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Abstract

In real-world situations, players often encounter a distribution of similar but distinct games,
like poker games with different public cards or trading varied correlated stock market assets.
While these games exhibit related equilibria, current literature mainly delves into single
games or their repeated versions. Recently, offline meta-learning was used to accelerate
equilibrium discovery for such distributions in a single-player online setting. We build upon
this, extending to a more challenging domain of two-player zero-sum self-play setting. Our
method uniquely integrates information for next strategy selection for both players across
all decision states, promoting global communication as opposed to the traditional local
regret decomposition. Evaluations on distributions of matrix and sequential games reveal
our meta-learned algorithms surpass their non-meta-learned variants.

1. Introduction

Regret minimization has become a widely adapted approach for finding equilibria in imper-
fect information games. The literature on equilibrium finding mainly focuses on isolated
games or their repeated play, with a few recent exceptions (Xu et al., 2022; Harris et al.,
2022; Sychrovsky et al., 2023). Nevertheless, numerous real-world scenarios feature playing
similar, but not identical games, such as playing poker with different public cards or trading
correlated assets on the stock market. As these similar games feature similar equilibria, it
is possible to accelerate equilibrium finding on such a distribution (Harris et al., 2022).

Recently, (Sychrovsky et al., 2023) used offline meta-learning framework to accelerate
online play for a distribution of two-player zero-sum games. Their motivation, similar to
ours, was to make the agent more efficient in online settings, where one has limited time
to make a decision. In this setting, they wanted to minimize the time required to find a
single-player strategy with low one-sided exploitability, i.e. low one-sided approximation
error from a mini-max equilibrium (Nisan et al., 2007).

In this paper, we extend their result to a self-play setting and show similar improvements
can be gained when approaching a full Nash equilibrium profile. As the prior regret min-
imization algorithms typically work significantly better in the self-play setting, it is more
difficult to make advances in this domain. We investigate several meta-learned algorithms
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and show that meta-learning can improve performance of the algorithms in almost all cases.
A unique feature of our method is we meta-learn the predictions for both players and all
the decision states simultaneously. We thus facilitate global inter-state communication,
in contrast to the classic CFR regret decomposition local to individual states (Zinkevich
et al., 2008). We evaluate the algorithms on a distribution of matrix and small sequen-
tial games. Our experiments show the meta-learned algorithms confidently surpass their
non-meta-learned variants.

2. Preliminaries

Games. We now very briefly describe a game formalism based on factored-observation
stochastic games (Kovař́ık et al., 2019).

Definition 1 A game G is a tuple ⟨N ,W, wo,A, u,O⟩, where
• N = {1, 2} is a player set. We use symbol i for a player and -i for its opponent.

• W is a set of world states and w0 ∈ W is a designated initial world state.

• A = A1 × A2 is a space of joint actions. A world state with no legal actions is
terminal. We denote the set of terminal world states as Z.

• ui(z) = −u-i(z) is the utility player i receives when z ∈ Z is reached.

• O = (O1,O2) specifies the observation that i receives1 upon the state transition.

The space Si of all action-observation sequences can be viewed as the infostate tree of player
i. A strategy profile is a tuple σ = (σ1,σ2), where each strategy σi : si ∈ Si 7→ σi(si) ∈
∆|Ai(si)| specifies the probability distribution from which player i draws their next action
conditional on having information si.

The expected reward (in the whole game) is ui(σ) = Ez∼σ ui(z). The best-response
to the other player’s strategy σ-i is br (σ-i) ∈ argmaxσi

ui(σi, σ-i). Exploitability of a
strategy σ is the sum of rewards each player can get by best-responding to his opponent

expl(σ) =
∑
i∈N

ui(br (σ-i),σ-i).

A strategy profile is a Nash equilibrium if it has zero exploitability2.

Regret Minimization. An online algorithm m for the regret minimization task re-
peatedly interacts with an environment g through available actions A. The goal of regret
minimization algorithm is to maximize its hindsight performance (i.e. to minimize regret).
We will describe everything from the point of view of the player i acting at infostate s ∈ Si.

