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Abstract
We study the complexity of producing (δ, ϵ)-stationary points of Lipschitz objectives which are
possibly neither smooth nor convex, using only noisy function evaluations. Recent works proposed
several stochastic zero-order algorithms that solve this task, all of which suffer from a dimension-
dependence of Ω(d3/2) where d is the dimension of the problem, which was conjectured to be op-
timal. We refute this conjecture by providing a faster algorithm that has complexity O(dδ−1ϵ−3),
which is optimal (up to numerical constants) with respect to d and also optimal with respect to the
accuracy parameters δ, ϵ, thus solving an open question due to Lin et al. [14]. Moreover, the con-
vergence rate achieved by our algorithm is also optimal for smooth objectives, proving that in the
nonconvex stochastic zero-order setting, nonsmooth optimization is as easy as smooth optimiza-
tion. We provide algorithms that achieve the aforementioned convergence rate in expectation as
well as with high probability. Our analysis is based on a simple yet powerful geometric lemma re-
garding the Goldstein-subdifferential set, which allows utilizing recent advancements in first-order
nonsmooth nonconvex optimization.

1. Introduction

We consider the problem of optimizing a stochastic objective of the form

f(x) = Eξ∼Ξ[F (x; ξ)]

where the stochastic components F ( · ; ξ) : Rd → R are Lipschitz continuous, yet possibly not
smooth nor convex. We consider stochastic zero-order (also known as gradient-free or derivative-
free) algorithms that have access only to noisy function evaluations. At each time step, the algorithm
draws ξ ∼ Ξ and can observe F (x, ξ) for points x ∈ Rd of its choice. Problems of this type arise
throughout machine learning, control theory and finance, in applications in which gradients are
expensive (or even impossible) to evaluate, see for example the book by Spall [17] for an overview.
Although in the convex setting the complexity of such algorithms is relatively well understood
[1, 8, 15, 16], much less is known about the nonsmooth nonconvex setting, which is of major
interest in modern deep learning applications.

Recently, Lin et al. [14] proposed a gradient-free algorithm that produces a (δ, ϵ)-stationary
point using O(d3/2δ−1ϵ−4) function evaluations. Following Zhang et al. [20], recall that a point x is
called a (δ, ϵ)-stationary point if there exists a convex combination of gradients in a δ-neighborhood
of x whose norm is less than ϵ (see Section 2 for a reminder of relevant definitions). Lin et al. [14]
posed the question as to whether this super-linear dimension dependence is inevitable or not. The
aforementioned complexity was very recently improved to O(d3/2δ−1ϵ−3) by Chen et al. [4], yet
notably, this result still suffers from the same super-linear dimension dependence.
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In particular, as pointed out by Lin et al., this dimension dependence is Ω(
√
d) worse than that

of stochastic zero-order smooth nonconvex optimization, a setting in which it is possible to find an
ϵ-stationary point (i.e. x such that ∥∇f(x)∥ ≤ ϵ) using O(dϵ−4) noisy function evaluations [10].
This led the authors to conjecture that stochastic zero-order nonsmooth nonconvex optimization is
“likely to be intrinsically harder” than its smooth counterpart.

Our main contribution resolves this open question, showing that this is actually not the case.
We propose a faster zero-order algorithm for nonsmooth nonconvex optimization, which requires
only O(dδ−1ϵ−3) noisy function evaluations. This complexity has an optimal linear dimension-
dependence, while also obtaining the optimal dependence with respect to δ and ϵ (as we will soon
argue). Moreover, if f(·) is smooth, the algorithm automatically recovers the best-known O(dϵ−4)
complexity of stochastic gradient-free smooth nonconvex optimization, implying that in the stochas-
tic zero-order setting, nonsmooth nonconvex optimization is as easy as smooth nonconvex optimiza-
tion. Whether this property holds was originally raised as an open question by Zhang et al. [20]
in the context of first-order algorithms (that have access to gradient information), and was recently
confirmed by Cutkosky et al. [6]. Our result extends the resolution of this question to the case of
zero-order algorithms.

