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Abstract
What can you say about the gradient of a neural network without computing a loss or knowing the
label? This may sound like a strange question: surely the answer is “very little.” However, in this
paper, we show that gradients are more structured than previously thought. They lie in a predictable
low-dimensional subspace that depends on the network architecture and incoming features.

Exploiting this structure can significantly improve gradient-free optimization schemes based
on directional derivatives, which until now have struggled to scale beyond small networks trained
on MNIST. We study how to narrow the gap in optimization performance between methods that
calculate exact gradients and those that use directional derivatives, demonstrate new phenomena
that occur when using these methods, and highlight new challenges in scaling these methods.

1. Introduction

Researchers have wondered for decades if neural networks can be optimized without using back-
propagation to differentiate the loss function. One tantalizing possibility, first articulated by Polyak
[15] and Spall [19], is to choose a random direction y, compute the directional derivative of the
objective in the direction y, and take a step in the direction y scaled by the directional derivative,
(y · ∇L). For a neural network with weights w, this step is an elegant unbiased estimator of the
true gradient: wt+1 = wt − α(y · ∇L)y. This method has recently seen renewed interest because
directional derivatives can be computed very efficiently using forward-mode differentiation, which
does not incur the immense memory cost of backpropagation [1, 3, 18].

Unfortunately, as the dimensionality of the optimization problem increases, so does the variance
in the estimator, which in turn inhibits convergence. If the network has N parameters, the cosine
similarity between the guess and true gradient falls to O( 1√

N
). For neural networks with billions of

parameters, this guess is nearly orthogonal to the true gradient and thus impractical.
For an N -dimensional problem, Nesterov and Spokoiny [13] show that this method incurs an

O(N) slowdown over ordinary gradient descent. Belouze [2] provides further theoretical and em-
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Directional Descent

WT

Activation Mixing

Backprop

Method Cosine Similarity 1-step effectiveness

Backprop (Oracle) 1 1
Directional Descent 0.0003± 0.00023 1× 10−6 ± 1× 10−6

Activation Perturbation 0.016± 0.0083 6.9 ×10−4 ± 8.4× 10−4

Activation Mixing 0.025± 0.014 3.4× 10−3 ± 5.5× 10−3

WT 0.030± 0.010 1.7× 10−3 ± 1.8× 10−3

1 Layer Downstream 0.034± 0.013 2.7× 10−3 ± 2.8× 10−3

Figure 1: (left) Guessed gradient cosine similarity for a 6-layer, 1024-wide MLP being trained on
CIFAR10 using backpropagation. We track each method’s cosine similarity along the backprop
trajectory, and tabulate the average in the table on the right. Compared to directional descent, our
proposed methods like W T achieve approximately 100× larger average cosine similarity. (right)
We also tabulate the average cosine similarity as well as the loss reduction for 1 step (relative to
backprop). Our methods reduce the loss more than 1000× more for a single batch.

pirical evidence that the “curse of dimensionality” prevents this method from scaling. Similarly,
Chandra [3] is able to train a small MLP on MNIST but not a ResNet on the CIFAR-10 dataset.

Can we do any better by guessing more intelligently? At first glance, isotropically random
guessing appears to be the best we can do. But the intrinsic dimension of gradients is often much
lower than N [9], which suggests that it might be possible to do better. In this paper, we observe
that the topology and activations of the neural network heavily constrain the gradient even before
a loss is computed—that is, we know information about the gradient before we even see the label.
Thus, we ask: How can we use knowledge about the network architecture and incoming features to
make better gradient guesses?

By carefully analyzing the structure of neural network gradients, we show it is possible to pro-
duce guesses with dramatically higher cosine similarity to the true gradient, even for networks with
millions of parameters. We then compare these cosine similarities to those of stochastic gradient
descent (SGD) to understand what cosine similarities are required for neural network optimization.
Next, we analyze the variance and optimization properties of these guesses to highlight their im-
proved convergence, and study limitations such as bias. Finally, we demonstrate a “self-sharpening”
phenomenon, where the training dynamics induced by these guesses make it easier to guess the
gradient over time. This phenomenon leads to > 95% training accuracy on CIFAR10 without back-
propagation. Nonetheless, these advances come with some important limitations, which we also
discuss — while the methods outlined in our work provide theoretical advances in our understand-
ing of gradient structure, they are not yet ready for practical use.