Formally, at each step t ≤ T , the algorithm submits a strategy σt = (σt
1,σ

t
2),

where σt
i(s) ∈ ∆|Ai(s)| is a strategy of i. Subsequently, it observes the reward xt =

(xt
1,x

t
2),x

t
i(σ

t
-i) ∈ R|Ai(s)| returned from the environment g depending on strategy of the

opponent -i. The difference in reward obtained under σt
i and any fixed action strategy is

measured by the instantaneous regret ri(σ
t,xt) = xt

i(σ
t
-i) − ⟨σt

i,x
t
i(σ

t
-i)⟩1 of player i.

The cumulative regret over the entire sequence is RT
i =

∑T
t=1 ri(σ

t,xt).

1. This observation includes both the public and the private observation of player i.
2. This is because then the individual strategies are mutual best-responses.
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Connection Between Games and Regret Minimization. In two-player zero-sum
games, if the external regret Rext,T

i =
∥∥RT

i

∥∥
∞ grows sublinearly in T , the average strat-

egy σT
i = 1

T

∑T
t=1 σ

t
i converges to a Nash equilibrium (Nisan et al., 2007) as T → ∞. In

sequential games, one can decompose the regret into individual (i.e. per infostate) coun-
terfactual regrets and minimize the separately, leading to counterfactual regret minimiza-
tion (Zinkevich et al., 2008). This approach again converges to a Nash equilibrium.

3. Meta-learning framework

On a distribution of regret minimization tasks G, we aim to find an online algorithmmθ with
some parameterization θ that efficiently minimizes the expected external regret. However,
what does it mean for a regret minimizer to be good at minimizing regret on G?

The simplest answer is to minimize the final external regret Rext,T in expectation over G.
However, even if we reduced the regret to zero, this would only guarantee that the final
average strategy σT

θ is close to an equilibrium. Rather, we want that the regret minimizer
chooses strategies close to an equilibrium along all the points of the trajectory σ1

θ, . . .σ
T
θ .

Consequently, we define the loss as expectation over the maximum instantaneous regret
experienced at each step in all infostates of the game, i.e.

L(θ) = E
g∈G

∑
i∈N

∑
si∈Si(g)

T∑
t=1

∥∥ri(σt
θ,x

t(θ))
∥∥
∞

 ≥ E
g∈G

∑
i∈N

∑
si∈Si(g)

Rext,T
i (si|θ)

 . (1)

This is analogous to minimizing
∑T

t=1 f(x
t) rather than f(xT ) as in (Andrychowicz et al.,

2016), where the authors meta-learned a function optimizer. Note that this loss does not
correspond to any kind of regret that one can hope to minimize against a black-box.
See Appendix A for further discussion. For matrix games, since the game is zero-sum,∑

i∈N
∥∥ri(σt

θ,x
t(θ))

∥∥
∞ =

∑
i∈N

∥∥xt
i(θ)

∥∥
∞. Minimizing (1) is thus equivalent to minimiz-

ing the expected exploitability of the selected strategy along the trajectory.

In comparison with (Sychrovsky et al., 2023) where the authors used a best-responding
opponent, we meta-train the regret minimizer for both players simultaneously. There are
two main reasons for why our domain is more challenging. First, prior regret minimization
algorithms typically work significantly better in self-play compared to the best-response
setting (Farina et al., 2021). Second, as the meta-learning continues, the ‘environment’ as
viewed by each of the players keeps changing, akin to moving-target problems.

We train a recurrent neural network θ to minimize (1). By utilizing a recurrent architec-
ture we can also represent algorithms that are history and/or time dependent. Furthermore,
this approach allows us to combine all infostates of the game. This is different from stan-
dard applications of regret minimization to games in which each infostate is optimized
separately (Zinkevich et al., 2008). The local information strongly depends on the strategy
selected at other infostates. In our approach, this can be sidestepped by directly accessing
information from all infostates of the game tree. See Section 4 and Appendix C for details.

In the rest of this section, we briefly outline two meta-learning algorithms introduced
in (Sychrovsky et al., 2023). Their main difference is whether or not they provide regret
minimization guarantees. Both use a neural network trained to minimize Eq. (1).
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Figure 1: Comparison of non-meta-learned algorithms (CFR(+), PCFR(+)) with meta-
learned algorithms (NOA(+), NPCFR(+)) on rock paper scissors (left) and
kuhn poker (right). The figures show exploitability of the average strategy σ.
Vertical dashed lines separate two regimes: training (up to T = 32 steps) and
generalization (from T to 2T steps). See Figure 5 for standard errors.