As previously mentioned, these ramifications readily show that indeed the dependence on δ, ϵ
we obtain is optimal, since the implied ϵ−4 factor is known to be inevitable even in the strictly-easier
case of stochastic first-order smooth optimization with exact function evaluations [2].1 Moreover,
the linear dimension dependence is well-known to be inevitable for gradient-free algorithms even
in the context of smooth or convex optimization [8]. Interestingly, in terms of the dependence on
δ and ϵ, the convergence rate we obtain is as fast as the currently best-known deterministic first-
order algorithms for nonsmooth nonconvex optimization [7, 18, 20]. This is in stark contrast to
smooth nonconvex optimization, in which optimal stochastic and deterministic methods have dis-
parate complexities on the order of ϵ−4 and ϵ−2, respectively [2, 3]. Finally, we also note that since
our derived convergence rate is the same for stochastic and deterministic objectives (i.e. noiseless,
when Ξ = {ξ}), our algorithm is a factor of Ω(

√
d) faster even than the previously best-known rate

for deterministic zero-order nonsmooth nonconvex optimization.

2. Preliminaries.

Notation. We use bold-faced font to denote vectors, e.g. x ∈ Rd, and denote by ∥x∥ the Euclidean
norm. We denote by [n] := {1, . . . , n}, B(x, δ) := {y ∈ Rd : ∥y − x∥ ≤ δ}, and by Sd−1 ⊂ Rd

the unit sphere. We denote by conv(·) the convex hull operator, and by Unif(A) the uniform measure
over a set A. We use the standard big-O notation, with O(·), Θ(·) and Ω(·) hiding absolute constants
that do not depend on problem parameters, Õ(·) and Ω̃(·) hiding absolute constants and additional
logarithmic factors.

Nonsmooth analysis. We call a function f : Rd → R L-Lipschitz if for any x,y ∈ Rd : |f(x)−
f(y)| ≤ L ∥x− y∥, and H-smooth if it is differentiable and ∇f : Rd → Rd is H-Lipschitz, namely
for any x,y ∈ Rd : ∥∇f(x)−∇f(y)∥ ≤ H ∥x− y∥. By Rademacher’s theorem, Lipschitz
functions are differentiable almost everywhere (in the sense of Lebesgue). Hence, for any Lipschitz

1. While the lower bound construction in Arjevani et al. [2] is not globally Lipschitz, a slight modification of it which
appears in Cutkosky et al. [6, Appendix F] is.
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function f : Rd → R and point x ∈ Rd the Clarke subgradient set [5] can be defined as

∂f(x) := conv{g : g = lim
n→∞

∇f(xn), xn → x} ,

namely, the convex hull of all limit points of ∇f(xn) over all sequences of differentiable points
which converge to x. Note that if the function is continuously differentiable at a point or convex,
the Clarke subdifferential reduces to the gradient or subgradient in the convex analytic sense, re-
spectively. We say that a point x is an ϵ-stationary point of f(·) if min{∥g∥ : g ∈ ∂f(x)} ≤ ϵ.
Furthermore, given δ ≥ 0 the Goldstein δ-subdifferential [11] of f at x is the set

∂δf(x) := conv
(
∪y∈B(x,δ)∂f(y)

)
,

namely all convex combinations of gradients at points in a δ-neighborhood of x.

Definition 1 Given a Lipschitz function f : Rd → R, a point x ∈ Rd and δ ≥ 0, denote
∥∇f(x)∥δ := min{∥g∥ : g ∈ ∂δf(x)}. A point x is called a (δ, ϵ)-stationary point of f(·)
if

∥∇f(x)∥δ ≤ ϵ .

Note that a point is ϵ-stationary if and only if it is (δ, ϵ)-stationary for all δ ≥ 0 [20, Lemma 7].
Moreover, if f is H-smooth and x is a ( ϵ

3H , ϵ
3)-stationary point of f , then it is also ϵ-stationary [20,

Proposition 6].

Randomized smoothing. Given a Lipschitz function f : Rd → R, we define its uniform smooth-
ing

fδ(x) := Ez∼Unif(B(0,1))[f(x+ δz)] .

It is well known (cf. 19) that if f is L0-Lipschitz, then fδ is L0-Lipschitz; fδ is O(
√
dL0δ

−1)-
smooth; and |f(x)− fδ(x)| ≤ δL0 for all x ∈ Rd.

Setting. We consider optimization objectives of the form f(x) = