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Abstract
Density estimation is one of the most central problems in statistical learning. In this paper we
introduce a new approach to non-parametric density estimation that is statistically consistent, is
provably different from Kernel Density Estimation, makes the inductive bias of the model clear and
interpretable, and performs well on a variety of relatively high dimensional problems.

One of the key points of interest in terms of optimization is our use of natural gradients (in
Hilbert Spaces). The optimization problem we solve is non-convex, and standard gradient methods
do not perform well. However, we show that the problem is convex on a certain positive cone, and
natural gradient steps preserve this cone. The standard gradient steps, on the other hand, tend to lose
positivity. This is one of the few cases in the literature where the reasons for the practical preference
for the natural gradient are clear.

In more detail, our approach is based on regularizing a version of a Sobolev norm of the density,
and there are several core components that enable the method. First, while there is no closed analytic
form for the associated kernel, we show that one can approximate it using sampling. Second,
appropriate initialization and natural gradients are used as discussed above. Finally, while the
approach produces unnormalized densities, which prevents the use of cross-validation, we show
that one can instead adopt the Fisher Divergence-based Score Matching methods for this task. We
evaluate the resulting method on a comprehensive recent tabular anomaly detection benchmark suite
which contains more than 15 healthcare and biology-oriented data sets (ADBench), and find that it
ranks second best, among more than 15 algorithms.

1. Introduction

In recent years, there has been a tremendous amount of work in the development of parametric
neural network based density estimation methods, such as Normalizing Flows [29], Neural ODEs [6],
and Score Based methods, [38]. However, the situation appears to be different for non parametric
density estimation methods, [43], [15]. While there is recent work for low dimensional (one or
two dimensional) data, see for instance [40], [41], [7], [9] and survey [20], there still are very few
non-parametric methods applicable in higher dimensions.

Let S = {xi}Ni=1 ⊂ Rd be a set of data points sampled i.i.d from some unknown distribution. In
this paper we introduce and study a density estimator of the following form:

f∗ := argmin
f∈Ha

− 1

N

N∑
i=1

log f2(xi) + ∥f∥2Ha . (1)
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HereHa is a Sobolev type Reproducing Kernel Hilbert Space (RKHS) of functions, having a norm :

∥f∥2Ha =

∫
Rd

f2(x)dx+ a

∫
Rd

|(Df)|2 (x)dx, (2)

where D represents a combination of derivatives of a certain order. The density estimate is given by
the function (f∗)2. Note that (f∗)2 is non-negative, and ∥f∥Ha <∞ implies

∫
Rd(f

∗)2(x)dx <∞.
Thus (f∗)2 is integrable, although not necessarily integrates to 1. Note also that (1) is essentially a
regularized maximum likelihood estimate, where in addition to bounding the total mass of (f∗)2, we
also bound the norm of the derivatives of f∗ of certain order. The fact thatHa is an RKHS allows us
to compute f∗ via the standard Representer Theorem. Observe that it would not be possible to control
only the norm L2 norm of f∗ and maintain computabilty, since L2 is not an RKHS. However, adding
the derivatives with any a > 0 makes the space into an RKHS which allows to control smoothness,
hence, we call the objective Root Sobolev Regularized density estimator (RSR).

Despite it being natural and simple, the objective (1) has not been studied in the literature as a
tool for multidimensional data analysis. It has been introduced and studied in [10] and [21]; see also
[8], but solely on 1d case. Our goal in this paper is to develop the necessary ingredients for RSR to
become useful in high dimensions.

For d > 1, the kernel corresponding to Ha, which we call the SDO kernel (Single Derivative
Order; see Section 4), no longer has an analytical expression. However, we show that it can be
approximated by a sampling procedure.

Next, standard gradient descent optimization of (1) produces poor results. We show that this can
be solved by using natural gradients ([2], [25]). The concept of a gradient that is independent of
a parametrisation was proposed in [2], and in [25]. In [18] it was introduced into Reinforcement
Learning, where it is widely used today. Here we consider specifically a Hilbert Space version of the
notion, which also has a variety of applications, although typically not in RL. See for instance [25],
[45], and [34] for a sample of early and more recent applications. Natural Gradient in Hilbert Spaces
is also referred to as Functional Gradient in the literature. While we are not aware of a dedicated
treatment of the subject, introductory notes may be found at [3] and in the works cited above.

Solutions of (1) are unnormalized, complicating hyperparameter tuning by precluding the use of
maximum likelihood. We address this by leveraging score-matching [17, 36, 37] to assess the Fisher
Divergence, a technique that has recently garnered renewed interest. We also offer examples proving
that RSR can markedly differ from the standard Kernel Density Estimator (using the same kernel).
Hence, RSR is a genuinely new estimator, with different properties than KDE (see Section J).

Finally, consistency of the RSR in one dimension was shown in [21]. In Appendix Section O we
state and prove the consistency of the RSR in any fixed dimension d, for compactly supported ground
truth densities. Note that as a result of consistency, it can also be shown that the estimator (f∗)2

becomes normalized, at least asymptotically with N . Note that applications like anomaly detection
and standard MCMC sampling algorithms, such as Langevin Dynamics or Hamiltonian Monte Carlo,
do not require normalization. With these contributions in place, we show that RSR achieves the
remarkable scoring second best on a recent comprehensive Anomaly Detection benchmark, [14],
which includes more than 45 datasets and more than 15 specialized AD methods.

See Supplementary Material Section A for a full summary of the literature and related work.

2



SPECIFY RUNNING TITLE

2. The RSR Desnity Estimator

This Section describes the general RSR Framework, formulated in an abstract Reproducing Kernel
Hilbert Space. We first introduce the general optimization problem and discuss a few of its properties.
In Section D we discuss the gradient descent optimization and introduce the natural gradient.

2.1. The Basic Framework

Let X be a set and letH be a Reproducing Kernel Hilbert Space (RKHS, [33]) of functions on X ,
with kernel k : X × X → R. In particular, H is equipped with an inner product ⟨·, ·⟩H and for
every x ∈ X , the function k(x, ·) = kx(·) : X → R is in H and satisfies the reproducing property,
⟨kx, f⟩H = f(x) for all f ∈ H. The norm on H is denoted by ∥f∥2H = ⟨f, f⟩H, and the subscript
H may be dropped when it is clear from context. Given a set of points S = {x1, . . . , xN} ⊂ X , we
define the RSR estimator as the solution to the following optimization problem:

f∗ = argmin
f∈H

− 1

N

∑
i

log f2(xi) + ∥f∥2H . (3)

For appropriate spacesH, the function (f∗)2 corresponds to an unnormalized density (note that∫
Rd(f

∗)2(x)dx <∞). By the Representer Theorem for RKHS, the minimizer of (3) has the form

f(x) = fα(x) =

N∑
i=1

αikxi(x), for some α = (α1, . . . , αN ) ∈ RN . (4)

Thus one can solve (3) by optimizing over a finite dimensional vector α. Notice that standard RKHS
problems typically use λ ∥h∥2H, where λ > 0 controls the regularization. However, due to the special
structure of (3), any solution with λ ̸= 1 is a rescaling by a constant of a λ = 1 solution. In addition,
any solution of (3) satisfies ∥f∥2H = 1. See Lemma 5 in Appendix for full details on these two points.

3. Non-Convex Optimization

Observe that the objective

L(f) = − 1

N

∑
i

log f2(xi) + ∥f∥2H = − 1

N

∑
i

log ⟨f, kxi⟩
2
H + ∥f∥2H (5)

is not convex in f due to the fact that the scalar function a 7→ − log a2 from R to R is not convex and
is undefined at 0. However, the restriction of a 7→ − log a2 to a ∈ (0,∞) is convex as the restriction
of L the positive cone of functions C = {f | f(x) ≥ 0 ∀x ∈ X}. Empirically, we have found that
the lack of convexity results in poor solutions found by gradient descent. Intuitively, this is caused
by f changing sign, which implies that f should pass through zero at some points. If these points
happen to be near the test set, this results in low likelihoods. At the same time, there seems to be no
computationally affordable way to restrict the optimization to the positive cone C. We resolve this
issue in two steps: First, we use a non-negative α initialization, αi ≥ 0. Note that for f given by
(4), if the kernel is non-negative, then f is non-negative. Although some kernels are non-negative,
the SDO kernel, and especially its finite sample approximation (Section 4.1) may have negative
values. At the same time, there are few such values, and empirically such initialization tremendously
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improves the performance of the gradient descent. Second, we use the natural gradient, as discussed
in the next section. One can show that for non-negative kernels, C is in fact invariant under natural
gradient steps (supplementary material Section K). This does not seem to be true for the regular
gradient. Empirically, this results in a more stable algorithm and further performance improvement.
A comparison of standard and natural gradients w.r.t negative values is given in Section E.

3.1. Gradients and Minimization

We are interested in the minimization of L(f), defined by (5). Using the representation (4) for x ∈ X ,
we can equivalently consider minimization in α ∈ RN . Let K = {k(xi, xj)}i,j≤N ∈ RN×N denote
the empirical kernel matrix. Then standard computations show that ∥fα∥2H = ⟨Kα,α⟩RN and we
have (fα(x1), . . . , fα(xN )) = Kα (as column vectors). Thus one can consider L(fα) = L(α) as a
functional L : RN → R and explicitly compute the gradient w.r.t α. This gradient is given in (18).

As detailed in 2.1, it is also useful to consider the Natural Gradient – the gradient of L(f) as a
function of f , directly in the space H. Briefly, a directional Fréchet derivative, [26], of L at point
f ∈ H in direction h ∈ H is defined as the limit DhL(f) = limε→0 ε

−1 · (L(f + εh)− L(f)). As
a function of h, DhL(f) can be shown to be a bounded and linear functional, and thus by the Riesz
Representation Theorem, there is a vector, which we denote∇fL, such that DhL(f) = ⟨∇fL, h⟩ for
all h ∈ H. We call∇fL the Natural Gradient of L, since its uses the native spaceH. Intuitively, this
definition parallels the regular gradient definition, but uses theH inner product to define the vector
∇fL, instead of the standard, “parametrization dependent” inner product in RN , that is used to define
∇αL. For the purposes of this paper, it is sufficient to note that similarly to the regular gradient, the
natural gradient satisfies the chain rule, and we have ∇f ∥f∥2H = 2f and ∇f ⟨g, f⟩H = g for all
g ∈ H. The explicit gradient expressions are given below:

Lemma 1 (Gradients) The standard and the natural gradients of L(f) are given by

∇αL = 2

[
Kα− 1

N
K (Kα)−1

]
∈ RN and ∇fL = 2

[
f − 1

N

N∑
i=1

f−1(xi)kxi

]
∈ H (6)

where for a vector v ∈ Rd, v−1 means coordinatewise inversion.