2. Methods

In this section, we describe the proposed methods for narrowing the guess space. We begin by
describing architecture-based constraints and then describe constraints based on knowledge about
the relationship between gradients and activations.

2.1. Architecture-aware gradient guessing

Suppose we optimize an MLP with weights W1,W2, . . . ,Wk using ReLU activation functions.
At some layer i, we take as input some incoming activations xi, compute the “pre-activations”
si = Wixi, and then compute the “post-activations” xi+1 = ReLU(si). We then pass xi+1 on to the
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next layer, ultimately computing some loss L = ℓ(sk). Finally, we wish to compute or approximate
∂L/∂Wi to train that layer. The current state-of-the-art method is to “guess” the unknown ∂L/∂Wi

uniformly at random via a spherically-symmetric Gaussian. Can we do better?
Let us locally “unfold” the computation to see if there is any additional information we can

exploit to narrow the space of our guessing. Recall that the first step is to multiply the incoming
xi by Wi to get the pre-activations si = Wixi. If we apply the chain rule at that point, we learn
an important fact: ∂L/∂Wi is the outer product of the (unknown) future gradient and the (known)
incoming activations xi.

∂L

∂Wi
=

∂L

∂si
· ∂si
∂Wi

=
∂L

∂si
· ∂Wixi

∂Wi
=

∂L

∂si
· x⊤i (1)

Notice in particular that ∂L/∂si is of significantly lower dimension than ∂L/∂Wi. This leads us to
our first insight: we can “guess” the low-dimensional ∂L/∂si and use the known x⊤i to compute a
much lower-variance guess for the high-dimensional ∂L/∂Wi. Note that for a neural network with
width K, each weight has K ×K = K2 parameters, and we have reduced the guessing space from
O(K2) to O(K). Practically, for neural networks with millions of parameters, this means guessing
in a few thousand dimensions. This guess consists of perturbations of pre-activations (si), similar
to the work of [16].

Let us keep unfolding. The next step is to take the ReLU of si to obtain xi+1:

∂L

∂si
=

∂L

∂xi+1
· ∂xi+1

∂si
=

∂L

∂xi+1
· ∂ReLU(si)

∂si
(2)

Our second insight is that by the very nature of ReLU activations, ∂ReLU(si)/∂si will typically
be a sparse diagonal matrix, which will “zero out” many entries of the incoming gradient. This
suggests that we should actually “guess” only the surviving entries of ∂L/∂xi+1, as determined by
that sparse matrix (known at guess-time). This further decreases the dimensionality of our guessing
space and, consequently, the variance of our guesses.

Let us unfold one last time, looking into the next weight matrix Wi+1. Again, we apply the
chain rule, now at si+1:

∂L

∂xi+1
=

∂L

∂si+1
· ∂si+1

∂xi+1
=

∂L

∂si+1
· ∂Wi+1xi+1

∂xi+1
=

∂L

∂si+1
·Wi+1 (3)

As before, the future gradient ∂L/∂si+1 is unknown and must be guessed. But we know that it will
immediately be multiplied by W⊤

i+1. While this does not necessarily give a “hard” constraint on our
guess, our third insight is that W⊤

i+1 often effectively has low rank. We can constrain our guesses
to lie in the image of W⊤

i+1 by multiplying our guess with it to further lower the dimensionality of
our guessing space. To summarize, we know that

∂L

∂Wi
=

∂L

∂si+1
W(i+1) ·

∂ReLU(si)

∂si
· x⊤i

At “guess time” all of these quantities are known except for ∂L/∂si+1, which we guess as random
normal with zero mean and unit variance. We then apply a series of constraints to mould it into a
more effective guess for ∂L/∂Wi. We refer to the combination of these methods as “W T ”.

Partial backpropagation: The previous approach incorporates local architecture information
into the gradient guess. As a more general approach, we can consider guessing the gradient for some
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neurons xi+l which are l layers downstream of the current layer, and backpropagating through the

intermediate portion of the graph: ∂L
∂Wi

=
∂L

∂xi+l︸ ︷︷ ︸
guess here

·∂xi+l

∂si
· x⊤i . This approach requires storing the

intermediate activations for the l layers, and in the full limit, is equivalent to regular backpropaga-
tion but with a random error vector. In our experiments, we find that using more than l = 1 has
diminishing returns, so we stick to l = 1.

2.2. Feature-aware gradient guessing

We unroll SGD update steps and show that activations and gradients approximately lie in the same
subspace. We visualize this phenomenon in Figure 6. This allows us to use a random mixture of
activations xk+1 to produce good gradient guesses.

Consider the downstream weight matrix Wk+1 being updated iteratively with SGD with a learn-
ing rate η. Then at timestep t:

Wk+1[t] = Wk+1[0] +

t−1∑
i=1

∆Wk+1[i] = Wk+1[0] + η

t−1∑
i=1

∂L

∂sk+1
[i]xTk+1[i]

. The term ∂L
∂xk+1

[t] can be expanded to:

∂L

∂xk+1
[t] =

∂L

∂sk+1
[t]Wk+1[t] =

∂L

∂sk+1
[t]Wk+1[0] + η

t−1∑
i=1

βk+1[t, i]x
T
k+1[i] ≈ η

t−1∑
i=1

βk[t, i]x
T
k+1[i]

where we ignore the first term (weight at initialization), and where βk+1[t, i] =
∂L
∂sk

[t]T ∂L
∂sk

[i] mea-
sures the similarity of sk gradients at timesteps t and i. We thus see that the desired gradient
approximately lies in the subspace of previously generated activations xk+1[i]. Our experiments
confirm that the activation subspace is often well-aligned with the gradient subspace across depths,
widths, and training epochs (Figure 6).

We generate a guess for ∂L
∂xk+1

by taking current activations xk+1 and computing random linear
combinations of all the activations in the batch. We call this method “activation mixing”.

3. Results

We evaluate the directional descent baseline, activation perturbation baseline, activation mixing,
W T , and “1-Layer Downstream”. Please see supplementary material for implementation details.

Cosine similarity along backprop: We compare each method’s gradient guess on an MLP
with depth 6, width 1024, trained using backprop and show the results in Figure 1. On average,
our proposed methods such as W T produce cosine similarities that are hundreds of times higher
than directional descent. One step effectiveness: Cosine similarity ignores the curvature of the loss
landscape and thus can be a misleading measure of a method’s effectiveness. We directly compare
the loss reduction relative to backprop and further search over multiple step sizes [10−5, . . . , 10−1]
for each method (and backprop) to make the comparison as fair as possible. Our methods are
thousands of times more effective than directional descent in the 1-step regime.
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Figure 2: Our proposed methods outperform directional descent, but struggle against backprop. We
plot MLP train and test accuracies for various methods and datasets. The columns refer to MNIST,
SVHN, CIFAR10, and CIFAR100 respectively. The x-axis in each plot is labelled as (depth, width)
for each MLP configuration, and sorted by the number of parameters. Refer to Table 1 for details.

Training MLPs on MNIST, SVHN, CIFAR10, CIFAR100: We next conducted experiments
to train MLPs using our proposed methods on four commonly used datasets: MNIST, SVHN, CI-
FAR10, and CIFAR100. The plots are reported in Figure 2. While our proposed methods outperform
directional descent, there is a large gap between these methods and backprop, and the gap grows
larger with more complex datasets.
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Figure 3: (left) Our methods (Mixing, Downstream, W T ) are biased estimators of the gradient. For
a single example input, we average the multiple guesses and plot cosine similarity as a function
of the number of guesses. In contrast to an unbiased random baseline where averaging over more
guesses leads to better cosine similarities, the cosine similarity quickly saturates for the biased
methods. (middle) The cosine similarity achieved by our methods, without the bias, is sufficient to
achieve high training accuracy on tasks like CIFAR10. (Right) Momentum and bias interact. We
replicate the matched cosine similarity, but using SGD with/without momentum. We find that when
momentum is used, bias causes a large slowdown for our method related to the unbiased version (as
observed in the paper). However, without momentum, the difference between the two conditions is
negligible. This may indicate a crucial role of momentum in this gradient guessing problem.

Bias: Unbiased methods like directional descent display better cosine similarity when averaged
over many guesses. Experiments employing a Multi-Layer Perceptron (MLP) on CIFAR10 show bi-
ased methods like W T and activation mixing plateau in cosine similarity after around 1000 guesses,
while unbiased methods continue to improve. We further show that our cosine similarities (0.02) are
sufficient for high accuracy in the absence of bias (Figure 3). Finally, we also show that momentum
contributes to the observed slowdown from bias.

Self-sharpening effect: We report a peculiar “self-sharpening” behavior seen in some methods,
where the training dynamics lead to the guesses becoming better over time. While we do not know
the precise cause of this effect, we hypothesize that the biased guesses dominated by a few singular
values lead to lower rank weight matrices, which further lead to higher cosine similarity over the
course of training. We can replicate this effect by modifying W T guessing method: We compute the
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Figure 4: Self-sharpening effect leads to the cosine similarity increasing over the course of training
and a higher training accuracy as a result. We re-create this effect by making some singular values
dominate the guess. This leads to the weight matrices becoming lower rank over time, which leads
to increased cosine similarity.

singular value decomposition of W and raise its singular values to various powers [0.1, 0.2, . . . , 4].
Higher powers lead to a more imbalanced distribution, with a few singular values dominating the
rest. We plot the resulting cosine similarity and effective rank [17] in Figure 4.

4. Conclusion

We show it is possible to produce gradient guesses with dramatically higher cosine similarities
than directional descent. While these methods help close the gap between backprop and forward
gradients, bias is a major limiting factor for the scalability of our methods.
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Appendix A. Supplementary Materials

In this section, we describe experimental details for the experiments mentioned in the paper. We
also run a hyperparameter sweep over learning rates and optimizers to check for the convergence
speed of each method. All our code is implemented in PyTorch [14].

A.1. Bias Analysis

In this section, we discuss one possible source of the bias present in our proposed methods. We start
with the unbiased estimator which uses JVP:

ĝ = (∇L.y)y (4)

and we compute the expectation of this estimator:

E
[
ĝ
]
= E

[
(∇L.y)y

]
= E

[
yyT

]
∇L = Cov(y)∇L (5)

thus, in expectation, the gradient guess is equal to the original guess scaled by the covariance matrix
of the guess. Thus the bias is:

E
[
ĝ
]
−∇L = (Cov(y)− I)∇L (6)

Therefore, the guess can only be unbiased if the covariance matrix is equal to the identity matrix in
the subspace that the gradients lie in.

For our proposed estimators, this is easily shown to be false. Activation mixing uses random
mixtures of activations as the gradient guesses, and thus its covariance matrix is the same as the
covariance matrix of the activations (and thus non-identity). Our methods rely on these covariance
matrices being low rank and well-aligned with the gradient subspace to produce high cosine simi-
larity guesses. Still, as a result, our expected guess is also scaled by these covariance matrices, thus
biased. In future work, we hope to use this information to undo the bias caused by these non-identity
covariance matrices.

Bias for W T : The W T method involves sampling a random normal noise vector and transform-
ing it with W T to confine it to the range space. Thus, the guess y for any given layer can be written
as:

y = W T ϵ

where ϵ is a random normal vector, i.e., ϵi ∼ N (0, 1). Thus the guess vector y is also a multivariate
normal vector with the covariance matrix:

Cov(y) = W TW

and so the bias for each layer’s activation is given by:

=⇒ Bias[W T ] = (W TW − I)∇L
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Figure 5: Additional downstream layers don’t help. We train a 6-layer, 1024 wide MLP on CIFAR10
using various methods and plot their training curves above. We see that 2-layer downstream has
no advantage on 1-layer downstream, indicating that the increase in bias counteracts any variance
benefits.

Why more layers are not always better: Why not use as many steps as possible in partial
backpropagation (e.g., using the next 2 or 3 downstream layers)? In practice, the bias can increase
with each additional layer (see Figure 5). Here, we show how with a simple toy example.