Neural Online Algorithm (NOA). This is the simplest option, which is not guaranteed
to minimize regret. We directly parameterize the online algorithmmθ to output strategy σt

θ.

Neural Predictive Counterfactual Regret Minimization (NPCFR). In order to
provide convergence guarantees, (Sychrovsky et al., 2023) introduced meta-learning within
the predictive counterfactual regret minimization (PCFR) framework (Farina et al., 2021).
The PCFR is an extension of counterfactual regret minimization3 (CFR) (Zinkevich et al.,
2008) which uses an additional predictor about future regret. One can show PCFR converges
faster for more accurate predictions, and (crucially for us) is guaranteed to converge4 (Farina
et al., 2021; Sychrovsky et al., 2023). The neural predictive counterfactual regret minimiza-
tion (NPCFR) is an extension of PCFR which uses a predictor parameterized by a neural
network θ. This approach combines the best of both words – adaptive algorithm with a
small regret in the domain of interest, while keeping the regret minimization guarantees.

4. Experiments

We focus on application of regret minimization in games. We construct two distributions
by adding noise to utilities of a fixed game, see Appendix B. For both NOA and NPCFR,
the neural network is based on a two layer LSTM and uses all infostates of the game to
produce σt

θ, see Appendix C. In addition to the last-observed instantaneous regret rt and
the cumulative regret Rt , the networks also receive one-hot encoding of the infostate and

3. Here we refer to using regret matching at each infostate rather than other regret minimizers.
4. This is true regardless of the prediction under a mild assumption that they are bounded.
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keeps track of its hidden state ht. Additionally, we train NOA+ and NPCFR+ defined as
in CFR+ (Tammelin, 2014) in the same way.

We minimize objective (1) for T = 32 iterations. For evaluation, we compute exploitabil-
ity of the strategies up to 2T iterations to see whether our algorithms can generalize outside
of the horizon T and keep reducing the exploitability. Both regimes use the self-play setting,
i.e. each algorithm controls strategies of both players. Comparison of our meta-learned al-
gorithms with (P)CFR(+) (Tammelin, 2014; Farina et al., 2021) is presented in Figure 1.
See also Figure 5 in Appendix D for a version which includes standard errors.

4.1. Matrix Games

For evaluation in matrix setting, we use a modification of the standard rock paper scissors,
perturbing two of its elements. Figure 1 shows our algorithms can converge very fast. In
fact, all the meta-learned algorithms outperform their non-meta-learned counterpart, often
by nearly an order of magnitude. To further illustrate their differences, we plot the cur-
rent strategy σt selected by each algorithm in Appendix D, Figure 4. The meta-learned
algorithms exhibit much smoother convergence.

4.2. Sequential Games

We use standard small benchmark kuhn poker to evaluate our algorithms in the sequential
setting. Figure 1 shows similar improvements as in the matrix setting can be achieved here.
While all algorithms keep minimizing regret, NOA(+) initially converges fast but exhibits
poor generalisation. In comparison, NPCFR(+) significantly outperform their non-meta-
learned counterparts. As was observed before (Tammelin, 2014), the ‘plus-versions’ of each
algorithm show better performance on this domain.

5. Conclusion

In this paper, we’ve built on the results of (Sychrovsky et al., 2023) who introduced meta-
learning within regret minimization. We extended their results to the self-play domain
in two-player zero-sum games. We evaluated the meta-learned algorithms and compared
them to state-of-the-art on small two-player zero-sum games. The meta-learned algorithms
considerably outperformed the prior algorithms in nearly all situations.

Future Work We would like to improve our experimental results in several ways.
(i) Consider larger games, such as the river endgame of Texas Hold’em poker.
(ii) Show our methods can be competitive even on longer instances, i.e. larger values of T .
(iii) Make ablations on the influence of the communication across the infostates.