If one chooses the functions kxi as a basis for the space HS = span {kxi}i≤N ⊂ H, then α in (4)
may be regarded as coefficients in this basis. For f = fα ∈ HS one can then write in this basis
∇fL = 2

[
α− 1

N (Kα)−1
]
∈ RN . Therefore in the α-basis we have the following standard and

natural gradient iterations, respectively: (λ is the learning rate)

α← α− 2λ

[
Kα− 1

N
K (Kα)−1

]
and α← α− 2λ

[
α− 1

N
(Kα)−1

]
, (7)

3.2. Natural-Gradient vs Standard Gradient Comparison

We conduct an experiment to demonstrate that the standard gradient descent may significantly amplify
the fraction of negative values in a solution, while the natural gradient keeps it constant. See also the
discussion in Section 2.1. We have randomly chosen 15 datasets from ADBench, and for each dataset
we have used 50 non negative α initializations. Then we have run both algorithms for 1000 iteartions.
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Figure 1: Fraction of negative values for natural versus α gradient-based optimization across datasets.
The X-axis represents datasets from ADbench (see Supplementary Material Section P for details).

The fraction of negative values of fα (on the train set) was measured at initialization, and in the end
of each run. In Figure 3, for each dataset and for each method, we show an average of the highest 5
fractions among the 50 initializations. Thus, for instance, for the ’shuttle’ data, the initial fraction is
negligible, and is unchanged by the natural gradient. However, the standard gradient (“alpha GD” in
the Figure, blue) yields about 70% negative values in the 5 worst cases (i.e. 10% of initializations).

4. Single Derivative Order Kernel Approximation

In this Section we introduce the Single Derivative Order kernel, which corresponds to norms of the
form (2). We also introduce the relevant Sobolev functional spaces and derive the Fourier transform
of the norm. Section 4.1 describes a sampling procedure that can be used to approximate the SDO.

For a function f : Rd → C and a tuple κ ∈ (N ∪ {0})d, let Dκ = ∂f

∂x
κ1
1 ...∂x

κd
d

denote the κ

indexed derivative. By convention, for κ = (0, 0, . . . , 0) we set Dκf = f . Set also κ! =
∏d

j=1 κj !

and |κ|1 =
∑d

j=1 κj . Set ∥f∥2L2
=
∫
|f(x)|2 dx. Then, for m ∈ N and a > 0 denote

∥f∥2a = ∥f∥2L2
+ a

∑
|κ|1=m

m!

κ!
∥(Dκf)∥2L2

. (8)

The norm ∥f∥2a induces a topology that is equivalent to that of a standard L2 Sobolev space ([1],
[32]) of order m. However, here we are interested in properties of the norm that are finer than the
above equivalence. For instance, note that for all a ̸= 0 the norms ∥f∥a are mutually equivalent,
but nevertheless, a specific value of a is crucial in applications, for regularization purposes. Let
Ha =

{
f : Rd → C | ∥f∥2a <∞

}
be the space of functions with a finite ∥f∥2a norm. Denote by

⟨f, g⟩Ha = ⟨f, g⟩L2
+ a

∑
|α|1=m

m!

κ!
⟨(Dκf) , (Dκg)⟩2L2

(9)

the inner product that induces the norm ∥f∥2a.
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Theorem 2 For m > d/2 and any a > 0, the space Ha admits a reproducing kernel ka(x, y)
satisfying ⟨kax, f⟩Ha = f(x) for all f ∈ Ha and x ∈ Rd. The kernel is given by

ka(x, y) =

∫
Rd

e2πi⟨y−x,z⟩

1 + a · (2π)2m ∥z∥2m
dz =

∫
Rd

1

1 + a · (2π)2m ∥z∥2m
·e2πi⟨y,z⟩ ·e2πi⟨x,z⟩dz. (10)

The proof of Theorem 2 follows the standard approach of deriving kernels in Sobolev spaces, via
computation and inversion of the Fourier transform ( [32]). However, compact expressions such
as (10) are only possible for some choices of derivative coefficients. Since the form (8) was not
previously considered in the literature, we provide the full proof in the Appendix.

4.1. Kernel Evaluation via Sampling

To solve the optimization problem (3) inHa, we need to be able to evaluate the kernel ka at various
points. However, for d > 1, it seems unlikely that there are closed expressions (see [28]). To resolve
this, note that (10) may be interpreted as an average of e2πi⟨y,z⟩ · e2πi⟨x,z⟩, where z is sampled from
an unnormalized density wa(z) = (1 + a · (2π)2m ∥z∥2m)−1 on Rd. This suggest that if we can
sample from wa(z), then we can approximate ka by summing over a finite set of samples zj instead
of computing the full integral. In fact, a similar scheme was famously previously employed in [30].
There, it was observed that by Bochners’s Theorem, [31], any stationary kernel can be represented as
k(x, y) =

∫
ν(z)e2πi⟨y,z⟩ · e2πi⟨x,z⟩dz for some non-negative measure ν. Thus, if one can sample

z1, . . . , zT from ν, one can construct an approximation

k̂a(x, y) =
1

T

T∑
t=1

cos (⟨zt, x⟩+ bt) · cos (⟨zt, y⟩+ bt) , (11)

where bt are additional i.i.d samples, sampled uniformly from [0, 2π]. Note that the samples zt, bt
can be drawn once, and subsequently used for all x, y (at least in a bounded region).

For the case of interest in this paper, the SDO kernel, Bochner’s representation is given by (10)
in Theorem 2. Thus, to implement the sampling scheme (11) it remains to describe how one can
sample from wa(z) on Rd. To this end, note that wa(z) is spherically symmetric, and thus can be
decomposed as z = rθ, where θ is sampled uniformly from a unit sphere Sd−1 and the radius r is
sampled from a one dimensional density ua(r) = rd−1

1+a(2πr)2m
(see the Appendix for full details on

this change of variables). Next, note that sampling θ is easy ([24]), thus the problem is reduced to
sampling a one dimensional distribution with a single mode, with known (unnormalized) density.
This can be efficiently achieved by methods such as Hamiltonian Monte Carlo (HMC). However, we
found that in all cases a sufficiently fine grained discretization of the line was sufficient.

5. Experiments

We evaluate our method on real-world unsupervised Anomaly Detection (AD) tasks, where nor-
malized density is not a concern. AD’s inherent traits, such as differentiating latent from out-of-
distribution samples, make it apt for this assessment. We compare our results to a gold standard
AD benchmark, ADbench ([14]), which evaluates a broad array of 15 AD algorithms across more
than 47 labeled datasets, primarily targeting healthcare and natural science-oriented tabular data. In
addition, we evaluate KDE using both Gaussian and Laplace kernels, and as an ablation study, we

6



SPECIFY RUNNING TITLE

compare RSR to KDE with SDO kernel. In addition to AUC-ROC, we also focus on the relative
ranking in each dataset. For both AUC-ROC and rank evaluations, RSR emerges as the 2nd best
AD method overall. Notably, this achievement is with the ’vanilla’ version of our method, without
any pre or post-processing dedicated to AD. In contrast, many other methods are specifically tailored
for AD and include extensive pre and post-processing. In addition to performing well on the standard
ADBench benchmark, and perhaps even more impressively, RSR excels also on the more demanding
setup of duplicate anomalies, which was also extensively discussed in [14]. Here, RSR rises to
the forefront as the top AD method (with a lead of 4% over the closest contender). This scenario,
analogous to many practical situations, especially in biological data where "missing data" appears
as an unknown constant, results in significant performance drops for previous front-runners like
Isolation Forest. See Appendix M for the associated figures, full details and additional results.
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Appendix A. Literature and Related Work

A as discussed in Section 1, a scheme that is equivalent to (1) was studied in [10] and [21]; see also
[8]. However, these works concentrated solely on 1d case, and used spline methods to solve (3) in the
special case that amounts to the use of one particular kernel. Our more general RKHS formulation
in Section (2.1) allows the use of a variety of kernels. Most importantly, however, as discussed in
Section (1), in this work we have developed and evaluated the high dimensional version of RSR.

The most common non parametric density estimator is the Kernel Density Estimator (KDE),
[15, 43]. For comparison, we have evaluated KDE, with the two most popular kernels, Gaussian
and Laplacian, on the AD benchmark. However, these methods did not perform well (Section 5)
on this task. We have also evaluated KDE with the SDO kernel that we introduce in Section 4, and
which has not been previously considered in the literature for d > 1. Remarkably, we find that using
this kernel significantly improves the AD performance compared to Gaussain and Laplacian kernels.
However, the performance is still subpar to the RSR estimator.

Another common group of non parametric density estimators are the projection methods, [42].
These methods have mostly been studied in one dimensional setting, see the survey [20]. It is worth
noting that with the exception of [41], the estimators produced by these methods are not densities,
in the sense that they do not integrate to 1, but more importantly, may take negative values. In the
context of minmax bounds, projection methods in high dimensions were recently analyzed in [35],
extending a classical work [19]. However, to the best of our knowledge, such methods have never
have been practically applied in high dimensions.

Fisher Divergence (FD) is a similarity measure between distributions, which is based on the score
function – the gradient of the log likelihood. In particular, it does not require the normalization of
the density. The divergence between data and a model can be approximated via the methods of [17],
which have been recently computationally improved in [37] in the context of score based generative
models, [36]. Here we use the FD as a quality metric for hyperparameter selection. In particular, we
adapt the Hutchinson trace representation based methods used in [37] and [12] to the case of models
of the form (3). Full details are given in the Appendix Section L.

The concept of a gradient that is independent of a parametrisation was proposed in [2], and in
[25]. In [18] it was introduced into Reinforcement Learning, where it is widely used today. Here we
consider specifically a Hilbert Space version of the notion, which also has a variety of applications,
although typically not in RL. See for instance [25], [45], and [34] for a sample of early and more
recent applications. Natural Gradient in Hilbert Spaces is also referred to as Functional Gradient in
the literature. While we are not aware of a dedicated treatment of the subject, introductory notes may
be found at [3] and in the works cited above.

Consistency of the RSR in one dimension was shown in [21], for kernels that coincide with
SDO in one dimension. In Appendix Section O we state and prove the consistency of the RSR in
any fixed dimension d, for compactly supported ground truth densities. Our approach generally
follows the same lines as that of [21]. However, some of the estimates are done differently, since the
corresponding arguments in [21] were intrinsically one dimensional.

Appendix B. Difference between RSR and KDE Models

In this Section we construct an analytic example where the RSR estimator may differ arbitrarily from
the KDE estimator with the same kernel. Thus, the models are not equivalent, and encode different
prior assumptions. Briefly, we consider a block model, with two clusters. We’ll show that in this

11
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Figure 2: (a) Distribution of Kernel Values and SDO Kernel Values Inside and Between Clusters. (b)
RSR and KDE Loglikelihoods. the x-axis represents points in the data, arranged by clusters, y-axis
shows the log-likelihood.

particular setting, in KDE the clusters influence each other more strongly, i.e the points in one cluster
contribute to the weight of the points in other cluster, yielding more uniform models. In contrast,
in RSR, rather surprisingly, the density does not depend on the mutual position of the clusters (in
a certain sense). Note that this is not a matter of bandwith of the KDE, since both models use the
same kernel. We believe that this property may explain the better performance of RSR in Anomaly
Detection tasks, although further investigation would be required to verify this.

Given a set of datapoints S = {xi}, for the purposes of this section the KDE estimator is the
function

fkde(x) = fkde,S(x) =
1

|S|
∑
i

kxi(x). (12)

Let fRSR be the solution of (3). We will compare the ratios fkde(xi)/fkde(xj) versus the corre-
sponding quantities for RSR, f2

RSR(xi)/f
2
RSR(xj) for some pairs xi, xj . Note that these ratios do

not depend on the normalization of fkde and f2
RSR, and can be computed from the unnormalized

versions. In particular, we do not require kxi to be normalized in (12).
Consider a set S with two components, S = S1 ∪ S2, with S1 = {x1, . . . , xN} and S2 =

{x′1, . . . x′M} and with the following kernel values:

K =


k(xi, xi) = k(x′j , x

′
j) = 1 for all i ≤ N, j ≤M

k(xi, xj) = γ2 for i ̸= j

k(x′i, x
′
j) = γ′2 for i ̸= j

k(xi, x
′
j) = βγγ′ for all i, j

(13)

This configuration of points is a block model with two components, or two clusters. The correlations
between elements in the first cluster are γ2, and are γ′2 in the second cluster. Inter-cluster correlations
are βγγ′. We assume that γ, γ, β ∈ [0, 1] and w.l.o.g take γ > γ′. While this is an idealized scenario
to allow analytic computations, settings closely approximating the configuration (13) often appear in
real data. See Section B.1 for an illustration. In particular, Figure 2 show a two cluster configuration
in that data, and the distribution of k(x, x′) values.

The KDE estimator for K is simply

fkde(xt) =
1

N +M

[
1 + (N − 1)γ2 +Mβγγ′

]
≈ N

N +M
γ2 +

M

N +M
βγγ′, (14)

12
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for xt ∈ S1, where the second, approximate equality, holds for large M,N . To simplify the
presentation, we shall use this approximation. However, all computations and conclusions also hold
with the precise equality. For x′t ∈ S2 we similarly have fkde(x

′
t) ≈ N

N+M βγγ′ + M
N+M γ′2, and

when M = N , the density ratio is

fkde(xt)

fkde(x
′
t)

=
γ2 + βγγ′

γ′2 + βγγ′
. (15)

The derivation of the RSR estimator is considerably more involved. Here we sketch the argument,
while full details are given in Appendix Section J. First, recall from the previous section that the
natural gradient in the α coordinates is given by 2

(
β −N−1(Kβ)−1

)
. Since the optimizer of (3)

must satisfy∇fL = 0, we are looking for β ∈ RN+M such that β = (Kβ)−1 (the term N−1 can be
accounted for by renormalization). Due to the symmetry of K and since the minimizer is unique, we
may take β = (a, . . . , a, b, . . . , b), where a is in first N coordinates and b is in the next M . Then
β = (Kβ)−1 is equivalent to a, b solving the following system:{

a = a−1
[
1 + (N − 1)γ2

]
+ b−1Mβγγ′

b = a−1Nβγγ′ + b−1
[
1 + (M − 1)γ′2

] (16)

This is a non linear system in a, b. However, it turns out that it may be explicitly solved, up to a
knowledge of a certain sign variable (see Proposition 10). Moreover, for M = N , the dependence on
that sign variable vanishes, and we obtain

Proposition 3 Consider the kernel and point configuration described by (13), with M = N . Then
for every xt ∈ S1, x

′
s ∈ S2,

fRSR(xt)

fRSR(x′s)
=

γ2

γ′2
. (17)

In particular, the ratio does not depend on β.

It remains to compare the ratio (17) to KDE’s ratio (15). If β = 0, when the clusters are maximally
separated, the ratios coincide. However, let us consider the case, say, β = 1

2 , and assume that γ′ ≪ γ.
Then in the denominator of (15) the larger term is βγγ′, which comes from the influence of the first
cluster on the second. This makes the whole ratio to be of the order of a constant. On the other hand,
in RSR there is no such influence, and the ratio (17) may be arbitrarily large. We thus expect the
gap between the cluster densities to be larger for RSR, which is indeed the case empirically. One
occurence of this on real data is illustrated in Figure 2.

B.1. Evaluation of the Difference Between RSR and KDE for Real Data

We have performed spectral clustering of the “letter” dataset from ADBech ([14]), using the empirical
SDO kernel as affinity matrix for both RSR and KDE. We then have chosen two clusters that most
resemble the two block model (13) in Section B. The kernel values inside and between the clusters
are shown in Figure 2a. Next, we train the RSR and KDE models for just these two clusters (to be
compatible with the setting of Section B. The results are similar for densities trained on full data).
The log of these RSR and KDE densities in shown in Figure 2b (smoothed by running average). By
adding an appropriate constant, we have arranged that the mean of both log densities is 0 on the first
cluster. Then one can clearly see that the gap between the values on the first and second cluster is
larger for the RSR model, yielding a less uniform model, as expected from the theory.

13
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Appendix C. Fisher-Divergence Based Hyperparameter Tuning

As noted in Section 1, dealing with unnormalized densities adds a layer of complexity to hyperpa-
rameter tuning since it prevents the use of maximum likelihood for determining optimal parameters.
Consequently, for tuning the smoothness parameter a > 0 in both RSR and KDE with SDO kernel
we employ a score-based approach. This approach measures the Fisher Divergence (FD) between a
dataset sampled from an unknown distribution and a proposed distribution. Specifically, in our case,
the FD between the density learned on the training set and the density inferred on the test set. Hence,
the hyperparameters tuning procedure simply picks the parameters that resolve with the lowest FD.
A thorough explanation of this approach, addressing important computational aspects and featuring a
dedicated algorithm figure, can be found in Appendix Section L.

Appendix D. Gradients and Minimization

We are interested in the minimization of L(f), defined by (5). Using the representation (4) for x ∈ X ,
we can equivalently consider minimization in α ∈ RN . Let K = {k(xi, xj)}i,j≤N ∈ RN×N denote
the empirical kernel matrix. Then standard computations show that ∥fα∥2H = ⟨Kα,α⟩RN and we
have (fα(x1), . . . , fα(xN )) = Kα (as column vectors). Thus one can consider L(fα) = L(α) as a
functional L : RN → R and explicitly compute the gradient w.r.t α. This gradient is given in (18).

As detailed in 2.1, it is also useful to consider the Natural Gradient – the gradient of L(f) as a
function of f , directly in the space H. Briefly, a directional Fréchet derivative, [26], of L at point
f ∈ H in direction h ∈ H is defined as the limit DhL(f) = limε→0 ε

−1 · (L(f + εh)− L(f)). As
a function of h, DhL(f) can be shown to be a bounded and linear functional, and thus by the Riesz
Representation Theorem, there is a vector, which we denote∇fL, such that DhL(f) = ⟨∇fL, h⟩ for
all h ∈ H. We call∇fL the Natural Gradient of L, since its uses the native spaceH. Intuitively, this
definition parallels the regular gradient definition, but uses theH inner product to define the vector
∇fL, instead of the standard, “parametrization dependent” inner product in RN , that is used to define
∇αL. For the purposes of this paper, it is sufficient to note that similarly to the regular gradient, the
natural gradient satisfies the chain rule, and we have ∇f ∥f∥2H = 2f and ∇f ⟨g, f⟩H = g for all
g ∈ H. The explicit gradient expressions are given below:

Lemma 4 (Gradients) The standard and the natural gradients of L(f) are given by

∇αL = 2

[
Kα− 1

N
K (Kα)−1

]
∈ RN and ∇fL = 2

[
f − 1

N

N∑
i=1

f−1(xi)kxi

]
∈ H (18)

where for a vector v ∈ Rd, v−1 means coordinatewise inversion.

If one chooses the functions kxi as a basis for the space HS = span {kxi}i≤N ⊂ H, then α in (4)
may be regarded as coefficients in this basis. For f = fα ∈ HS one can then write in this basis
∇fL = 2

[
α− 1

N (Kα)−1
]
∈ RN . Therefore in the α-basis we have the following standard and

natural gradient iterations, respectively:

α← α− 2λ

[
Kα− 1

N
K (Kα)−1

]
and α← α− 2λ

[
α− 1

N
(Kα)−1

]
, (19)

where λ is the learning rate.

14
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Figure 3: Fraction of negative values for natural versus α gradient-based optimization across datasets.
The X-axis represents datasets from ADbench (see Appendix Section P for details).