Let the activation vector at Layer i be represented by a vector xi ∈ Rn, and let the jacobians of
the next few layers (i.e. layers i+1, i+2, . . . , i+k) be represented by Ji+1, Ji+2, . . . Ji+k ∈ Rn×n

(here we assume that all layers are the same width without loss of generality). We denote their
product, the accumulated jacobian for layers i+ 1 to i+ k, as J for notational simplicity. Also, let
gk ∈ R be the true corresponding gradient.

We begin by noting that gi = J ∂L
∂xi+k

by chain rule. Thus, gi lies in the range space of J , i.e.
gi ∈ R(J). Using this knowledge can significantly reduce the guessing space.

Let’s look at how our methods use this knowledge: They sample a random normal vector ni ∈
R⋉ multiply it by the jacobian to generate the guess direction y = Jn for some normal vector
n ∈ Rn. This guess y is used in a forward JVP to generate an estimate ĝ = JV P (y)y = (g.y)y

Using equation 6, the bias of ĝ is:

E[ĝ]− g = (Cov(y)− I)g = (Cov(Jn)− I)g = (JJT − I)g (7)

The method predicts ĝ = JJT g instead of the true g, resulting in the bias (JJT − I)g. To show
this bias can increase with more layers, we consider a simple case where each Ji = 2 ∗ I . Then
J = Ji+1. . . Ji + k = 2kI , and the bias is (4k − 1)||g||, which increases with k.

A.2. Gradients and activations approximately lie in the same subspace

We compute the cosine similarity between the true gradient and its projection onto the subspace
spanned by activations. If the activation and gradient subspaces are approximately aligned, the co-
sine similarity between the gradient and its projection should be high. We pick the basis for the
activation subspace by running PCA and using the principal components as the basis vectors. We
contrast this to a random subspace created by randomly sampling a set of vectors and orthonormal-
izing them. We plot the resulting curves for each layer in MLPs of depth 3,4, or 6, widths 1024,
and during all 20 training epochs. We see that the activation subspace consistently requires much
fewer basis vectors for a significantly better approximation than a random subspace, getting cosine
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Figure 6: Activations and gradients approximately lie in the same subspace. For an MLP trained
on MNIST digit classification, we plot (as images) for each class (a) the first principal component
of gradients with respect to input images (top row), (b) the first principal components of the inputs
(middle) and (c) random combinations of inputs (bottom row). Even though the MLP is initialized
with random weights, the principal components of gradients look similar to inputs. Our “activation
mixture” method uses random mixtures of activations to generate guesses in the same subspace as
the gradients. (Right) Activation subspace is a better match for gradients than a random subspace.

Figure 7: Activation and gradient subspace similarity

similarity as high as 0.5 with less than 10 principal components (in contrast, random subspace gets
0.1 cosine similarity). Figure 6 superimposes curves from many different networks and epochs, and
Figure 7 shows some of them separately for various network widths, layers, and depths.

A.3. Learning Rate and Optimizer Sweep

To test each method’s convergence speed, we run a sweep over learning rates [10−2, 10−3, 10−4,
10−5] and optimizers [AdamW [11], SGD, StableAdamW [21]]. We fix the same MLP architecture
(3 layers, width 128) and dataset (CIFAR10). We plot the training accuracy for each method and
each optimizer, choosing the best learning rate (defined as the highest train accuracy at the end
of 1000 epochs) (Figure 8). We see that backprop predictably converges much faster than other
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methods, and gradient guessing methods such as directional descent and ours benefit greatly from
Adam.
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Figure 8: We plot each method’s training curves for different optimizers on CIFAR10 for an MLP
with 3 layers and width 128. We note that backprop converges significantly faster than directional
descent and our proposed method. We also note that directional descent and our methods benefit
greatly from variants of the Adam optimizer.

A.4. Experimental Details

Jacobian-vector product (JVP) and forward gradients: JVP takes as input a function f(I), inputs
i (called primals), and perturbations p (called tangents), and computes Jf (I)|I=i ·p, where Jf refers
to the jacobian of f and Jf · p refers to multiplying the jacobian matrix Jf with the perturbations p.
It measures the effect of infinitesimal perturbations p around the original inputs i. This can be used
for gradient estimation in two ways: (a) weight perturbations and (b) pre-activation perturbations.

