
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

SGD batch saturation for training wide neural networks

Chaoyue Liu CHL212@UCSD.EDU
Halicioğlu Data Science Institute, University of California San Diego

Dmitriy Drusvyatskiy DDRUSV@UW.EDU
Mathematics Department, University of Washington

Mikhail Belkin MBELKIN@UCSD.EDU
Halicioğlu Data Science Institute, University of California San Diego

Damek Davis DSD95@CORNELL.EDU
School of Operations Research and Information Engineering, Cornell University

Yi-An Ma YIANMA@UCSD.EDU

Halicioğlu Data Science Institute, University of California San Diego

Abstract
The performance of the mini-batch stochastic gradient method strongly depends on the batch-size
that is used. In the classical convex setting with interpolation, prior work showed that increasing
the batch size linearly increases the convergence speed, but only up to a point; when the batch size
is larger than a certain threshold (the critical batchsize), further increasing the batch size only leads
to negligible improvement. The goal of this work is to investigate the relationship between the
batchsize and convergence speed for a broader class of nonconvex problems. Building on recent
improved convergence guarantees for SGD, we prove that a similar linear scaling and batch-size
saturation phenomenon occurs for training sufficiently wide neural networks. We conduct a number
of numerical experiments on benchmark datasets, which corroborate our findings.

1. Introduction

Minibatching reduces the number of steps for the stochastic gradient method (SGD) to conver-
gence since it decreases the variance of the stochastic gradient estimator. Practical implementations
of SGD exploit this reduction together with parallel computation of gradients to reduce the total
wall-clock time to convergence. While batching initially offers a linear reduction in the iteration
complexity, an extensively documented experimental observation is that the improvement brought
by minibatching saturates after a certain “critical batch size” for models that nearly interpolate the
data [5, 15]; see Figure 1 for a numerical illustration. Saturation has also been rigorously proven
both for quadratic losses [12, 13, 18], convex losses [16] (for a variant of SGD), and certain classes
of nonconvex losses [1, 6, 7, 17] under interpolation assumptions.

While the aforementioned theoretical studies are promising, they are not applicable when train-
ing wide neural networks. This work aims to explain why the performance of minibatch SGD with
a large stepsize saturates after a certain critical batch size on wide neural networks. We will prove
the following theorem, stated here informally for the sake of motivation.

Theorem 1 (Informal) Consider training a feedforward neural network f(w, x) with width m and
linear output layer using SGD with batchsize b. Then for sufficiently large m > 0, with high

© C. Liu, D. Drusvyatskiy, M. Belkin, D. Davis & Y.-A. Ma.



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

Figure 1: SVHN on fully-connected neural network with MSE loss. The network has 3 hidden
layers, with 2000 neurons in each. 100k iterations. Left: the training loss curves vs. batch size.
Right: Convergence exponent h(b) and “predicted” curve h̃(b) (defined in Sec. B) vs. batch size b.

probability over initialization w0, the iteration complexity to reach an ϵ-optimal solution scales as

max
i=1,...,n

∥∇f(w0, xi)∥2/b+ ∥K(w0)∥op +O
(
1
m

)
λmin(K(w0))

· log
(c
ε

)
,

where K(w0) is the Neural Tangent Kernel (NTK) at initialization and m is the width of the network.

Thus the theorem shows that the iteration complexity of minibatch SGD exhibits a linear scaling
in b roughly up to the critical batch size b∗ = max

i=1,...,n
∥∇f(w0, xi)∥2/∥K(w0)∥op, after which

point increasing the batchsize only leads to negligible improvement. Importantly, past the critical
batchsize, the iteration complexity of minibatch SGD matches that of the full-batch gradient method.

Let us briefly explain why the aforementioned works are inapplicable for analyzing training
guaranties of wide neural networks—a nonconvex problem in general. The works [1, 17], for ex-
ample, introduce a critical batch size and prove a sublinear convergence bound for the minibatch
SGD under a global Polyak-Łojasiewicz condition (PL) [11, 14] with a small stepsize that depends
inversely on a certain “condition number.” In contrast, in the settings of wide-neural networks, it
is known that minibatch SGD converges linearly, the PL condition holds locally, and one may, in
fact, use a much larger stepsize, depending only on the level of smoothness of the objective [9, 10].
Thus, the guarantees of [1, 17] are inapplicable. Other works analyze minibatch SGD for interpo-
lation problems both under the PL condition [6] and a “quasi strong convexity” assumption [7]—a
setting where minibatch SGD is known to converge linearly. As in [17], the work [6] requires a
small stepsize inversely proportional to a “condition number” and suggests the optimal minibatch
size is proportional to the size of the training set, which is not true experimentally and does not
match the corresponding theoretical behavior in the quadratic or convex setting [12, 16, 18]. On the
other hand, it is known that quasi-strong convexity [7] is never satisfied for wide neural networks
since it entails a locally unique solution.

