∑

k=1

∑
x′,a′

qπk
h−1(x

′, a′)Ph(x|x′, a′)

πk,h(a|x)

≤ 1√
K

√
K∑

k=1

πk,h(a|x)

=
1√
K

Ñh(x, a)

<
ϵ

2
.

According to Assumption 1, we have

qπ
∗

h (x, a) ≥ ϵ ∀(h, x, a) ∈ D∗, (11)

which implies ||qπ̂ − q∗||1 ≥ ϵ
2 . According to Assumption 2, we have either

V π∗
1 − V π̂

1 ≥ cv
ϵ

2
(Case 1) (12)

or

W π∗,n
1 −W π̂,n

1 ≥ cw
ϵ

2
for some n (Case 2). (13)

Therefore, we have

Pr(E) ≤Pr
(√

K
(
V π∗
1 − V π̂

)
≥ cv

ϵ

2

√
K
)

+ Pr
(
∃n ∈ [N ],

√
K
(
W π∗,n

1 −W π̂,n
1

)
≥ cw

ϵ

2

√
K
)
.
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Based on Lemma 3’s result on regret and the Markov inequality, we have

Pr
(√

K
(
V π∗
1 − V π̂

)
≥ cv

ϵ

2

√
K
)
≤ c1

√
K

0.8

cv
1
2ϵ
√
K

=
2c1

cvϵK0.1
.

From Lemma 3’s result on constraint violation, the high probability bound, we have

Pr
(
∃n ∈ [N ],

√
K
(
W π∗,n

1 −W π̂,n
1

)
≥ cw

ϵ

2

√
K
)

≤Pr
(
∃n ∈ [N ],

√
K
(
ρn −W π̂,n

1

)
≥ cw

ϵ

2

√
K
)

=O
(

1

K

)
.

Thus for sufficiently large
√
K, Pr (E) = O

(
K−0.1

)
, i.e., with probability 1−O

(
K−0.1

)
, we have

D∗ ⊆ D̃.

Now define event E ′ =
{
∃(h, x, a) /∈ D∗, Nh(x,a)√

K
≥ ϵ

2

}
. Similar to (11) and based on Assump-

tion 3, we can obtain

qπ̂h(x, a) =
1√
K

√
K∑

k=1

qπk
h (x, a) ≥ pmin

1√
K

Ñh(x, a) ≥
ϵpmin

2
. (14)

Since qπ
∗

h (x, a) = 0 for (h, x, a) /∈ D∗, ||qπ̂ − qπ
∗ ||1 ≥ ϵpmin

2 . Similar to the analysis on E , we
obtain

Pr(E ′) = O
(
K−0.1

)
. (15)

In other words, with probability 1 − O
(
K−0.1

)
, Denote the number of rounds that we classify

wrongly as X . When we run Triple-Q for logK rounds, by Chernoff bound, we have

Pr(X ≥ 0.5 logK) ≤ e0.5 logK−K−0.1 logK−0.05(logK)2+0.5 log 2 logK (16)

In other words, considering that K is sufficiently large, with probability 1−O
(
K−0.05 logK

)
, we

have
D̃ ⊆ D∗,

which completes the proof.

Appendix F. Proof of Theorem 5 (Refinement)

Theorem 2 Assume D̃ = D∗ after policy pruning. Under Assumptions 1 and 3, with probability
1 − Õ

(
1√
K

)
, the regret and constraint violation during the policy refinement phase are both

O
(
H
√
K
)

.
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Proof Recall that in Lemma 2, we have shown that there exists a mixed policy of M greedy policies
defined by D∗

h,x that has the same occupancy measure as that under the optimal policy, and {a∗m} are
the associated weights.

Recall that the policy refinement consists of
√
K rounds. Let {at,m}m=1,··· ,M be the weights

used in round t. Then in the tth round, greedy policy πm is used for at,m
√
K episodes, where at,m

is the optimal solution to Decomposition-Opt (7).
First, we will bound the estimation errors of the reward and utility value functions. Recall that

PRI uses ϵ′
√
K episodes in each round to estimate the reward value function and the utility value

functions instead of all episodes because {at,m} are random variables correlated with the estimated
value functions from the previous round. At the beginning of round t, we have (t− 1)ϵ′

√
K samples

from the previous round. Indexing the samples by k′, we have

W̄ πm,n
1 =

∑(t−1)ϵ′
√
K

k′=1 W πm,n
k′,1

(t− 1)ϵ′
√
K

. (17)

Define

δW πm,n
1 = W̄ πm,n

1 −W πm,n
1 (18)

=

∑(t−1)ϵ′
√
K

k′=1

(
W πm,n

k′,1 −W πm,n
1

)
(t− 1)ϵ′

√
K

. (19)

Since W πm,n
k′,1 ∈ [0, H] are i.i.d. random variables, by the Azuma-Hoeffding inequality, we have

Pr

∣∣∣δW πm,n
1

∣∣∣ ≤
√√√√2H2 log

(
(t− 1)ϵ′

√
K
)

ϵ′(t− 1)
√
K

 (20)

≥1− 2

(t− 1)ϵ′
√
K

. (21)

Similarly, defining

δV πm

1 = V̄ πm

1 − V πm

1 =

∑(t−1)ϵ′Kα

k′=1

(
V πm

k′,1 − V πm

1

)
(t− 1)ϵ′

√
K

,

we have

Pr

∣∣δV πm

1

∣∣ ≤
√√√√2H2 log

(
(t− 1)ϵ′

√
K
)

ϵ′(t− 1)
√
K

 (22)

≥1− 2

(t− 1)ϵ′
√
K

. (23)
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Therefore, with probability at least 1− 2M
(t−1)ϵ′

√
K
,∣∣∣∣∣

M∑
m=1

a∗mW̄ πm,n
1 − ρn

∣∣∣∣∣ =
∣∣∣∣∣

M∑
m=1

a∗m (W πm,n
1 + δW πm,n

1 )− ρn

∣∣∣∣∣
≤

M∑
m=1

a∗m |δW
πm,n
1 |

≤

√√√√2H2 log
(
(t− 1)ϵ′

√
K
)

ϵ′(t− 1)
√
K

.

In other words, {a∗m} is a feasible solution to Decomposition-Opt (7) with a high probability, which
implies that Decomposition-Opt (7) has a solution with a high probability.

We now consider {at,m} and the regret and constraint violation in round t. If {a∗m} is a feasible
solution to Decomposition-Opt (7), then

M∑
m=1

at,m
√
KV πm

1

=
M∑

m=1

at,m
√
K
(
V̄ πm

1 − δV πm

1

)
≥
√
K

(
M∑

m=1

at,mV̄ πm

1

)
−
√
Kmax

m
|δV πm

1 |

≥(a)

√
K

(
M∑

m=1

a∗m
(
V πm

1 + δV πm

1

))
−
√
Kmax

m
|δV πm

1 |

≥
√
K

(
M∑

m=1

a∗mV πm

1

)
− 2
√
Kmax

m
|δV πm

1 |

=
√
KV π∗

1 − 2
√
Kmax

m
|δV πm

1 |

≥
√
K

V π∗
1 − 2

√√√√2H2 log
(
(t− 1)ϵ′

√
K
)

ϵ′(t− 1)
√
K

 ,

where (a) holds because {at,m}m is the optimal solution to Decomposition-Opt (7). In other words,
with a high probability, the regret is bounded by

2

√√√√2
√
KH2 log

(
(t− 1)

√
K
)

ϵ′(t− 1)
. (24)

Thus, with probability
√
K∏

t=2

(
1− 2

(t− 1)ϵ′
√
K

)
≥ 1− 2 logK

ϵ′
√
K

(25)
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regret in round t is bounded by (24) for all t. Therefore, the regret during policy refinement is
bounded by

2H
√
K +

√
K∑

t=3

2

√√√√2
√
KH2 log

(
(t− 1)

√
K
)

ϵ′(t− 1)

≤2H
√
K + 2

√
2KH2 logK

ϵ′

√
K∑

t=3

√
1

(t− 1)
√
K

≤2H
√
K + 2

√
2
√
KH2 logK

ϵ′

∫ √
K

t=1

√
1

t
dt

≤2H
√
K + 2

√
2KH2 logK

ϵ′

=O(H
√
K).

The analysis is the same for the constraint violation.

Appendix G. Proof of Theorem 6 (Identification)

Theorem 3 Assume D̃ = D∗ after policy pruning. Under Assumptions 1 and 3, with probability
1 − Õ

(
1
K

)
, the regret and constraint violation during the policy identification phase are both

O
(√

K
)
. Furthermore, |π̃h(a|x) − π∗

h(a|x)| = O
(

1√
K

)
if 0 < π∗

h(a|x) < 1 and π̃h(a|x) =

π∗
h(a|x)| if π∗

h(a|x) ∈ {0, 1}.

Proof Consider the {am} obtained at the end of the refinement phase, and the mixed policy π̂
defined by {am}. According to the proof of Theorem 5, we have with probability 1−O(K−1),

V π̂
1 =

M∑
m=1

amV πm

1

≥

(
V π∗
1 − 2

√
H2 log ((t− 1)ϵ′K)

ϵ′K

)
(26)

W π̂,n
1 =

M∑
m=1

amW πm,n
1

≥

(
W π∗,n

1 − 2

√
H2 log ((t− 1)ϵ′K)

ϵ′K

)
∀n. (27)

Therefore, the regret and constraint violation during the identification phase, which includes K
episodes, are both O(H

√
K).

When both (26) and (27) hold, under Assumption 2, we have

∥qπ̂ − qπ
∗∥1 = O(1/

√
K).
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For any (h, x, a) such that 0 < π∗
h(x|a) < 1,

E

[
amK∑
k=1

I(xk,h = x, ak,h = a)

]
= amqπ

m

h (x, a)K,

which implies that

Pr

(∣∣∣∣∣
amK∑
k=1

I(xk,h=x,ak,h=a) − amqπ
m

h (x, a)K

∣∣∣∣∣ ≤√K logK

)

= 1−O
(

1

K

)
according to the Azuma-Hoeffding inequality. Define event

Φ =

{∣∣∣∣∣
∑K

k=1 I(xk,h=x,ak,h=a)

K
−
∑
m

amqπ
m

h (x, a)

∣∣∣∣∣ ≤M

√
logK

K

}
. (28)

We have

Pr (Φ) = 1−O
(

1

K

)
.

Define q̃h(x, a) =
Nh(x,a)

K , which is the empirical occupant measure under policy π̂. Note that

Nh(x, a) =

K∑
k=1

I(xk,h = x, ak,h = a)

and
qπ̂h(x, a) =

∑
m

amqπ
m

h (x, a).

Therefore, we have with probability 1−O(1/K),

∥q̃ − qπ
∗∥1 = O(1/

√
K),

which implies that
∥π̃ − π∗∥1 = O(1/

√
K).

Furthermore, since D̃ = D∗, we immediately have π̃h(a|x) = π∗
h(a|x)| if π∗

h(a|x) ∈ {0, 1}.

Appendix H. Extension to CMDPs with multiple optimal solutions

When the optimal solution to the CMDP is not unique, or the RL agent does not know whether the
CMDP has a unique solution or not, the agent adds Multi-Solution Pruning after the pruning phase
in PRI to keep one and only one optimal policy belonging to Π∗,e. Recall that after the pruning
phase, the action space for state x and step h, denoted by Ah,x, is limited to Ah,x = D̃h,x. The key
idea of the multi-solution pruning algorithm is to evaluate each stochastic decision (h′, x′) such that
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|Ah′,x′ | > 1. The algorithm first decides whether some of the actions in Ah′,x′ can be removed, e.g.,
a′, while retaining at least one optimal policy with the following action space:

⊗(h,x)̸=(h′,x′)Ah,x ⊗ (Ah′,x′ \ {a′}).

This is done by running Triple-Q with the above action space for K0.25 episodes. If the regret is
small, then with a high probability, at least one of the optimal policies is retained so we can remove
action a′ from Ah′,x′ . The detailed algorithm is presented in Algorithm 2.

If the regret is large, then any optimal policy in ⊗(h,x)Ah,x has to use action a′ in state x′ at step
h′. Mulit-Solution Pruning next determines whether using a′ alone is sufficient, i.e., whether an
optimal policy is retained in the following action space

⊗(h,x)̸=(h′,x′)Ah,x ⊗ (Ah′,x′ = {a′}).

This is again done by running Triple-Q with the above action space for K0.25 episodes. If the regret
is small, then with a high probability, one optimal policy takes a greedy decision at (h′, x′) with
action a′; otherwise, the algorithm keeps a′ in Ah′,x′ and moves to a different action in Ah′,x′ . Note
that we use Triple-Q for K0.25 episodes each time, instead of

√
K episodes, because it is easier to

learn whether an optimal policy exists than learning the actual optimal policy.

H.1. Proof of Theorem 7 (multiple-solution pruning)

Theorem 4 Under Assumption 4 and 5, with probability 1−O(1/K0.02), for sufficiently large K,
multi-solution pruning outputs a unique optimal policy with at most N stochastic decisions. The
regret and constraint violation during multi-solution pruning are bounded by H2SAK0.25 with
probability one.

Proof
We first consider the K0.25 episodes after a′ is removed from Ah′,x′ . Consider the case that there

still exists an optimal policy after removing the action. In this case, we will show that v∗− ṽ ≤ 2
K0.03

with a high probability. Define

V̄1 =
1

K0.25

K0.25∑
k=1

V πk
1 ,

where πk is the policy used in the kth episode.
Note that

v∗ − ṽ = v∗ − V π∗
1 + V π∗

1 − V̄1 + V̄1 − ṽ.

We next bound the three terms v∗ − V π∗
1 , V π∗

1 − V̄1, and V̄1 − ṽ individually.
Let vk,1 be the cumulative reward received in episode k and V πk

1 be the reward value function.
Note that

Xτ =

τ∑
k=1

(vk,1 − V πk
1 )

is a Martingale. By Azuma’s inequality, we have

Pr

(∣∣ṽ − V̄1

∣∣ ≤√2H2 logK0.25

K0.25

)
≥ 1− 1

2K0.25
. (29)
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Algorithm 2: Multi-Solution Pruning

Set v∗ to be the average cumulative reward received over the
√
K episodes under the policy

pruning phase of PRI.
Set flag(h, x)← 0 for all (h, x) such that |D̃h,x| > 1.
while ∃(h, x) such that |D̃h,x| > 1 and flag(h, x) = 0 do

Select (h′, x′) such that |D̃h′,x′ | > 1 and flag(h′, x′) = 0 with the smallest h′. Ties are
broken arbitrarily.

flag(h′, x′)← 1
for a′ ∈ D̃h′,x′ do

Reset Triple-Q and run it for K0.25 episodes with D̃h,x ((h, x) ̸= (h′, x′)) and
D̃h′,x′ \ {a′} as the action spaces while counting Ñh(x, a) as in policy pruning. Record
the average cumulative reward ṽ and average cumulative utilities w̃n.

if v∗ − ṽ ≤ 2
K0.03 and w̃n ≥ ρn for all n then

Update D̃h,x =
{
a : Ñh(x,a)

K0.25 ≥ ϵ
2

}
for all (h, x).

end
else

Run Triple-Q for K0.25 episodes with action space D̃h,x for (h, x) ̸= (h′, x′) and
{a′} for (h′, x′). Record the average cumulative reward ṽ

if v∗ − ṽ ≤ 2
K0.03 + 2

√
2H2 logK0.25

K0.25 and w̃n ≥ ρn for all n then

Update D̃h,x =
{
a : Ñh(x,a)

K0.25 ≥ ϵ
2

}
for all (h, x).

end
end

end
end

A similar argument yields that

Pr

(∣∣∣v∗ − V̄ π∗
1

∣∣∣ ≤√2H2 logK0.5

K0.5

)
≥ 1− 1

2K0.5
. (30)

We next bound V π∗
1 − V̄1 based on Lemma 3 and the Markov inequality. First, based on the

Markov inequality, we have

Pr
(
V π∗
1 − V̄1 ≥ K−0.03

∣∣∣V π∗
1 ≥ V̄1

)
≤

E
[
V π∗
1 − V̄1

∣∣V π∗
1 ≥ V̄1

]
K−0.03

.

Note that we have

E
[
V π∗
1 − V̄1

∣∣∣V π∗
1 ≥ V̄1

]
=
E
[
V π∗
1 − V̄1

]
− Pr

(
V π∗
1 < V̄1

)
E
[
V π∗
1 − V̄1

∣∣V π∗
1 < V̄1

]
Pr
(
V π∗
1 ≥ V̄1

) (31)

≤
c1K0.2

K0.25 +H Pr
(
V π∗
1 < V̄1

)
1− Pr

(
V π∗
1 < V̄1

) (32)
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and

Pr
(
V π∗
1 − V̄1 ≥ K−0.03

)
(33)

=Pr
(
V π∗
1 − V̄1 ≥ K−0.03

∣∣∣V π∗
1 ≥ V̄1

)
Pr
(
V π∗
1 ≥ V̄1

)
(34)

+ Pr
(
V π∗
1 − V̄1 ≥ K−0.03

∣∣∣V π∗
1 < V̄1

)
Pr
(
V π∗
1 < V̄1

)
(35)

≤Pr
(
V π∗
1 − V̄1 ≥ K−0.03

∣∣∣V π∗
1 ≥ V̄1

)(
1− Pr

(
V π∗
1 < V̄1

))
+ Pr

(
V π∗
1 < V̄1

)
(36)

=K0.03

(
c1K

0.2

K0.25
+H Pr

(
V π∗
1 < V̄1

))
+ Pr

(
V π∗
1 < V̄1

)
. (37)

Note that when the constraints are satisfied, we have V π∗
1 ≥ V̄1. Therefore, according Lemma 3,

Pr
(
V π∗
1 < V̄1

)
= O(K−0.5), which implies that

Pr
(
V π∗
1 − V̄1 ≥ K−0.03

)
= O

(
K−0.02

)
. (38)

Combining the inequality above with inequalities (29) and (30), we can conclude that

Pr
(
v∗ − ṽ ≤ 2K−0.03

)
= 1−O

(
K−0.02

)
. (39)

Based on Lemma 3’s result on constraint violation, we obtain

Pr
(
v∗ − ṽ ≤ 2K−0.03, w̃n ≥ ρn ∀n

)
= 1−O

(
K−0.02

)
, (40)

On the other hand, if no optimal policy exists after removing a′, then we have ∀π ∈ Π∗,e,
qπh′(x′, a′) ≥ ϵ. Let π′′ be an optimal policy with action spaces

⊗(h,x)̸=(h′,x′)Ah,x ⊗ (Ah′,x′ \ {a′}),

and suppose all constraints are satisfied under π′′. Note that π′′ is not an optimal policy for the
original problem. We first have

v∗ − ṽ = v∗ − V π∗
1 + V π∗

1 − V π′′
1 + V π′′

1 − V̄1 + V̄1 − ṽ

Based on Assumptions 4 and 5, we have

V π∗
1 − V π′′

1 ≥ cv||qπ
∗ − qπ

′′ ||1
≥ cv|qπ

∗
h′ (x′, a′)− qπ

′′
h′ (x′, a′)|

≥ cvϵ.

This holds because all constraints are satisfied under π′′ under our assumption. Similar to the first
case, we have

Pr

(∣∣ṽ − V̄1

∣∣ ≤√2H2 logK0.25

K0.25

)
≥ 1− 1

2K0.25
. (41)
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and

Pr

(∣∣∣v∗ − V̄ π∗
1

∣∣∣ ≤√2H2 logK0.5

K0.5

)
≥ 1− 1

2K0.5
. (42)

Furthermore, according to Lemma 3,

Pr
(
V π′′
1 − V̄1 ≥ 0

)
≥ 1−O

(
1

K0.5

)
(43)

because the constraint is satisfied with probability 1−O
(

1
K0.5

)
.

Summarizing the results above, using the union bound, we conclude that with probability
1−O

(
K−0.02

)
, we have

v∗ − ṽ ≥ cvϵ− 2

√
2H2 logK0.25

K0.25
> 2K−0.03

for sufficiently large K if an optimal policy is not retained. If none of the policies formed by action
spaces

⊗(h,x) ̸=(h′,x′)Ah,x ⊗ (Ah′,x′ \ {a′})

can satisfy the constraints, then it can be easily shown that w̃n < ρn with probability 1−O(K−0.25)
for some n.

If a′ is deemed to be necessary, Mulit-Solution Pruning next determines whether using a′ alone
is sufficient, i.e., can stochastic decision (h′, x′) become greedy without losing optimality? The
algorithm runs Triple-Q with action space {a′} for (h′, x′). If there exists an optimal policy π
with πh′(a′|x′) = 1, then following the same analysis above, we have with probability at least
1−O

(
K−0.02

)
,

v∗ − ṽ ≤ 2

K0.03
.

Otherwise, according to the Assumption 4, ∀π∗ ∈ Π∗,e, there exists another action a′′ ̸= a′ such that
qπ

∗
h′ (x′, a′′) ≥ ϵ. Because any optimal policy can be represented as a linear combination of those

policies in Π∗,e, we have that for any optimal policy π∗,
∑

a̸=a′ q
π∗
h′ (x′, a) ≥ ϵ. Letting π′′ be an

optimal policy with action spaces

⊗(h,x)̸=(h′,x′)Ah,x ⊗ (Ah′,x′ = {a′}),

which satisfies all constraints, we have∑
a̸=a′

qπ
∗

h′ (x′, a)− qπ
′′

h′ (x′, a) ≥ ϵ.

Thus, according to Assumption 5,

V π∗
1 − V π′′

1 ≥ cv||qπ∗ − qπ
′′ ||1 ≥ cvϵ

because π′′ satisfies all constraints.
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The remaining analysis is identical to case when a′ is removed from the action space Ah′,x′ . If
none of the policies formed by action spaces

⊗(h,x)̸=(h′,x′)Ah,x ⊗ (Ah′,x′ = {a′})

can satisfy the constraints, then it can be easily shown that w̃n < ρn with probability 1−O(K−0.25)
for some n.

After the algorithm goes through all action space Ah,x, with probability 1 −O(1/K0.02), we
obtain action space

⊗(h,x)Ah,x

such that none of the stochastic decision can be reduced to a greedy decision without losing optimality.
Since any optimal policy can be written as a linear combination of optimal policies associated with
extreme points, and any combination of two optimal policy only increases the number of stochastic
decisions. Therefore, we conclude that the optimal policy induced by

⊗(h,x)Ah,x

is an extreme point and is unique. Besides, it is easy to verify that the regret and constraint violation of
multiple solution pruning are bounded by H2SAK0.25 because it takes at most HSAK0.25 episodes
to finish the algorithm.

Appendix I. Simulations

I.1. Synthetic CMDP

In the systehtic CMDP, we choose |S| = 3, |A| = 3, H = 3. The detailed parameters of the CMDP
in the first experiment are shown in Table 2, 3 and 4.

We executed the pruning phase (Triple-Q) over 100, 000 episodes, followed by the refinement
phase over 1, 000, 000 episodes. Since the problem has only one constraint, the optimal policy has
only one stochastic decision, which can be decided by evaluating the frequencies of two greedy
policies. Thus, phase 3 is not necessary for this specific environment.

Table 2: Transition Kernels (the rows represent (previous state, action) and the columns represent
(step, next state)).

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
(1,1) 0.3112981 0.35107633 0.27041442 0.42626645 0.04822746 0.14663183 0.4031534 0.19783729 0.39831431
(1,2) 0.23314339 0.32491141 0.48360071 0.24246185 0.19021328 0.43972054 0.26457139 0.21435897 0.26256243
(1,3) 0.45555851 0.32401226 0.24598487 0.3312717 0.76155926 0.41364763 0.33227521 0.58780374 0.33912326
(2,1) 0.32676574 0.35320112 0.1300059 0.35453348 0.32114495 0.40817113 0.1762648 0.30097191 0.48437535
(2,2) 0.11092341 0.28034838 0.45655888 0.23441632 0.2847394 0.235718 0.17239783 0.37273618 0.08000908
(2,3) 0.56231085 0.3664505 0.41343525 0.4110502 0.39411565 0.35611087 0.65133738 0.32629191 0.43561556

I.2. Grid World

As shown in Figure 5, the task of the agent is to go from the red grid point to the green grid point.
The black grid points are the safe points over which the agent can move, and the yellow grid points
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Table 3: Rewards (the rows represent (state, action) and the columns represent step.)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
1 0.5507979 0.70814782 0.29090474 0.51082761 0.89294695 0.89629309 0.12558531 0.20724388 0.0514672
2 0.44080984 0.02987621 0.45683322 0.64914405 0.27848728 0.6762549 0.59086282 0.02398188 0.55885409
3 0.25925245 0.4151012 0.28352508 0.69313792 0.44045372 0.15686774 0.54464902 0.78031476 0.30636353

Table 4: Utilities (the rows represent (state, action) and the columns represent step. )

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
1 0.22195788 0.38797126 0.93638365 0.97599542 0.67238368 0.90283411 0.84575087 0.37799404 0.09221701
2 0.6534109 0.55784076 0.36156476 0.2250545 0.40651992 0.46894025 0.26923558 0.29179277 0.4576864
3 0.86053391 0.5862529 0.28348786 0.27797751 0.45462208 0.20541034 0.20137871 0.51403506 0.08722937

Figure 5: Grid World

are obstacles. Moving over an obstacle incurs a penalty of one. The constraint is that the agent can
incur only an average cost of 0.5 or less. The agent can take six steps at maximum. The reward
associated with reaching the destination is 1, and the rewards for other locations, after six steps, are
the Euclidean distance from the location to the destination (normalized by the longest distance). At
each grid point, the agent has five actions to choose from: up, down, left, right, and stay, except at
the boundary. The goal is to maximize the reward subject to the constraint.

During the experiment, we observed that policy pruning is much more efficient than the theoretical
worst case. For this specific environment, the optimal policy should have 6×5×5+1 = 155 nonzero
π∗
h(a|x)’s. After the first phase (Triple-Q), we have roughly 200 (step, state, action) triples (here

"roughly" considers the difference among different trials with different random seeds), associated
with stochastic decisions to check and prune. Except for the two “necessary” decisions, which are
stochastic decisions in the optimal policy, for all trials, the algorithm only checked two candidate
triples and eliminated the rest candidate triples in the process.
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