For weight perturbations, the process is the same as used in [1]. A gradient estimate ĝ of the
true gradient g = ∇WL is generated (for directional descent, this is a random normal vector).
Given such a guess, the JVP (g.ĝ) is computed. Note that this process does not require knowledge
of the true gradient or any backward pass. The final update is just the guess scaled by the JVP,
ĝ · JVP = ĝ · (ĝ · g)

For pre-activation perturbations, the guesses and gradients are for pre-activations (i.e. the neuron
values after a linear layer and before an activation function like ReLU). The new guess ĝ = ∇xL
perturbs each pre-activation, and the JVP of this perturbation is measured. After scaling thiw pre-
activation guess with the JVP, it can be converted into a weight update by computing the outer
product as normally done in backpropagation ∆Wk = xkg

T
k .

Note that unlike weight perturbations, pre-activation perturbations apply separately for each
batch element. Thus the JVP is measured separately for each measurement as well (i.e., we get as
many JVP values as the batch size instead of one JVP value per batch). This allows pre-activation
perturbations to take advantage of batch parallelism and get more gradient information for the same
computation for each batch.
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Directional descent baseline: As described above, our guess is a random normal vector. Each
entry is given by ĝi ∼ N (0, 1√

N
). The division by

√
N ensures that the norm of the guess doesn’t

grow with the parameter count.
Activation perturbation baseline: This baseline uses random normal perturbations for activa-

tions instead of weights. As described above, after scaling the guess with the JVP, we convert the
scaled pre-activation guess to a weight update using the outer product.

In practice, this conversion is implemented using the ”.backward()” function available for linear
layers in PyTorch. We note that although we use ”.backward()” to update individual layers one at a
time, we are not using backpropagation to generate the guesses or to evaluate the JVP. This process
can be done in a second forward pass once the JVP has been computed and does not require storing
activations for all layers, unlike backpropagation.

Activation mixing: For each layer k, we take the batch of activations
[
xk[1], . . . , xk[B]

]
where

B is the number of batch elements. We compute a random linear combination α1xk[1] + . . . +
αBxk[B], where each weight αi ∼ N (0, 1). To incorporate sparsity, we multiply each resulting
guess by the ReLU activation mask ∂ReLU(xk[i])

∂xk[i]
. We also normalize the overall guess to ensure

stability during training. In practice, this is implemented using backprop, as mentioned above.
Since activation mixing does not apply to the last layer, we use a random normal guess for the last
layer.

WT : For each batch element, we start with a random normal vector and multiply it by the
transpose of the next layer’s weight matrix W T

k+1. We incorporate sparsity by multiplying with
the ReLU mask as mentioned above and create a weight update in a similar fashion to previous
methods. Similar to activation mixing, the last layer receives a random normal guess.

1-layer downstream: For each batch element, we trace the intermediate activations until the
next layer and backpropagate a random normal vector through this graph. This method backpropa-
gates signals from one layer to another but not across multiple layers as in regular backpropagation.
We also note that the backpropagated vector is random and thus contains no information about the
true gradient other than being in the same subspace. The update method and last layer treatment are
the same as previous methods.

Self-sharpening experiments: For the self-sharpening experiments, we use the same frame-
work as 1-layer downstream, but we use random uniform guessing instead of random normal, and
the last layer gradients are replaced with the true error vector instead of a random guess. The last
layer gradients are not required to see this effect, but they drastically speed up convergence. Since
this method can be unstable, we also use the StableAdamW optimizer. Self-sharpening through
singular value manipulation: This experiment was conducted on an MLP with 6 layers and 128
units per layer. We trained the MLP on CIFAR10 with batch size 128, LR 10−4 0 weight decay, and
64 replicates for 50000 iterations.

Artificially modifying directional descent’s cosine similarity: For our bias experiments, we
modify directional descent to see how it would perform with a cosine similarity like our methods.
To achieve this modified directional descent algorithm, we blend the random guess with the true
gradient computed using full backpropagation. Specifically, we compute the two components of
the guess: one along the gradient (g∥) and one orthogonal to it (g⊥). These two components are
normalized to create an orthogonal basis. Then, a guess that has an angle θ with the gradient can be
created as: ĝθ = cos θg∥ + sin θg⊥

12
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Train Accuracy

Method CIFAR100 CIFAR10 SVHN MNIST
D

:3
,W

:1
28

Directional gradients 6.7± 0.3 37.4± 0.2 59.8± 0.4 92.3± 0.2
Activation Perturbation 13.3± 0.1 45.9± 0.3 69.3± 1.3 98.7± 0.1

Mixing (ours) 20.1± 0.6 57.2± 0.8 76.34± 0.6 96.9± 0.5
W T (ours) 25.6± 0.2 62.4± 0.8 81.3± 0.9 100.0± 0

Downstream (ours) 30.8± 0.7 65.6± 0.5 83.2± 0.8 99.9± 0.1
Self-sharpening (ours) 11.4 ±1.7 51.5 ±5.5 71.6 ±1.9 99.5 ±0.3

Backprop (oracle) 100.0± 0 100.0± 0 99.5± 0.9 100.0± 0

D
:6

,W
:1

28

Directional gradients 5.2± 0.4 35.9± 0.2 54.8± 1.2 91.4± 0.2
Activation Perturbation 9.4± 0.5 38.9± 0.4 56.1± 1.8 97.3± 0.3

Mixing (ours) 13.1± 0.7 48.5± 1.3 72.1± 1.3 96.6± 0.3
W T (ours) 16.5± 0.4 51.5± 0.2 73.2± 1.1 99.2± 0.1

Downstream (ours) 16.1± 0.4 52.8± 0.8 77.0± 1.2 99.5± 0.1
Self-sharpening (ours) 21.1 ±8.5 42.5 ±15.4 78.9 ±11.2 100.0 ±0.0

Backprop (oracle) 100.0± 0 100.0± 0 100.0± 0 100.0± 0

D
:3

,W
:1

02
4

Directional gradients 9.0± 0.1 35.9± 0.2 54.8± 1.2 91.4± 0.2
Activation Perturbation 9.9± 0.6 36.7± 2.7 50.1± 5.6 96.2± 1.2

Mixing (ours) 26.9± 0.4 59.4± 1.2 80.8± 1.8 98.4± 1.2
W T (ours) 28.2± 0.5 56.9± 1.4 79.8± 1.3 99.6± 0.3

Downstream (ours) 28.4± 0.7 58.5± 1.0 80.6± 0.5 99.9± 0.1
Self-sharpening (ours) 23.1 ±1.1 70.8 ±15.0 69.8 ±5.2 100.0 ±0.0

Backprop (oracle) 100.0± 0 100.0± 0 100.0± 0 100.0± 0

D
:6

,W
:1

02
4

Directional gradients 7.8± 0.1 32.2± 0.1 37.4± 0.2 91.4± 0.3
Activation Perturbation 3.6± 0.4 26.9± 1.6 24.3± 4.5 95.5± 0.8

Mixing (ours) 18.1± 0.4 52.2± 1.3 78.4± 2.2 97.2± 0.2
W T (ours) 14.6± 0.3 46.7± 0.9 73.6± 0.8 99.4± 0.2

Downstream (ours) 9.7± 0.3 37.6± 2.6 71.3± 0.8 99.4± 0.2
Self-sharpening (ours) 18.1 ±9.1 97.5 ±3.9 97.9 ±0.5 99.9 ±0.1

Backprop (oracle) 99.9± 0.1 100.0± 0 100.0± 0 100.0± 0

Test Accuracy

Method CIFAR100 CIFAR10 SVHN MNIST

D
:3

,W
:1

28

Directional gradients 6.1± 0.4 35.8± 0.4 57.4± 0.4 92.2± 0.2
Activation Perturbation 12.2± 0.2 42.3± 0.5 65.4± 1.3 96.9± 0.2

Mixing (ours) 11.6± 0.3 44.2± 0.5 69.6± 0.4 95.7± 0.2
W T (ours) 17.1± 0.3 46.9± 0.8 76.2± 0.4 97.5± 0.1

Downstream (ours) 18.1± 0.3 47.8± 0.7 76.9± 0.4 97.5± 0.1
Self-sharpening (ours) 10.6 ±0.9 35.4 ±2.1 64.8 ±1.6 94.2 ±0.5

Backprop (oracle) 19.7± 0.1 49.0± 0.3 81.8± 0.2 97.8± 0.1

D
:6

,W
:1

28

Directional gradients 4.6± 0.4 34.4± 0.5 53.2± 1.3 91.4± 0.1
Activation Perturbation 9.9± 0.5 38.9± 0.3 53.4± 1.1 96.2± 0.1

Mixing (ours) 10.6± 0.5 42.5± 1.0 66.4± 0.9 95.3± 0.2
W T (ours) 14.1± 0.3 46.5± 0.4 69.4± 1.6 96.9± 0.2

Downstream (ours) 14.1± 0.3 46.5± 0.5 72.8± 1.0 97.0± 0.1
Self-sharpening (ours) 14.0 ±2.7 43.2 ±1.1 70.6 ±0.8 96.2 ±0.2

Backprop (oracle) 17.9± 0.4 47.5± 0.3 80.2± 0.3 97.4± 0.1

D
:3

,W
:1

02
4

Directional gradients 8.0± 0.2 34.8± 0.3 47.2± 1.0 92.8± 0.1
Activation Perturbation 9.4± 0.2 38.3± 0.4 55.6± 1.1 96.6± 0.2

Mixing (ours) 15.0± 0.3 44.6± 0.7 73.3± 0.9 97.0± 0.2
W T (ours) 17.6± 0.5 48.0± 0.4 75.3± 0.6 97.7± 0.1

Downstream (ours) 18.3± 0.3 48.4± 0.5 76.4± 0.5 97.8± 0.0
Self-sharpening (ours) 11.9 ±1.4 38.7 ±1.1 65.1 ±4.0 96.1 ±0.1

Backprop (oracle) 25.0± 0.5 53.8± 0.1 83.2± 0.1 98.3± 0.1

D
:6

,W
:1

02
4

Directional gradients 6.9± 0.5 31.7± 0.3 37.8± 0.4 91.3± 0.3
Activation Perturbation 4.7± 0.2 32.4± 0.6 31.8± 2.0 96.0± 0.1

Mixing (ours) 14.0± 0.2 44.9± 0.5 72.5± 0.8 95.7± 0.2
W T (ours) 14.0± 0.5 45.2± 0.5 70.7± 0.6 97.4± 0.1

Downstream (ours) 10.2± 0.4 40.6± 0.4 69.6± 1.3 97.5± 0.1
Self-sharpening (ours) 10.1 ±0.5 33.5 ±2.9 68.1 ±0.8 93.7 ±1.9

Backprop (oracle) 25.2± 0.3 52.4± 0.3 82.9± 0.1 97.9± 0.2

Table 1: Train and test accuracies for all our proposed methods as well as the self-sharpening effect.
We note that while the self-sharpening effect can deliver high train accuracy, it prevents the model
from generalizing and thus achieving high test accuracy.

A.5. MLP results

Here we tabulate the train and test accuracy for all methods on various MLP sizes and datasets.

A.6. Visual prompt-tuning experiments

As models become ever larger, the burden of even instantiating the computational graph of a model
for a single minibatch becomes untenable for modest computational resources. Backpropagation
exacerbates this issue for tuning methods like [8, 10, 12], which require intermediate states of the
graph to be saved for the backward pass. We apply our gradient guessing methods to the space
of parameter-efficient fine-tuning (PEFT), where memory-efficient training methods are relevant.
One popular approach is prompt-tuning [5, 8]. For pre-trained vision transformers (VIT-B/16 [4]),
we tune the prompt tokens by guessing the gradient of the prompt. Figure Figure 9 shows that
our W T method consistently outperforms directional descent for all fine-tuning datasets (CUB-200
[20], Stanford Cars [7], Stanford Dogs [6]).
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Figure 9: Gradient guessing strategies applied to Visual Prompt Tuning [5] where prompt tokens
are trained with backpropagation, directional descent, and W T .

14


	Introduction
	Methods
	Architecture-aware gradient guessing
	Feature-aware gradient guessing

	Results
	Conclusion
	Supplementary Materials
	Bias Analysis
	Gradients and activations approximately lie in the same subspace
	Learning Rate and Optimizer Sweep
	Experimental Details
	MLP results
	Visual prompt-tuning experiments