2



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

2. Main assumptions and Known Results

The guarantees proved in this work apply to nonlinear least squares problems, with wide neural
networks as the primary example. More specifically, throughout this work, we consider the problem:

min
w∈Rd

L(w) = 1

2n

n∑
i=1

(fi(w)− yi)
2 =

1

2
∥F (w)∥2, (2.1)

where fi : Rd → R are some differentiable functions and y ∈ Rn is a fixed vector. We will work in
the interpolation regime, as summarized in the following assumption.

Assumption 1 (Interpolation) There exists some point w̄ satisfying fi(w̄) = yi for all i.

When n is large, the standard procedure for solving the problem 2.1 is the minibatch stochastic
gradient method (SGD). In each iteration, the algorithm uniformly samples a batch of indices S ⊂
{1, . . . , n} of a fixed size m := |S| and performs the update

wt+1 = wt − η · g(wt;S) where g(wt;S) =
1

|S|
∑
i∈S

(fi(wt)− yi)∇fi(wt).

The vector g(w, S) is called the stochastic gradient estimator. The rate of convergence of minibatch
SGD is strongly influenced by the second moment of the stochastic gradient estimator g(w, S).
Namely, a typical assumption is that there exists a constant β > 0 such that the estimate

ES ∥g(w, S)∥2 ≤ 2β · L(w), (2.2)

holds for all w in some ball Br(w0). From a high level, much of the paper will be devoted to
estimating β in terms of |S| under a number of assumptions.

In addition to the interpolation Assumption 1, we impose the following assumption throughout
the work. To simplify notation, we let S denote the set of interpolating solutions S ≜ argminw L(w).

Assumption 2 Fix a point w0 ∈ Rd and parameters r, α, L > 0 satisfying the following.

1. (Existence) The ball Br(w0) intersects the solution set S.

2. (Quadratic growth) The estimate holds:

L(w) ≥ α
2 · dist2(w, S) ∀w ∈ Br(w0). (2.3)

3. (Lipschitz) The gradient of each loss function ∇fi is L-Lipschitz continuous on B2r(w0).

We now review convergence guarantees for SGD based on these two assumptions, recently
developed in [10, Theorems 2.5, 3.1]. Specifically we will focus on the problem of nonlinear least
squares 2.1 where the the Lipschitz constant of ∇fi is small. This setting nicely models training of
wide neural networks, as we will explain shortly.

Theorem 2 (Convergence of minibatch SGD; [10]) Suppose that Assumptions 1 and 2 hold, the
estimate 2.2 holds for all w ∈ Br(w0), and that L is small in the sense that L ≤ α

16r
√
β

. Fix

constants δ1 ∈ (0, 13) and δ2 ∈ (0, 1), and assume dist2(w0, S) ≤ δ21r
2. Consider applying

minibatch SGD with stepsize η = 1
2β . Then with probability at least 1 − 5δ1 − δ2, the estimate

dist2(wt, S) ≤ ε · dist2(w0, S) holds after t ≥ 4β
α log

(
1
εδ2

)
iterations.

3



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

In the next section we estimate the value β for nonlinear least squares problems (Theorem 3).
Combining this estimate with Theorem 2, we will obtain in Theorem 4 scaling laws for how the
iteration complexity of minibatch SGD depends on the selected batchsize.

3. Estimating the critical batchsize and algorithmic consequences

The following theorem estimates β for the problem of nonlinear least squares 2.1 in the case when
the gradient of each function fi(w) has a small Lipschitz constant; After that, we will apply this
theorem for training wide neural network .

Theorem 3 (Nonlinear least squares) Suppose that Assumptions 1 and 2 hold and that for some
γ > 0 the random vector zi := ∇fi(w0) satisfies the moment bound

Ei∥zi∥2ziz⊤i ⪯ γ · Eiziz
⊤
i . (3.1)

Then equation 2.2 holds for all w ∈ Br(w0) with β =
16γ+ 200γL2r2

α
|S| + 4L2r2 + 4∥∇F (w0)∥2op.

Theorem 3 imposes a number of nontrivial assumptions. First, the gradient of each function fi
has to be Lipschitz continuous with constant L. In particular, for the ensuing results to be mean-
ingful, L must be very small; this is the case for wide neural networks as we will discuss shortly.
Second, the theorem imposes the quadratic growth condition 2.3; this again is automatic for wide
neural networks. The final assumption roughly stipulates that the fourth moment of zi = ∇fi(w0) is
bounded by a multiple of the second moment. Conditions of this type have been used extensively in
the literature, such as [2, 8, 12]. In particular, 3.1 holds automatically with γ = maxi=1,...,n ∥zi∥2,
and this choice is optimal if zi are pairwise orthogonal—often a good approximation in the regime
of interest d ≫ n. Conversely taking the trace of both sides of 3.1 shows that any valid γ must be
larger than 1

n

∑n
i=1 ∥zi∥2. Importantly, γ is computable because it depends only on gradient of fi

at the center point w0. Under these assumptions, Theorem 3 establishes a linear scaling of β in the
batchsize up to the critical batchsize

b∗ =
4γ + 50γL2r2

α

∥∇F (w0)∥2op + L2r2
≈ 4γ

∥∇F (w0)∥2op
for L ≈ 0.

Past this batchsize, β becomes nearly identical to 4(∥∇F (w0)∥2op+L2r2). In particular, observe that
∥∇F (w0)∥2op is exactly equal to the optimal choice of β for the full-batch gradient S = {1, . . . , n}
on the linearized problem minw ∥F (w0) +∇F (w0)(w − w0)∥2 at w0.

In particular, combining Theorems 2 and Theorem 3 yields a precise expression for how the
batchsize effects the iteration complexity of minibatch SGD— the content of the following theorem.

Theorem 4 (Batchsize and iteration complexity) Suppose that Assumptions 1 and 2 hold, and
suppose that L is small in the sense that

L ≤ α

16r
√
β

where β ≜
16γ + 200γL2r2

α

|S|
+ 4L2r2 + 4∥∇F (w0)∥2op.

Fix constants δ1 ∈ (0, 13) and δ2 ∈ (0, 1), and assume dist2(w0, S) ≤ δ21r
2. Consider applying

minibatch SGD with stepsize η = 1
2β . Then with probability at least 1 − 5δ1 − δ2, the estimate

dist2(wt, S) ≤ ε · dist2(w0, S) holds after t ≥ 4β
α log

(
1
εδ2

)
iterations.

4



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

Thus assuming that L is small and ignoring log factors, the iteration complexity of SGD is

γ/α

|S|
+

∥∇F (w0)∥2op
α

+O(L).

Thus we see a linear scaling of the complexity up to the critical batchsize, after which point it
roughly coincides with the complexity of solving the problem minw ∥F (w0)+∇F (w0)(w−w0)∥2.

We next discuss consequences of Theorem 4 for a nonlinear least squares problem arising from
fitting a wide neural network. Setting the stage, an l-layer (feedforward) neural network f(w;x),
with parameters w, input x, and linear output layer is defined as follows:

α(0) = x,

α(i) = σ
(

1√
mi−1

W (i)α(i−1)
)
, ∀i = 1, . . . , l − 1

f(w;x) = 1√
ml−1

W (l)α(l−1).

Here, mi is the width (i.e., number of neurons) of i-th layer, α(i) ∈ Rmi denotes the vector of i-
th hidden layer neurons, w := {W (1),W (2), . . . ,W (l),W (l+1)} denotes the collection of the param-
eters (or weights) W (i) ∈ Rmi×mi−1 of each layer, and σ is the activation function, e.g., sigmoid,
tanh, linear activation. We also denote the width of the neural network as m := mini∈[l]mi, i.e.,
the minimal width of the hidden layers. The neural network is usually randomly initialized, i.e.,
each individual parameter is initialized i.i.d. following N (0, 1). Henceforth, we assume that the
activation functions σ are twice differentiable, Lσ-Lipschitz, and βσ-smooth.

Given a dataset D = {(xi, yi)}ni=1, we fit the neural network by solving the least squares prob-
lem 2.1 with fi(w) ≜ fi(w, xi). We assume that all the the data inputs xi are bounded, i.e.,
∥xi∥ ≤ C for some constant C. Define the Neural Tangent Kernel K(w0) = ∇F (w0)∇F (w0)

⊤ at
the random initial point w0 ∼ N(0, I) and let λ0 be the minimal eigenvalue of K(w0). The value
λ0 is positive with high probability [3, 4]; indeed by increasing the width it can be made arbitrarily
close to the smallest eigenvalue λ∞ of NTK of an infinitely wide neural network [3, Remark E.7].
The following is our main result.

Theorem 5 (Minibatch SGD for wide neural networks) Fix constants δ1 ∈ (0, 13), δ2 ∈ (0, 1),
ε > 0 and t ∈ N. Then with probability 0.8− 2 exp(−ml

2 )− (1/m)Θ(lnm), as long as

m = Ω̃

(
nr6l+2

λ2
0

)
and r = Ω

(
1√
λ0

)
, (3.2)

both Assumptions 1 and 2 hold and minibatch SGD with a constant stepsize η = 1
β finds a point wt

satisfying dist2(wt, S) ≤ ε · dist2(w0, S) after at most after t ≥ 8β
λ0

log
(
2
ε

)
iterations, where

β ≜
16 · max

i=1,...,n
∥∇f(w, xi)∥2

|S|
+ 4∥∇F (w0)∥2op +O

(
r6l+2

m

(
1 +

1

λ0|S|

))
. (3.3)

The third term in equation 3.3 is negligible in the regime of interest for m 3.2. Thus, we see
that increasing the batchsize linearly decreases the iteration complexity roughly up to the critical
batchsize b∗ = max

i=1,...,n
∥∇f(w, xi)∥2/∥∇F (w0)∥2op, after which point the iteration complexity of

SGD matches that of the full-batch gradient method on the linearized problem.

5



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

References

[1] Lingjiao Chen, Hongyi Wang, Jinman Zhao, Dimitris Papailiopoulos, and Paraschos Koutris.
The effect of network width on the performance of large-batch training. Advances in neural
information processing systems, 31, 2018.

[2] Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger
convergence rates for least-squares regression. The Journal of Machine Learning Research,
18(1):3520–3570, 2017.

[3] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. In International Conference on Machine Learning,
pages 1675–1685, 2019.

[4] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably opti-
mizes over-parameterized neural networks. In International Conference on Learning Repre-
sentations, 2018.

[5] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,
Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch
sizes for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.

[6] Robert Gower, Othmane Sebbouh, and Nicolas Loizou. Sgd for structured nonconvex func-
tions: Learning rates, minibatching and interpolation. In International Conference on Artificial
Intelligence and Statistics, pages 1315–1323. PMLR, 2021.

[7] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and
Peter Richtárik. Sgd: General analysis and improved rates. In International conference on
machine learning, pages 5200–5209. PMLR, 2019.

[8] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Ac-
celerating stochastic gradient descent for least squares regression. In Conference On Learning
Theory, pages 545–604. PMLR, 2018.

[9] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

[10] Chaoyue Liu, Dmitriy Drusvyatskiy, Mikhail Belkin, Damek Davis, and Yi-An Ma. Aiming
towards the minimizers: fast convergence of sgd for overparametrized problems. Advances in
neural information processing systems, 2023.

[11] Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les
équations aux dérivées partielles, 117(87-89):2, 1963.

[12] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3325–3334. PMLR, 2018.

6



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

[13] Courtney Paquette, Kiwon Lee, Fabian Pedregosa, and Elliot Paquette. Sgd in the large:
Average-case analysis, asymptotics, and stepsize criticality. In Conference on Learning The-
ory, pages 3548–3626. PMLR, 2021.

[14] B. T. Poljak. Gradient methods for minimizing functionals. Ž. Vyčisl. Mat i Mat. Fiz., 3:
643–653, 1963. ISSN 0044-4669.

[15] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,
and George E Dahl. Measuring the effects of data parallelism on neural network training.
arXiv preprint arXiv:1811.03600, 2018.

[16] Blake E Woodworth and Nathan Srebro. An even more optimal stochastic optimization algo-
rithm: minibatching and interpolation learning. Advances in Neural Information Processing
Systems, 34:7333–7345, 2021.

[17] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran,
and Peter Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In
International Conference on Artificial Intelligence and Statistics, pages 1998–2007. PMLR,
2018.

[18] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl,
Chris Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes?
insights from a noisy quadratic model. Advances in neural information processing systems,
32, 2019.

7



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

Appendix A. Technical Proofs

A.1. Proof of Theorem 3

Proof First, we present a useful lemma that decomposes the second momentum of gradients.

Lemma 6 (Decomposition of the second moment) The inequality holds:

ES ∥g(w, S)∥2 ≤ 1

|S|
Ei[(fi(w)− yi)

2∥∇fi(w)∥2] + ∥∇L(w)∥2.

The proof of this lemma is deferred to Appendix A.2.
Throughout, we let w ∈ Br(w0) be arbitrary. Lemma 6 yields the estimate

ES ∥g(w, S)∥2 ≤ 1

|S|
Ei[(fi(w)− yi)

2∥∇fi(w)∥2]︸ ︷︷ ︸
=:P1

+ ∥∇F (w)⊤F (w)∥22︸ ︷︷ ︸
P2

.

We may upper bound P2 as

P2 ≤ ∥∇F (w)∥2op∥F (w)∥2 = 2∥∇F (w)∥2opL(w). (A.1)

Note moreover that

∥∇F (w)−∇F (w0)∥2op ≤ ∥∇F (w)−∇F (w0)∥2F

≤ 1

n

n∑
i=1

∥∇fi(w)−∇fi(w0)∥22 ≤ L2∥w − w0∥2.

Therefore we deduce P2 ≤ 4(∥∇F (w0)∥2op +L2∥w−w0∥2)L(w). It remains to bound P1. To this
end, note ∥∇fi(w)∥2 ≤ 2∥∇fi(w0)∥2 + 2L2∥w − w0∥2. Therefore, we may estimate

P1 ≤ 2Ei(fi(w)− yi)
2∥∇fi(w0)∥2 + 2L2 · Ei(fi(w)− yi)

2∥w − w0∥2

= 2Ei(fi(w)− yi)
2∥∇fi(w0)∥2 + 4L2∥w − w0∥2 · L(w). (A.2)

Now let w̄ denote a closest point to w in argminL and note that by the triangle inequality w̄ lies in
B2r(w0). Using the fundamental theorem of calculus, we may write

fi(w)− yi = fi(w)− fi(w̄) =

∫ 1

0
⟨∇fi(w̄ + t(w − w̄)), w − w̄⟩ dt

= ⟨∇fi(w0), w − w̄⟩+ E,

(A.3)

where |E| ≤ L
2 ∥w − w̄∥(3∥w0 − w∥+ ∥w0 − w̄∥) ≤ 5rL

2 ∥w − w̄∥. Therefore, we may estimate

Ei(fi(w)− yi)
2∥∇fi(w0)∥2 ≤ 2Ei⟨∇fi(w0), w − w̄⟩2∥∇fi(w0)∥2

+ 2Ei∥∇fi(w0)∥2E2. (A.4)

8



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

Observe that setting v = w − w̄ we may write

Ei⟨∇fi(w0), w − w̄⟩2∥∇fi(w0)∥2 = v⊤
[
Ei∥∇fi(w0)∥2∇fi(w0)∇fi(w0)

⊤
]
v

≤ γ · v⊤
[
Ei∇fi(w0)∇fi(w0)

⊤
]
v (A.5)

= γ · Ei⟨∇fi(w0), v⟩2

≤ γ · Ei(2(fi(w)− yi)
2 + 2E2) (A.6)

= 4γL(w) + 2γE2, (A.7)

where the equation A.5 follows from equation 3.1 and equation A.6 follows from equation A.3.
Therefore, combining equations A.2, A.4, and A.7 we conclude

P1 ≤ (8γ + 4Ei∥∇fi(w0)∥2) · E2 + (16γ + 4L2∥w − w0∥2) · L(w). (A.8)

Next note that upon taking the trace in the definition of γ, we have Ei∥∇fi(w0)∥2 ≤ γ. Moreover,
using the quadratic growth condition, we see that

E2 ≤ 25L2r2

4
∥w − w̄∥2 ≤ 50L2r2

4α
· L(w). (A.9)

Combining the estimates A.8 and A.9 completes the proof.

A.2. Proof of Lemma 6

Proof Let 1i∈S and 1i,j∈S denote the indicator functions of the events {i ∈ S} and {i, j ∈ S},
respectively. We then successively deduce

ES ∥g(w, S)∥2 = ES

∥∥∥∥∥ 1

|S|
∑
i∈S

(fi(w)− yi)∇fi(w)

∥∥∥∥∥
2

=
1

|S|2
ES

∥∥∥∥∥
n∑

i=1

(fi(w)− yi)∇fi(w)1i∈S

∥∥∥∥∥
2

=
1

|S|2
n∑

i=1

(fi(w)− yi)
2∥∇fi(w)∥2P (i ∈ S)

+
1

|S|2
∑
i ̸=j

(fi(w)− yi)(fj(w)− yj)⟨∇fi(w),∇fj(w)⟩P (i, j ∈ S),

where the last inequality follows from expanding the square and using linearity of expectation. A
simple computation shows that P (i ∈ S) = (1− (1− 1

n)
|S|) ≤ |S|

n , where the last estimate follows
from Bernoulli’s inequality. Similarly for i ̸= j, we compute P (i, j ∈ S) = P (i ∈ S | j ∈
S)P (j ∈ S) ≤ |S|−1

n−1 · |S|n ≤ |S|2
n2 . Plugging this back into the equation and recognizing that the last

term is bounded by ∥∇F (w)⊤F (w)∥2 completes the proof.

9



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

Figure 2: Training loss curves vs. batch size for NanoGPT.

Appendix B. Experimental results

In this section, we numerically illustrate the saturation effects in mini-batch SGD when using large
batch sizes—a phenomenon extensively explored in [5, 15]. In our experiments, the stepsize is held
constant across varying batch sizes b. Although the optimal stepsize does depend on b, we opt for a
fixed stepsize to circumvent extensive hyperparameter tuning.

In our experiments we examine the convergence exponent h(b), defined through the expression
L(wT ) = L(w0) exp(−h(b)T ) where T is the total number of training iterations. We provide an
empirical estimate of h by plotting the function h̃(b) defined through linearly interpolating 1/h(1)
and 1/h(n) according to the formula 1

h̃(b)
= 1

b ·
1

h(1) +
b−1
b · 1

h(n) .

In our experiments, we consider several configurations of neural networks and training dura-
tions. For the MNIST dataset, we use a fully-connected NN with 3 hidden layers, each having 1000
neurons. The network is trained for 4k iterations using MSE loss (see Figure 3a). For CIFAR-10, we
employ a ResNet-28 architecture and also use MSE loss. Two training durations are considered: 12k
iterations (Figure 3c) and 100k iterations (Figure 3e). Finally, for the SVHN dataset, we again use a
fully-connected NN but with 3 hidden layers and 2000 neurons in each layer. The network is trained
for 20k iterations with MSE loss (Figure 3g). Additionally, we investigate the NanoGPT architec-
ture, a 6-layer Transformer with 6 heads per layer and 384 feature channels. This character-level
GPT has a context size of up to 256 characters and is trained on the works of Shakespeare, converted
into a continuous string. Each training sample consists of a 256-character substring (Figure 2).

We demonstrate the saturation effect in two ways: First, the iteration-wise training loss curves
become closer as the batch size increases; especially for large batch sizes, iteration-wise training loss
curves are almost identical. Second, the empirically estimated convergence exponent h(b) aligned
well with the theoretically predicted/interpolated h̃(b), and both curves flatten for large batch sizes.

10



SGD BATCH SATURATION FOR TRAINING WIDE NEURAL NETWORKS

(a) MNIST 4k iterations (b) MNIST 4k iterations

(c) CIFAR-10 12k iterations (d) CIFAR-10 12k iterations

(e) CIFAR-10 100k iterations (f) CIFAR-10 100k iterations

(g) SVHN 20k iterations (h) SVHN 20k iterations

Figure 3: Left: the training loss vs. batch size. Right: Convergence exponent h(b) vs. batch size b.

11


	Introduction
	Main assumptions and Known Results
	Estimating the critical batchsize and algorithmic consequences
	Technical Proofs
	Proof of Theorem 3
	Proof of Lemma 6

	Experimental results