Appendix E. Natural-Gradient vs Standard Gradient Comparison

We conduct an experiment to demonstrate that the standard gradient descent may significantly amplify
the fraction of negative values in a solution, while the natural gradient keeps it constant. See also the
discussion in Section 2.1. We have randomly chosen 15 datasets from ADBench, and for each dataset
we have used 50 non negative α initializations. Then we have run both algorithms for 1000 iteartions.
The fraction of negative values of fα (on the train set) was measured at initialization, and in the end
of each run. In Figure 3, for each dataset and for each method, we show an average of the highest 5
fractions among the 50 initializations. Thus, for instance, for the ’shuttle’ data, the initial fraction is
negligible, and is unchanged by the natural gradient. However, the standard gradient (“alpha GD” in
the Figure, blue) yields about 70% negative values in the 5 worst cases (i.e. 10% of initializations).

Appendix F. Basic Minimizer Properties

As discussed in Section 2.1, the minimizer of the RSR objective (3) always hasH norm 1. In addition,
there is no added value in multiplying the norm by a regularization scalar, since this only rescales the
solution. Below we prove these statements.

Lemma 5 Define

f = argmin
h∈H

− 1

N

∑
i

log h2(xi) + ∥h∥2H . (20)

Then f satisfies ∥f∥2 = 1. Moreover, if

f ′ = argmin
h∈H

− 1

N

∑
i

log h2(xi) + λ2 ∥h∥2H , (21)

for some λ > 0, then f ′ = λ−1f .

Proof For any h ∈ H and a > 0,

argmin
a>0

− 1

N

∑
i

log(ah)2(xi) + ∥ah∥2 = (22)

argmin
a
− 1

N

∑
i

log h2(xi)− log a2 + a2 ∥h∥2 . (23)

Taking derivative w.r.t a we have

−2a

a2
+ 2a ∥h∥2 = 0. (24)

15
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Thus optimal a for the problem (3) must satisfy ∥ah∥2 = a2 ∥h∥2 = 1. To conclude the proof of the
first claim, choose h in (22) to be the minimizer in (20), h = f . Note that if ∥f∥H ̸= 1, then we can
choose a = ∥f∥−1

H ̸= 1 to further decrease the value of the objective contradicting the fact that f is
the minimizer.

For the second claim, denoting g = λh,

argmin
h∈H

− 1

N

∑
i

log h2(xi) + λ2 ∥h∥2 (25)

= λ−1 argmin
g∈λH=H

− 1

N

∑
i

log g2(xi) + ∥g∥2 +
1

N

∑
i

log λ2 (26)

= λ−1 argmin
g∈H

− 1

N

∑
i

log g2(xi) + ∥g∥2 (27)

= λ−1f. (28)

Appendix G. Derivation of the Gradients, Proof Of Lemma 4

In this section we derive the expressions for standard and the natural gradients of the objective (5), as
given in Lemma 4.
Proof [Proof Of Lemma 4] We first derive the expression for ∇αL in (18). Recall that ∥f∥2H =
⟨α,Kα⟩RN for α ∈ RN , where Kij = k(xi, xj). This follows directly from the form (4), and the
fact that ⟨kx, ky⟩ = k(x, y) for all x, y ∈ H, by the reproducing property. For this term we have
∇α ⟨α,Kα⟩ = 2Kα. Next, similarly by using (4), ∇αf(x) = (k(x1, x), . . . , k(xN , x)) for every
x ∈ Rd. Finally, we have

∇α
1

N

N∑
i=1

log f2(xi) =
1

N

N∑
i=1

f−2(xi) · 2f(xi) · ∇αf(xi) (29)

= 2
1

N

N∑
i=1

f−1(xi) · ∇αf(xi) (30)

= 2
1

N
K(f(x1), . . . , f(xN ))−1 (31)

= 2
1

N
K (Kα)−1 . (32)

This yields (18).
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For ∇fL, we similarly have∇f ∥f∥2H = 2f , as discussed in section D. Moreover,

∇f
1

N

N∑
i=1

log f2(xi) = ∇f
1

N

N∑
i=1

log ⟨f, xi⟩2H (33)

=
1

N

N∑
i=1

⟨f, xi⟩−2
H · 2 ⟨f, xi⟩H · ∇f ⟨f, xi⟩H (34)

= 2
1

N

N∑
i=1

⟨f, xi⟩−1
H xi. (35)

This completes the proof.

Appendix H. SDO Kernel Details

In Section H.1 we provide a full proof of Theorem 2, while Section H.2 contains additional details
on the sampling approximation of SDO.

H.1. SDO Kernel Derivation

We will prove a claim that is slightly more general than Theorem 2. For a tuple ā ∈ Rm
+ , define the

norm

∥f∥2ā =
m∑
l=0

al
∑
|κ|1=l

l!

κ!
∥(Dκf)∥2L2

, (36)

where Dκ are the κ-indexed derivative, as discussed in Section 4. The SDO norm is a special case
with a0 = 1, am = a, and al = 0 for 0 < l < m. Let Hā be the subspace of L2 of functions with
finite norm,

Hā = {f ∈ L2 | ∥f∥ā <∞} (37)

and let the associated inner product be denoted by

⟨f, g⟩ā =
m∑
l=0

al
∑
|κ|1=l

l!

κ!
⟨(Dκf) , (Dκg)⟩L2

. (38)

Define the Fourier transform

Ff(z) =
∫
Rd

f(u)e−2πi⟨z,u⟩du, (39)

and recall that we have (see for instance [39], [11])

F (Dκf) (z) =

 d∏
j=1

(2πizj)
κj

Ff(z) for all z ∈ Rd. (40)

The following connection between the L2 and the derivative derived norms is well known for
the standard Sobolev spaces ([28, 32, 44]). However, since (36) somewhat differs from the standard
definitions, we provide the argument for completeness.
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Lemma 6 Set for z ∈ Rd

vā(z) =

(
1 +

m∑
l=1

al · (2π)2l ∥z∥2l
) 1

2

. (41)

Then for every f ∈ Hā we have

∥f∥2ā = ∥vā(z) · F [f ]∥2L2
. (42)

Proof

∥f∥2ā =
m∑
l=0

al
∑
|κ|1=l

l!

κ!
∥Dκf∥2L2

(43)

=
m∑
l=0

al
∑
|κ|1=l

l!

κ!
∥F [Dκf ]∥2L2

(44)

=

∫
dz

 m∑
l=0

al
∑
|κ|1=l

l!

κ!
|F [Dκf ] (z)|2

 (45)

=

∫
dz

|F [f ] (z)|2 +
m∑
l=1

al
∑
|κ|1=l

l!

κ!

 d∏
j=1

(2πzj)
2κj

 |F [f ] (z)|2
 (46)

=

∫
dz |F [f ] (z)|2

1 + m∑
l=1

al
∑
|κ|1=l

l!

κ!

 d∏
j=1

(2πzj)
2κj

 (47)

=

∫
dz |F [f ] (z)|2

1 + m∑
l=1

al · (2π)2l
∑
|κ|1=l

l!

κ!

d∏
j=1

z
2κj

j

 (48)

=

∫
dz |F [f ] (z)|2

[
1 +

m∑
l=1

al · (2π)2l ∥z∥2l
]

(49)

Using the above Lemma, the derivation of the kerenl is standard. Suppose kā is the kernel
corresponding to ∥f∥ā onHā. It remains to observe that by the reproducing property and by Lemma
6, for all x ∈ Rd

f(x) =
〈
f, kāx

〉
ā

(50)

=

∫
Rd

dz F [f ](z)F [kāx](z)v2ā(z). (51)

On the other hand, by the Fourier inversion formula, we have

f(x) =

∫
dz F [f ](z)e2πi⟨x,z⟩. (52)
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This implies that ∫
dz F [f ](z)e2πi⟨x,z⟩ =

∫
Rd

dz F [f ](z)F [kāx](z)v2ā(z) (53)

holds for all f ∈ Hā, which by standard continuity considerations yields

F [kāx](z) =
e−2πi⟨x,z⟩

v2ā(z)
. (54)

Using Fourier inversion again we obtain

kā(x, y) =

∫
Rd

e2πi⟨y−x,z⟩

v2ā(z)
dz =

∫
Rd

e2πi⟨y−x,z⟩

1 +
∑m

l=1 al · (2π)2l ∥z∥
2l
dz. (55)

H.2. Sampling Approximation

As discussed in Section 4.1, we are interested in sampling points z ∈ Rd from a finite non negative
measure with density given by wa(z) = (1+a ·(2π)2m ∥z∥2m)−1. With a slight overload of notation,
we will also denote by wa the scalar function wa : R→ R,

wa(r) = (1 + a · (2π)2mr2m)−1. (56)

First, note that wa(z) depends on z only through the norm ∥z∥, and thus a spherically symmetric
function. Therefore, with a spherical change of variables, we can rewrite the integrals w.r.t w−2

a as
follows: For any f : Rd → C,∫

Rd

wa(z)f(z)dz =

∫ ∞

0
dr

∫
Sd−1

dθ wa(r)Ad−1(r)f(rθ) (57)

= Ad−1(1)

∫ ∞

0
dr

∫
Sd−1

dθ
[
wa(r)r

d−1
]
· f(rθ). (58)

Here Sd−1 the unit sphere in Rd, θ is sampled from the uniform probability measure on the sphere, r
is the radius, and

Ad−1(r) =
2πd/2

Γ(d/2)
rd−1 (59)

is the d − 1 dimensional volume of the sphere or radius r in Rd. The meaning of (58) is that to
sample from w−2

a , we can sample θ uniformly from the sphere (easy), and r from a density

ζ(r) = wa(r)r
d−1 =

rd−1

1 + a · (2π)2mr2m
(60)

on the real line. Note that the condition m > d/2 that we impose throughout is necessary. Indeed,
without this condition the decay of ζ(r) would not be fast enough at infinity, and the density would
not have a finite mass.

As discussed in Section 4.1, ζ(r) is a density on a real line, with a single mode and an analytic
expression, which allows easy computation of the derivatives. Such distributions can be efficiently
sampled using, for instance, off-the-shelf Hamiltonian Monte Carlo (HMC) samplers, [4]. In our
experiments we have used an even simpler scheme, by discretizing R into a grid of 10000 points,
with limits wide enough to accommodate a wide range of parameters a.
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Appendix I. A Few Basic Properties of the Kernel

Proposition 7 The kernel (10) is real valued and satisfies

Ka(x, y) =

∫
Rd

cos (2π ⟨y − x, z⟩)
1 + a · (2π)2m ∥z∥2m

dz. (61)

Proof Write e2πi⟨y−x,z⟩ = cos(2π ⟨y − x, z⟩) + i sin(2π ⟨y − x, z⟩) and observe that sin is odd in
z, while 1 + a · (2π)2m ∥z∥2m is even.

Proposition 8 For all x, y ∈ Rd,

Kb(x, y) = b−
d

2mK1(b−
1

2mx, b−
1

2m y) (62)

Proof Write u = b
1

2m z and note that du = (b
1

2m )ddz. We have

Kb(x, y) =

∫
Rd

cos (2π ⟨y − x, z⟩)
1 + b ∥2π · z∥2m

dz (63)

=

∫
Rd

cos
(
2π
〈
b−

1
2m (y − x), u

〉)
1 + ∥2πu∥2m

du · b−
d

2m (64)

= b−
d

2mK1(b−
1

2mx, b−
1

2m y). (65)

Lemma 9 There is a function c(m) of m such that for every x ∈ Rd,∫
(Ka(x, y))2 dy = c(m) · a−

d
2m . (66)

Proof Recall that for fixed x and a, the Fourier transform satisfies F(kax)(z) = e−2πi⟨x,z⟩

1+a(2π)2m∥z∥2m ,

where kax(·) = Ka(x, ·) (see eq. (54)). We thus have

∥kax∥
2
L2

= ∥F(kax)∥
2
L2

(67)

=

∫
e−2πi⟨x,z⟩ · e−2πi⟨x,z⟩(
1 + a(2π)2m ∥z∥2m

)2dz (68)

=

∫
1(

1 + a(2π)2m ∥z∥2m
)2dz (69)

= a−
d

2m

∫
1(

1 + (2π)2m ∥z′∥2m
)2dz′, (70)

(71)

where we have used the variable change z = a−
1

2m z′.
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Appendix J. KDE vs RSR Comparison Proofs

In this section we develop the ingredients required to prove Proposition 3. In section J.1 we reduce
the solution of the RSR problem for the two block model to a solution of a non-linear system in
two variables, and derive the solution of this system. In section J.2 we use these results to prove
Proposition 3.

J.1. Solution Of RSR for a 2-Block Model

As discussed in section B, any RSR solution f must be a zero point of the natural gradient,∇fL = 0.
Using the expressions given following Lemma 4, this implies β = 1

N (Kβ)−1. Since we are only
interested in f up to a scalar normalization, we can equivalently assume simply β = (Kβ)−1.
Further, by symmetry consideration we may take β = (a, . . . , a, b, . . . , b), where a is in first N
coordinates and b is in the next M . Then, as mentioned in section B, β = (Kβ)−1 is equivalent to
a, b solving the following system:{

a = a−1
[
1 + (N − 1)γ2

]
+ b−1Mβγγ′

b = a−1Nβγγ′ + b−1
[
1 + (M − 1)γ′2

] (72)

It turns out that it is possible to derive an expression for the ratio of the squares of the solutions
to this system in the general case.

Proposition 10 (Two Variables RSR System) Let a, b be solutions of{
a = H11a

−1 +H12b
−1

b = H21a
−1 +H22b

−1
(73)

Then

a2/b2 = H2
11

 −(H21 +H12)− ρ
√
(H21 −H12)2 + 4H11H22

2H11H22 +H12

[
−(H21 −H12) + ρ

√
(H21 −H12)2 + 4H11H22

]
2

(74)

for a ρ satisfying ρ ∈ {+1,−1}.

Proof Write u = a−1, v = b−1, and multiply the first and second equations by u and v respectively.
Then we have {

1 = H11u
2 +H12uv

1 = H21uv +H22v
2.

(75)

We write
v =

(
1−H11u

2
)
/H12u. (76)

Also, from the first equation,
H12uv = 1−H11u

2. (77)

Substituting into the second equation,

1 =
H21

H12

(
1−H11u

2
)
+H22

(
1−H11u

2
)2

(H12u)
2 . (78)
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Finally setting s = u2 and multiplying by H2
12s,

H2
12s = H21H12s (1−H11s) +H22 (1−H11s)

2 . (79)

Collecting terms, we have

s2(H2
11H22 −H11H12H21) + s(H12H21 −H2

12 − 2H11H22) +H22 = 0. (80)

Solving this, we get

s =
−(H12H21 −H2

12 − 2H11H22)±
√
(H12H21 −H2

12 − 2H11H22)2 − 4(H2
11H22 −H11H12H21)H22

2(H2
11H22 −H11H12H21)

.

(81)
The expression inside the square root satisfies

(H12H21 −H2
12 − 2H11H22)

2 − 4(H2
11H22 −H11H12H21)H22 (82)

= (H12(H21 −H12)− 2H11H22)
2 − 4(H2

11H22 −H11H12H21)H22 (83)

= H2
12(H21 −H12)

2 − 4H11H22H12(H21 −H12) + 4H11H12H21H22 (84)

= H2
12(H21 −H12)

2 + 4H11H22H
2
12 (85)

= H2
12

[
(H21 −H12)

2 + 4H11H22

]
(86)

Thus, simplifying, we have

u2 = s =
−(H12(H21 −H12)− 2H11H22) + ρH12

√
(H21 −H12)2 + 4H11H22

2H11(H11H22 −H12H21)
, (87)

where ρ ∈ {+1,−1}.
Rewriting (76) again, we have

v2 =

(
1−H11u

2
)2

H2
12u

2
. (88)
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Further,

a2/b2 = v2/u2 =

(
1−H11u

2
)2

H2
12u

4
(89)

=

(
1−H11u

2

H12u2

)2

(90)

=

(
1

H12u2
− H11

H12

)2

(91)

=

(
H11

H12

)2
(

2(H11H22 −H12H21)

−(H12(H21 −H12)− 2H11H22) + ρH12

√
(H21 −H12)2 + 4H11H22

− 1

)2

(92)

=

(
H11

H12

)2
(
2(H11H22 −H12H21) + (H12(H21 −H12)− 2H11H22)− ρH12

√
(H21 −H12)2 + 4H11H22

−(H12(H21 −H12)− 2H11H22) + ρH12

√
(H21 −H12)2 + 4H11H22

)2

(93)

=

(
H11

H12

)2
(
−2H12H21 +H12(H21 −H12)− ρH12

√
(H21 −H12)2 + 4H11H22

−(H12(H21 −H12)− 2H11H22) + ρH12

√
(H21 −H12)2 + 4H11H22

)2

(94)

= H2
11

(
−2H21 +H21 −H12 − ρ

√
(H21 −H12)2 + 4H11H22

−(H12(H21 −H12)− 2H11H22) + ρH12

√
(H21 −H12)2 + 4H11H22

)2

(95)

= H2
11

(
−(H21 +H12)− ρ

√
(H21 −H12)2 + 4H11H22

−(H12(H21 −H12)− 2H11H22) + ρH12

√
(H21 −H12)2 + 4H11H22

)2

(96)

= H2
11

 −(H21 +H12)− ρ
√
(H21 −H12)2 + 4H11H22

2H11H22 +H12

[
−(H21 −H12) + ρ

√
(H21 −H12)2 + 4H11H22

]
2

(97)

J.2. Proof Of Proposition 3

Similarly to the case with KDE, we will use the following approximation of the system (72){
a = a−1Nγ2 + b−1Mβγγ′

b = a−1Nβγγ′ + b−1Mγ′2
(98)

Proof Let f be the RSR solution. By definition, the ratio f(xt)
f(x′

s)
is given by a2/b2 where a, b are the

solutions to (98). That is, we take H12 = H21 = βγγ′, H11 = γ2, and H22 = γ′2 in Proposition 10.
Note that we have removed the dependence on N , since it does not affect the ratio. By Proposition
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10, substituting into (74),

H2
11

 −(H21 +H12)− ρ
√

(H21 −H12)2 + 4H11H22

2H11H22 +H12

[
−(H21 −H12) + ρ

√
(H21 −H12)2 + 4H11H22

]
2

(99)

= H2
11

(
−H12 − ρ

√
H11H22

H11H22 +H12ρ
√
H11H22

)2

(100)

= γ4
(
−2βγγ′ − 2ργγ′

2γ2γ′2 + 2βγγ′ργγ′

)2

(101)

=

(
γ2γγ′

γ2γ′2

)2
(β + ρ)2

(1 + βρ)2
(102)

It remains to note that (β+ρ)2

(1+βρ)2
= 1 for any β and ρ ∈ {+1,−1}.

Appendix K. Invariance of C under Natural Gradient

Define the non-negative cone of functions C ⊂ H by

C = {f ∈ H | f(x) ≥ 0 ∀x ∈ X} . (103)

As discussed in section 2.1, the functional L(f) is convex on C.
We now show that if the kernel k is non-negative, then the cone C is invariant under the natural

gradient steps. In particular, this means that if one starts with initialization in C (easy to achieve),
then the optimization trajectory stays in C, without a need for computationally heavy projection
methods. Note that this is unlikely to be true for the standard gradient. Recall that the expression
(18) for the natural gradient is given in Lemma 4.

Proposition 11 Assume that k(x, x′) ≥ 0 for all x, x′ ∈ X and that λ < 0.5. If f ∈ C, then also
f ′ := f − 2λ

[
f − 1

N

∑N
i=1 f

−1(xi)kxi

]
∈ C.

Proof Indeed, by opening the brackets,

f ′ = (1− 2λ) f + 2λ

[
1

N

N∑
i=1

f−1(xi)kxi

]
,

which is a non-negative combination of functions in C, thus yielding the result.

Appendix L. Fisher Divergence for Hyper-Parameters Selection

The handling of unnormalized models introduces a particular nuance in the context of hyperparameter
tuning, as it prevents the use of the maximum likelihood of the data in order to establish the optimal
parameter. When confronted with difficulties associated with normalization, it is common to resort
to score-based methods. The score function is defined as

s(x; τ) = ∇x log pm(x; τ), (104)
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where pm(x; τ) is a possibly unnormalized probability density on Rd, evaluated at x ∈ Rd, and
dependent on the hyperparameter τ . Since the normalization constant is independent of x, and s is
defined via the gradient in x, s is independent of the normalization. As a result, distance metrics
between distributions that are based on the score function, such as the Fisher Divergence, can be
evaluated using non-normalized distributions.

In this work, we employ this concept, leveraging it to identify the choice of parameters (in
our case, τ , the smoothness parameter) that minimize the FD between the density learned on the
training set and the density inferred on the test set. Specifically, we apply score-matching ([17]), a
particular approach to measuring the Fisher divergence between a dataset sampled from an unknown
distribution and a proposed distribution model. The full details of the procedure are in Supllmentry
Metrial Section N

L.1. Score Matching and Fisher Divergence

Given independent and identically distributed samples x1, . . . , xN ∈ RD from a distribution pd(x)
and an un-normalized density learned, p̃m(x; τ) (where τ is a parameter). Score matching sets out to
reduce the Fisher divergence between pd and p̃m(·; τ), formally expressed as

L(τ) =
1

2
· Epd [∥sm(x; τ)− sd(x)∥2]

As detailed in [17], the technique of integration by parts can derive an expression that does not
depend on the unknown latent score function sd:

L(τ ;x1, . . . , xn) =
1

N

N∑
i=1

[
tr(∇xsm(xi; τ)) +

1

2
· ∥sm(xi; τ)∥2

]
+ C

In this context, C is a constant independent of τ, tr(·) denotes the trace of a matrix, and∇xsm(xi; τ) =
∇2

xlog(p̃m(xi; τ)) is the Hessian of the learned log-density function evaluated at xi.

L.2. The Hessian Estimation for Small τ ’s

Deriving the Hessian for small τ values proves to be challenging. Note that small τ values signify
overfitting to the training data, consequently, this leads to a density that is mainly close to zero
between samples, thereby making the process highly susceptible to significant errors in numerically
calculating the derivatives. This situation results in a Hessian that is fraught with noise. Hence, our
strategy focuses on locating a stable local minimum with the highest possible τ . In this context, we
define a stable local minimum as a point preceded and succeeded by three points, each greater than
the focal point.

L.3. Approximating the Hessian Trace

Although this method holds promise, it’s worth noting the computational burden tied to the calculation
of the Hessian trace. To mitigate this, we rely on two techniques. First, we utilize Hutchinson’s trace
estimator [16], a robust estimator that facilitates the estimation of any matrix’s trace through a double
product with a random vector ϵ:

Tr(H) = Eϵ

[
ϵTHϵ

]
.
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Here ϵ is any random vector on Rd with mean zero and covariance I . This expression allows to
reduce amount of computation of Tr(H), by computing the products Hϵ directly, for a few samples
of ϵ, without the need to compute the full H itself. A similar strategy has been recently employed in
[12] in a different context, for a trace computation of a Jacobian of a density transformation, instead
of the score itself.

In more detail, score computations can be performed efficiently and in a ’lazy’ manner using
automatic differentiation, offered in frameworks such as PyTorch. This allows us to compute
a vector-Hessian product Hϵ per sample without having to calculate the entire Hessian for all
samples, a tensor of dimensions N × (d× d), in advance. More specifically, we utilize PyTorch’s
automatic differentiation for computing the score function, which is a matrix of N ×d. Subsequently,
this is multiplied by ϵ. We then proceed with a straightforward differentiation ∇xs(xi) = 1

h ·
(s (xi + h · ϵ)− s (xi)) for small step h, followed by a summation which is lazily calculated through
PyTorch (see Algorithm 1).

Algorithm 1: Calculating Hutchinson’s Trace Estimator
Require: Score function s, small constant h, sample x, # of random vectors n

1: Initialize traceEstimator to 0
2: for i = 1 to n do
3: Sample random vector ϵ from normal distribution
4: Calculate s(τ ;x+ h ∗ ϵ)
5: Calculate (s(τ ;x+ h ∗ ϵ)− s(τ ;x))
6: Compute (1/h) · (s(τ ;x+ h ∗ ϵ)− s(τ ;x)) · ϵ
7: Add result to traceEstimator
8: end for
9: Return traceEstimator

n

Appendix M. Experiments

M.1. AUC-ROC Performance Analysis

M.2. Anomaly Detection Results for ADbench

This section presents an evaluation of our approach on real-world tasks and data, focusing on
Anomaly Detection (AD) where normalized density is not a concern. AD was chosen for evaluation
due to its inherent attributes that align closely with density estimation, including the differentiation
of samples from the latent and out-of-distribution. We compare our results to a golden standard AD
benchmark, ADbench ([14]), that evaluates a wide range of 15 AD algorithms on over 47 labeled
datasets. In addition, we evaluate KDE using both Gaussian and Laplace kernels, and as an ablation
study, we compare RSR to KDE with SDO kernel.

We focus on the unsupervised setup, in which no labeled anomalies are given in the training phase.
For all density-based approaches, we employ the negative of the density as the ’anomaly score’. The
ADbench paper evaluates success on each dataset using AUC-ROC. In addition to AUC-ROC, we
also focus on a ranking system as follows: for each dataset, we convert raw AUC-ROC scores of the
methods into rankings from 1 to 18. Here, 18 denotes the best performance on a given dataset, and 1
the worst. This mitigates bias inherent in averaging AUC-ROC scores themselves across datasets,
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Figure 4: Anomaly Detection Results on ADBench. Relative Ranking Per Dataset, Higher is Better.
RSR is Second Best Among 18 Algorithms

due to generally higher AUC-ROC scores on easier datasets. This is important since no single AD
method consistently outperforms others in all situations, as discussed in detail in [14].

For both AUC-ROC and rank evaluations, RSR emerges as the 2nd best AD method overall.
Notably, this achievement is with the ’vanilla’ version of our method, without any pre or post-
processing dedicated to AD. In contrast, many other methods are specifically tailored for AD and
include extensive pre and post-processing. In Figure 4, for each algorithm we present the box plot
with the average ranking over all datasets (along with quantiles). The algorithms are sorted by the
average ranking. A similar plot for raw AUC-ROC values is given in the supplementary material, and
it presents a similar picture. As for computational cost, the entire set of 47 datasets was processed in
186 minutes using a single 3090RTX GPU and one CPU, averaging about 4 minutes per dataset.

In addition to performing well on the standard ADBench benchmark, and perhaps even more
impressively, RSR excels also on the more demanding setup of duplicate anomalies, which was
also extensively discussed in [14]. Here, RSR rises to the forefront as the top AD method (with
an average AUC-ROC of 71.6 for X5 duplicates - a lead of 4% over the closest contender). This
scenario, which is analogous to numerous practical situations such as equipment failures, is a focal
point for ADbench’s assessment of unsupervised anomaly detection methods due to its inherent
difficulty, leading to substantial drops in performance for former leaders like Isolation Forest.

In Section 5 we presented a comparative study of various methods according to their ranking
across different datasets. This section provides an analysis of the raw AUC-ROC values themselves.

We present two figures to elucidate our findings. Figure 5 is similar to the box plot from shown in
Figure 4 in the main text but includes raw AUCROC values instead of rankings. As the figure shows,
RSR also secures the second-highest position in terms of average raw AUC-ROC (second only to
IForest), as represented by the order of methods on the X-axis. Furthermore, the median line within
the boxes indicates that RSR is the method with the highest median score. Figure 6 shows a heatmap
representation of the AUC-ROC values. In this visualization, the size of the circle symbolizes the
corresponding AUC value, while the color gradient signifies the deviation in AUC value from RSR.
The purpose of this heatmap is to offer a graphical interpretation of the AUC-ROC performance
levels, demonstrating how they diverge from the performance of RSR.
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M.3. Duplicate Anomalies.

Duplicate anomalies are often encountered in in various applications due to factors such as recording
errors [22], a circumstance termed as "anomaly masking" [5, 13], posing significant hurdles for
diverse AD algorithms. The significance of this factor is underscored in ADbench [14], where
duplicate anomalies are regarded as the most difficult setup for anomaly detection, thereby attract-
ing considerable attention. To replicate this scenario, ADbench duplicates anomalies up to six
times within training and test sets, subsequently examining the ensuing shifts in AD algorithms’
performance across the 47 datasets discussed in our work.

As shown in ADBench, unsupervised methods are considerably susceptible to repetitive anoma-
lies. In particular, as shown in Fig. 7a in the main text there, performance degradation is directly
proportional to the increase in anomaly duplication. With anomalies duplicated six times, unsuper-
vised methods record a median AUC-ROC reduction of -16.43%, where in RSR the drop is less
then 2%. This universal performance deterioration can be attributed to two factors: 1) The inherent
assumption made in these methods that anomalies are a minority in the dataset, a presumption crucial
for detection. The violation of this belief due to the escalation in duplicated anomalies triggers the
noticed performance downturn. 2) Methods based on nearest neighbours assume that anomalies
significantly deviate from the norm (known as "Point anomalies"). However, anomaly duplication
mitigates this deviation, rendering the anomaly less distinguishable. Notice that while the first factor
is less of a problem for a density based AD algorithm ( any time the anomalies are still not the
major part of the data), the second factor could harmful to DE based AD algorithms as well. The
evidence of RSR possessing the highest median and its robustness to duplicate anomalies, along with
a probable resistance to a high number of anomalies, not only emphasizes its superiority as a DE
method but also underscores its potential to serve as a state-of-the-art AD method.

M.4. Hyperparameter Tuning with On-the-fly Fisher-Divergence Minimization

A primary task at hand involves hyperparameter tuning to select the optimal τ according to the
Fisher-Divergence (FD) procedure, as detailed in section L and Section 5. For efficient computation,
we employ an on-the-fly calculation approach. The process initiates with a τ value that corresponds
to the ’order’-th largest tested point. Subsequently, we explore one larger and one smaller τ value.
If both these points exceed the currently tested point, we continue sampling. Otherwise, we shift
the tested point to a smaller value. To avoid redundant calculations, the results are continually
stored, ensuring each result is computed only once. This methodology provides a balance between
computational efficiency and thorough exploration of the hyperparameter space.

Appendix N. Algorithm Overview

In this section, we outline the procedure for our density estimation algorithm. Let X ∈ RN×d

represent the training set and Y ∈ RN×d denote the test set for which we aim to compute the density.
Initially, we establish the following hyper-parameters: 1.Nz , the number of samples Z taken for the
kernel estimation. (Notice Nz is T from (11)) 2.niters, the number of iterations used in the gradient
decent approximating the optimization for α. 3.lr, the learning rate applied in the gradient decent α
optimization process. 4.nfd_iters, the number of iterations for the Hessian trace approximation. 5.h,
the step size employed for the Hessian trace. Then, we follow Algorithm 2.
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Algorithm 2: Density Estimation Procedure with Hypeparameter Tuning
1: repeat
2: Estimate the SDO kernel matrix via sampling as described in Section 2 and detailed in

Algorithm 3.
3: Determine the optimal α as described in Section 2 and detailed in Algorithm 4. optimal_α

forms f := f∗ ≜ foptimal_α and the density estimator is F 2 ≜ (f)2.
4: Compute F 2(Y ) the density over Y as described in Section 2 and detailed in Algorithm 5.
5: Assess the Fisher-divergence as described in Appendix Section L and detailed in both Algo-

rithm 6 and Algorithm 1.
6: until For each smoothness parameter τ .
7: The density estimator F 2 corresponds to the τ value that yields the minimal FD.

Algorithm 3: K(·)→ R2×N : Sampling the Multidimensional SDO Kernel
Require: X,Y, τ

1: θ ← g
∥g∥2 ; g ∼ N (0, 1)

2: r ∼ rd−1

1+τ(2πr)2m
using grid search.

3: Z ← r · θT
4: b ∼ U [0, 2π]
5: return 1

Nz
· cos(X · Z + b) · (cos(Y · Z + b))T

Algorithm 4: Optimal_alpha(·)→ RN : Calculating the Optimal Alphas
Require: X, lr, niters

1: K ← K(X,X)
2: α← [|α0|, . . . , |αN |] : αi ∼ N (0, 1)
3: for i = 1 to niters do
4: α← α− 2 · lr · ((K · α)− (K · (1./(K · α)))/Ndata)
5: end for
6: return α

Algorithm 5: F 2(·)→ RNY : Density over coordinates Y given observations X .
Require: X,Y

1: α← Optimal_alpha(X, . . .)
2: e← K(X,Y )
3: return (e · α)2
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Algorithm 6: FD(·)→ R : Fisher Divergence with Hessian Trace Approximation.
Require: X(Train set), Y (Test set), nfd_iters, h

1: scores← ∇
∑

log(F 2(X,Y ))
2: traces_sum← 0
3: for i = 1 to niters do
4: ϵ ∼ U({−1, 0, 1}size(X))
5: shifted_scores← ∇

∑
log(F 2(X,Y + h · ϵ))

6: traces_sum← traces_sum +
∑

((shifted_scores− scores) · ϵ)/h
7: end for
8: traces← traces_sum/niters
9: return E[traces + 1

2 · ∥scores∥
2]

Appendix O. Consistency Theorem

In this Section we state and prove the consistency result for the RSR estimators.
Recall that for any a > 0, Ha is the RKHS with the norm given by (8) and the kernel ka(x, y)

given by (10).
For any f ∈ H1 define the RSR loss

L(f) = La(f) =
1

2

(
− 1

N

∑
log f2(xi) + ∥f∥2Ha

)
. (105)

Note that f ∈ H1 if and only if f ∈ Ha for every a > 0. Recall from the discussion in Section D
and that L is convex when restricted to the open cone

C′ = (Ca)′ =
{
f ∈ span {kxi}

N
1 | f(xi) > 0

}
. (106)

Note that C′ depends on a since the kernel kxi = kaxi
depends on a. Observe also that compared to

Section D, here we require only positivity on the data points xi rather than on all x ∈ Rd, and we
restrict the cone to the span of xi since all the solutions will be obtained there in any case. This of
course does not affect the convexity.

The consistency result we prove is as follows:

Theorem 12 Let x1, . . . , xN be i.i.d samples from a compactly supported density v2 on Rd, such
that v ∈ H1. Set a = a(N) = 1/N , and let uN = u(x1, . . . , xN ; a(N)) be the minimizer of the
objective (105) in the cone (106). Then ∥uN − v∥L2

converges to 0 in probability.

In words, when N grows, and the regularisation size a(N) decays as 1/N , the the RSR estimators
uN converge to v in L2.

As discussed in the main text, note also that since ∥v∥L2
= 1 (as its a density), and since

∥uN − v∥L2
→ 0, it follows by the triangle inequality that ∥uN∥L2

→ 1. That is, the estimator uN
becomes approximately normalized as N grows.

In Section O.1 below we provide an overview of the proof, and in Section O.2 full details are
provided.
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O.1. Overview Of The Proof

As discussed in Section A, consistency for the 1 dimensional case was shown in [21] and our approach
here follows similar general lines. The differences between the arguments are due to the more general
multi dimensional setting here, and due to some difference in assumptions.

To simplify the notation in what follows we set ∥·∥a := ∥·∥Ha , ⟨·, ·⟩a := ⟨·, ·⟩Ha . Recall that
ka(x, y) denotes the kernel corresponding toHa,

The first step of the proof is essentially a stability result for the optimization of (105), given by
Lemma 13 below. In this Lemma we observe that L is strongly convex and thus for any function v,
we have

∥u− v∥Ha ≤ ∥∇L(v)∥Ha , (107)

where u is the true minimizer of L in C′ (i.e. the RSR estimator). This is particular means that if one
can show that the right hand side above is small for the true density v, then the solution u must be
close to v. Thus we can concentrate on analyzing the simpler expression ∥∇L(v)∥Ha rather than
working with the optimizer u directly. Remarkably, this result is a pure Hilbert space result, and it
holds for any kernel.

We now thus turn to the task of bounding ∥∇L(v)∥Ha . As discussed in Section D, the gradient
of L inHa is given by

∇L(f) = − 1

N

∑
f(xi)

−1kxi + f. (108)

Opening the brackets in ∥∇L(v)∥2Ha we have

∥∇L(v)∥2a =
1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj)− 2

1

N

∑
i

v−1(xi) ⟨kxi , v⟩a + ∥v∥
2
a (109)

=
1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj)− 2 + ∥v∥2a . (110)

By definitions, we clearly have ∥v∥2a − 1→ 0 when a→ 0. Thus we have to show that the first term
in (110) concentrates around 1. To this end, we will first show that the expectation of

1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj) (111)

(with respect to xi’s) converges to 1. This is really the heart of the proof, as here we show why v
approximately minimizes the RSR objective, in expectation, by exploiting the interplay between the
kernel, the regularizing coefficient, and the density v. This argument is carried out in Lemmas 14, 16,
and 17.

Once the expectation is understood, we simply use the Chebyshev inequality to control the
deviation of (111) around its mean. This requires the control of cross products of the terms in (111)
and can be achieved by arguments similar to those used to control the expectation. This analysis is
carried out in Propositions 18 - 20, and Lemma 21.

One of the technically subtle issues throughout the proof is the presence of the terms v−1(xi),
due to which some higher moments and expectations are infinite. This prevents the use of standard
concentration results and requires careful analysis. This is also the reason why obtaining convergence
rates and high probability bounds is difficult, although we believe this is possible.
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O.2. Full Proof Details

Throughout this section let L2 be the L2 space of the the Lebesgue measure on Rd, L2 =
{
f : Rd → C |

∫
Rd |f |2 dx ≤ ∞

}
.

Next, we observe that L(f) is strongly convex with respect to the norm ∥·∥Ha (see [27] for an
introduction to strong convexity). As a consequence, we have the following:

Lemma 13 Let u be the minimizer of L in C′. Then for every v ∈ C′,

∥u− v∥Ha ≤ ∥∇L(v)∥Ha . (112)

Proof The function f 7→ ∥f∥2Ha is 2-strongly convex with respect to ∥·∥2Ha . Since L(f) is obtained
by adding a convex function, and multiplying by 1

2 , it follows that L(f) is 1-strongly convex. Strong
convexity implies that for all u, v ∈ C′ we have

⟨∇L(v)−∇L(u), v − u⟩a ≥ ∥v − u∥2a , (113)

see [27], Theorem 2.1.9. Using the Cauchy Schwartz inequality and the fact that u is a local minimum
with ∇L(u) = 0, we obtain

∥∇L(v)∥a · ∥u− v∥a ≥ ⟨∇L(v), v − u⟩a ≥ ∥v − u∥2a , (114)

yielding the result.

Now, suppose the samples xi are generated from a true density (f∗)2. Let v := f∗ be the square
root of this density. Then, to show that the estimator u is close to v, it is sufficient to show that
∥∇L(v)∥a is small. We write∇L(v) explicitly:

∥∇L(v)∥2a =
1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj)− 2

1

N

∑
i

v−1(xi) ⟨kxi , v⟩a + ∥v∥
2
a (115)

=
1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj)− 2 + ∥v∥2a . (116)

Since v is a fixed function in H1, it is clear from definition (8) that ∥v∥2a − 1 → 0 as a → 0.
Thus, to bound ∥∇L(v)∥2a, it suffices to bound

1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj)− 1 (117)

with high probability over xi, when N is large and a is small.
Note that the form (10) of the kernel ka implies that this is a stationary kernel, i.e. ka(x, y) =

ga(x− y) with

ga(x) =

∫
Rd

e2πi⟨−x,z⟩

1 + a · (2π)2m ∥z∥2m
dz. (118)

Lemma 14 Let ka(x, y) be the SDO kernel defined by (10). For any function v ∈ L2, and x ∈ Rd

set
(Kav)(x) =

∫
ka(x, y)v(y)dy. (119)

Then Ka is a bounded operator from L2 to L2, with ∥Ka∥op ≤ 1 for every a > 0. Moreover, for
every v ∈ L2, ∥Kav − v∥L2

→ 0 with a→ 0.

32



SPECIFY RUNNING TITLE

Proof Note first that Ka, given by (119), is a convolution operator, i.e. Kav = ga ∗ v =
∫
ga(x−

y)v(y)dy. Further, by the Fourier inversion formula, the Fourier transform of ga satisfies Fga(z) =
1

1+a·(2π)2m∥z∥2m (see Section H.1 for further details), and recall that F(ga ∗ v) = Fga · Fv. Since

|Fga(z)| ≤ 1 for every z and a > 0, this implies in particular that Ka has operator norm at most 1.
Next, by the Plancharel equality we have

∥Kav − v∥2L2
= ∥F(Kav − v)∥2L2

(120)

=

∥∥∥∥F(v) · ( 1

1 + a · (2π)2m ∥z∥2m
− 1

)∥∥∥∥2
L2

(121)

=

∥∥∥∥∥F(v) ·
(

a · (2π)2m ∥z∥2m

1 + a · (2π)2m ∥z∥2m

)∥∥∥∥∥
2

L2

(122)

=

∫
|F(v)(z)|2 ·

(
a · (2π)2m ∥z∥2m

1 + a · (2π)2m ∥z∥2m

)2

dz (123)

Fix ε > 0. For a radius r denote by B(r) = {z | ∥z∥ ≤ r} the ball of radius r, and let
Bc(r) be its complement. Since

∫
|F(v)(z)|2 dz < ∞, there is r > 0 large enough such that∫

Bc(r) |F(v)(z)|
2 dz ≤ ε. We bound (123) on B(r) and Bc(r) separately. Choose a > 0 such that

a ≤
(
(2π)2mr2m

)−1 · ε
1
2 · ∥v∥−1

L2
. Then

∫
|F(v)(z)|2 ·

(
a · (2π)2m ∥z∥2m

1 + a · (2π)2m ∥z∥2m

)2

dz (124)

=

∫
B(r)
|F(v)(z)|2 ·

(
a · (2π)2m ∥z∥2m

1 + a · (2π)2m ∥z∥2m

)2

dz +

∫
Bc(r)

|F(v)(z)|2 ·

(
a · (2π)2m ∥z∥2m

1 + a · (2π)2m ∥z∥2m

)2

dz

(125)

≤ ε · ∥v∥−1
L2

∫
B(r)
|F(v)(z)|2 dz +

∫
Bc(r)

|F(v)(z)|2 dz (126)

≤ ε+ ε. (127)

This completes the proof.

Assumption 15 Assume that the density v2 is compactly supported in Rd, and denote the support
by B = supp(v2).

Note in particular that this implies that B is of finite Lebesgue measure, λ(B) ≤ ∞.
We treat the components with i ̸= j and i = j in the sum (117) separately. In the case i = j set

Yi = v−2(xi)k(xi, xi) = ga(0)v
−2(xi), where ga was defined in (118). Note that the variable Yi

has an expectation, but does not necessarily have higher moments. Nevertheless, it is still possible to
bound the sum using the Marcinkiewicz-Kolmogorov strong law of large numbers, see [23], Section
17.4, point 4◦. We record it in the following Lemma, where we also allow a to depend on N , denoting
a = a(N), and assume that a(N) does not decay too fast with N .
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Lemma 16 Assume that limN→∞ a−
d

2m (N)/N = 0. Then

ga(N)(0)

N2

∑
i

v−2(xi)→ 0 (128)

almost surely, with N →∞.

Note that since 2m > d by construction of the kernels, a(N) = 1/N satisfies the above decay
assumption.
Proof We have

Ev−2(x) =

∫
v−2(x) · v2(x)1{B}(x)dx = λ(B) <∞. (129)

Thus the Marcinkiewicz-Kolmogorov law implies that

1

N

∑
i

v−2(xi)→ λ(B) (130)

almost surely. Next, recall that by Proposition 8, we have ga(0) = a−
d

2m g1(0). Our decay assumption
on a(N) implies then that ga(N)(0)/N → 0, which together with (130) completes the proof.

Next, for i ̸= j, set Yij = v−1(xi)v
−1(xj)k(xi, xj).

Lemma 17 For every a > 0 we have |EYij | ≤ 1, and moreover EYij → 1 when a→ 0.

Proof Recall that v2 is a density, i.e.
∫
v2(x)dx = 1, and that the operator Ka was defined in (119).

We have

|EYij − 1| =
∣∣∣∣∫ v−1(x)v−1(y)ka(x, y)v2(x)v2(y)dxdy −

∫
v2(x)dx

∣∣∣∣ (131)

=

∣∣∣∣∫ ka(x, y)v(x)v(y)dxdy −
∫

v2(x)dx

∣∣∣∣ (132)

=

∣∣∣∣∫ dx · v(x) [(Kav)(x)− v(x)]

∣∣∣∣ (133)

≤ ∥v∥L2
∥(Kav)− v∥L2

(134)

= ∥(Kav)− v∥L2
. (135)

The second statement now follows from Lemma 14. For the first statement, write

|EYij | = ⟨Kav, v⟩L2
≤ ∥Kav∥L2

∥v∥L2
≤ 1, (136)

where we have used the Cauchy-Schwartz inequality and the first part of Lemma 14.

It thus remains to establish that 1
N2

∑
i ̸=j(Yij − EYij) converges to 0 in probability. We will

show this by bounding the second moment,

1

N4
E

∑
i ̸=j

(Yij − EYij)

2

=
1

N4

∑
i ̸=j,i′ ̸=j′

(
EYijYi′j′ − EYijEYi′j′

)
(137)
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and then using the Chebyshev inequality. Observe that there are three types of terms of the form(
EYijYi′j′ − EYijEYi′j′

)
on the right hand side of (137). The first type is when {i, j} = {i′, j′} as

sets. Second is when |{i, j} ∩ {i′, j′}| = 1, and the third is when {i, j} and {i′, j′} are disjoint. In
the following three propositions, we bound each type of terms separately.

Proposition 18 There is a function of m, c(m) > 0, such that

EY 2
ij ≤ λ(B)a−

d
2m c(m) <∞. (138)

Proof Write

EY 2
ij =

∫
v−2(x)v−2(y)(ka(x, y))2v2(x)v2(y)dxdy (139)

=

∫
1{B}(x)1{B}(y)(k

a(x, y))2dxdy (140)

≤
∫
1{B}(x) ∥kax∥

2
L2

dx (141)

= λ(B)a−
d

2m c(m), (142)

where we have used Lemma 9 to compute ∥kax∥
2
L2

.

For the |{i, j} ∩ {i′, j′}| = 1 case we have

Proposition 19 Let i, j, t be three distinct indices. Then

|EYijYjt| ≤ 1. (143)

Proof

EYijYjt =
∫

v−1(xi)v
−1(xj)k

a(xi, xj)v
−1(xj)v

−1(xt)k
a(xj , xt)v

2(xi)v
2(xj)v

2(xt)dxidxjdxt

(144)

=

∫
v(xi)k

a(xi, xj)v(xt)k
a(xt, xj)1{B}(xj)dxidxjdxt (145)

=

∫
(Kav)

2(xj)1{B}(xj)dxj (146)

≤
∫
(Kav)

2(xj)dxj (147)

= ∥Kav∥2L2
(148)

≤ 1, (149)

where we have used Lemma 14 on the last line.

Finally, for the disjoint case,

Proposition 20 Let i, j, i′, j′ be four distinct indices. Then

E(Yij − EYij)(Yi′j′ − EYi′j′) = 0. (150)
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Proof When i, j, i′, j′ are distinct, Yij and Yi′j′ are independent.

We now collect these results to bound (137).

Lemma 21 There is a function c′(m,B) > 0 of m,B, such that, choosing a(N) = 1/N , we have

1

N4
E

∑
i ̸=j

(Yij − EYij)

2

≤ c′(m,B)

N
(151)

for every N > 0.

Proof Observe first that all the expressions of the form EYijEYi′j′ are bounded by 1, by Lemma 17.
Next, note that there are O(N2) terms of the first type. Since 2m > d, we have a−

d
2m = a−

d
2m (N) ≤

N , and thus, the overall contribution of such terms to the sum in (151) is O(N−4 ·N ·N2) = O(1/N).
Similarly, there are O(N3) terms of the second type, each bounded by constant, and thus the overall
contribution is O(N−4 ·N3) = O(1/N). And finally, the contribution of the terms of the third type
is 0.

We now prove the main consistency Theorem.
Proof [Of Theorem 12] First, observe that by definition ∥u− v∥L2

≤ ∥u− v∥a for any u, v ∈ H1.
Next, by Lemma 13 and using (116), we have

∥uN − v∥L2
≤ ∥uN − v∥a ≤

1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj)− 2 + ∥v∥2a . (152)

Clearly, by definition (8), we have ∥v∥2a − 1→ 0 as a→ 0. Write

1

N2

∑
i,j

v−1(xi)v
−1(xj)k(xi, xj)−1 =

1

N2

∑
i

Yi+
1

N2

∑
i ̸=j

(Yij−EYij)+
[
N2 −N

N2
· EY12 − 1

]
.

(153)
The last term on the right hand side converges to 0 deterministically with a and N , by Lemma 17.
The first terms converges strongly, and hence in probability, to 0, by Lemma 16. And finally, the
middle term converges in probability to 0 by Lemma 21 and by Chebyshev inequality.

Appendix P. Figure 3 - List of Datasets

Those are the datasets for which we compared the fractions of negative values for alpha optimization
vs natural gradients presented in Figure 3, ordered according to the X-axis in the figure :

1. Mnist

2. Shuttle

3. PageBlocks

4. Mammography
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5. Magic.gamma

6. Skin

7. Backdoor

8. Glass

9. Lymphography

10. Stamps

11. WDBC

12. SpamBase

13. Hepatites

14. Wine

15. Letter
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0.45
(a) b

Figure 5: Box plot presenting actual AUC-ROC values.
0.45
(a) b

Figure 6: Heatmap of AUC-ROC values. Circles size represent absolute value, color id the shift from
RSR.
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