Acknowledgements The authors would like to thank Martin Loebl, Matěj Moravč́ık,
Viliam Lisý, and Milan Hlad́ık for their insightful comments. This work was supported by
the Czech Science Foundation grant no. GA22-26655S.
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Appendix A. Meta-Loss Function

In this section we elaborate on Eq. (1) and discuss one other feasible meta-loss. As stated
in the main text, optimizing for final external regret only forces the average strategy at step
T to be near the equilibrium. Naturally, one can thus define the meta-loss as a weighted
sum of external regrets over t ≤ T

L̃(θ) = E
g∈G

[
T∑
t=1

ωt

∑
i∈N

Rext,t
i (θ)

]
, ωt ≥ 0. (2)

To better understand this loss, let us rewrite it in terms of reward using the fact the game
is zero-sum

∑
i∈N

Rext,t
i (θ) =

∑
i∈N

∥∥∥∥∥
t∑

l=1

xl
i − ⟨σl

i,x
l
i⟩1

∥∥∥∥∥
∞

=
∑
i∈N

∥∥∥∥∥
t∑

l=1

xl
i(σ

l
−i)

∥∥∥∥∥
∞

,

This allows us to express the gradient with respect to the strategy selected at step τ ≤ T

∂L̃
∂στ

i

=
∂

∂στ
i

T∑
t=1

ωt

[
Rext,t

1 (θ) +Rext,t
2 (θ)

]
=

T∑
t=τ

ωt
∂

∂στ
i

∥∥∥∥∥
t∑

l=1

xl
−i(σ

l
i)

∥∥∥∥∥
∞

.

However, this can lead to instabilities because in general

∂

∂στ
i

∥∥∥∥∥
t∑

l=1

xl
−i(σ

l
i)

∥∥∥∥∥
∞

̸= ∂

∂στ
i

∥∥xτ
−i(σ

τ
i )
∥∥
∞ .

Suffering large rewards in earlier optimization steps may thus result in meta-loss penalising
actions, which do not lower opponent’s best-response reward. Thus, the meta-gradient
descent may not approach equilibrium, see Section A.1 for an example.

In contrast to loss (2), our choice (1) is clearly consistent in this sense. However, note
that in sequential incomplete information games, these local strategy improvements may
still lead to the overall strategy being more exploitable.

A.1. Example of Non-Smooth Convergence

Consider using Eq. (2) on matching pennies for T = 2. Furthermore, focus on just the first
player5 and let his selected strategies be

σ1
1 = (1, 0), σ2

1 = (1/3, 2/3).

Then the rewards of the second player are

x1
2 = (1, 0) ·

(
1 −1
−1 1

)
= (1,−1), x2

2 = (1/3, 2/3) ·
(

1 −1
−1 1

)
= (−1/3, 1/3).

5. We can have the second player do something analogous.
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Consider the gradient with respect to the strategy of the first player at t = 2. To achieve
‘smooth convergence’, the gradient should guide σ2

1 closer to the uniform equilibrium. How-
ever, from the above we have

∂L̃
∂σ2

1

=
∂

∂σ2
1

∥∥∥∥∥
2∑

l=1

xl
2(σ

l
1)

∥∥∥∥∥
∞

where

∥∥∥∥∥
2∑

l=1

xl
2(σ

l
1)

∥∥∥∥∥
∞

= ∥(2/3,−2/3)∥∞ = 2/3,

or in words, σ2
1 needs to be such that the first element of the vector is minimized. Critically,

x1
2 is a constant w.r.t. σ2

1. But in this case, it forces us to minimize the first element of x2
2,

or the reward of player two for playing only the first action. This would mean

∂L̃
∂σ2

1

=
∂

∂σ2
1

[
(σ1

1 + σ2
1) ·

(
1
−1

)]
= (1,−1)T .

However, this is exactly the opposite direction than what we would need to approach the
equilibrium.

Eq. (2) is ‘consistent’ since if σ1 is sufficiently close to an equilibrium, the associated
rewards x1 are small. But finding the equilibrium in the first step is harder than in the
second, as the regret minimizer has no information about the instance g ∼ G being solved.
In contrast, gradient of Eq. (1) will always ‘point in the right direction’, which makes the
training more stable.

Finally, considering T > 2 only compounds the problem – if one action is consistently
overused, it may disturb the gradient of a large number of following steps.

Appendix B. Games

In this section we describe two distributions of games used in our experiments. Both can
be viewed as a single game with added noise in the terminal utilities.

B.1. Rock Paper Scissors

The rock paper scissors game is a matrix game given by

u1 = −u2 =

 0 −1 3 +X
1 Y −1
−1 1 0

 ,

where X,Y ∼ U(−0.5, 0.5). Note that the fixed variant is a biased version of the original
game. We opted for this option to make the equilibrium strategy non-uniform, as in the
original game (P)CFR(+) are initialized with the equilibrium policy.

B.2. Kuhn Poker

In kuhn poker, we keep the structure of the original game structure and perturb all terminal
utilities. Specifically, we generate i.i.d. xz ∼ U(−0.05, 0.05) for each terminal z ∈ Z and
change the terminal reward to

ũz = (1 + xz)uz,

where uz is the utility in the original game.
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Figure 2: Network architecture used for NOA(+)/NPCFR(+). This example shows a game
with three infostates {sk}3k=1. Same colours indicate shared parameters.
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PRM PRM

Figure 3: Computational graphs for NOA(+) (left) and NPCFR(+) (right). The gradient
flows only through the solid edges.

Appendix C. Neural Network Architecture and Training Setup

Network architecture used for both NOA(+) and NPCFR(+) is shown in Figure 2. The
input to the neural network is a concatenation of last-observed regret, cumulative regret,
and one-hot encoding of the infostate.

The input is first processed by a LSTM layer separately for each infostate. Then we
apply resnet-like gate consisting of a single fully-connected layer going over the same actions
in each infostate and using ReLU activation. The rest of the network operates again per-
infostate and consists of a LSTM player followed by a fully-connected layer. Finally, for
NOA(+) we apply the softmax activation. For NPCFR(+), we apply the sigmoid activation
and scale it by α ∈ {2, 4, 8}, which is found via grid search6. The prediction of NPCFR(+)

is the sum of of the output of the network and last-observed regret.

The computational graphs for both for NOA(+) and NPCFR(+) are presented in Figure 3.
The gradient ∂L/∂θ originates in the collection of maximal instantaneous regrets

∥∥r1...T∥∥∞
and propagates through the strategies σ1...T (the predictions p1...T for NPCFR(+)), the

6. Specifically, the size of the LSTM layer, the number of games in each batch gradient update, the L2
weight decay, and the regret prediction bound α.
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Sychrovský Šustr Bowling Schmid

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s

CFR

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s

CFR+

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s

PCFR

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s

PCFR+

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s
NOA

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s

NOA+

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s

NPCFR

0.0

0.2

0.4

0.6

0.8

1.0

Rock

0.0

0.2

0.4

0.6

0.8

1.0Paper 0.0 0.2 0.4 0.6 0.8 1.0
Sc

iss
or

s

NPCFR+

Figure 4: Comparison of the convergence in current strategy σt on a random sample of
rock paper scissors over 2T = 64 steps. The red crosses show the per-player
equilibria of the sampled game. The trajectories start in dark colors and get
brighter for later steps. We show both the non-meta-learned algorithms (top
row) and the meta-learned algorithms (bottom row).

rewards x1...T (σ1...T
θ ) coming from the opponent, and hidden states h0...T−1. We do not

propagate the gradient through the inputs of the network7.

Appendix D. Additional Results

In this section, we show a exploitability of the average strategy presented in Figure 1. How-
ever, for additional clarity, we only plot mean values with respect to the distribution of
games. Clearly, all meta-learned algrithms outperformed their non-meta-learned counter-
parts show in the same line-style.

Furthermore, we present a representative example of current strategy evolution. We use
a random sample of rock paper scissors and plot the current strategy selected by each
algorithm in Figure 4. All meta-learned algorithms exhibit a much smoother convergence
compared to their non-meta-learned counterparts.

7. This is similar to the “learning to learn” setup (Andrychowicz et al., 2016) and allows us to skip the
expensive second-order derivative computation.
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Figure 5: Comparison of non-meta-learned algorithms (CFR(+), PCFR(+)) with meta-
learned algorithms (NOA(+), NPCFR(+)) on rock paper scissors (left) and
kuhn poker (right). The figures show mean exploitability of the average strategy
σ. Vertical dashed lines separate two regimes: training (up to T = 32 steps) and
generalization (from T to 2T steps). Colored areas show standard errors.
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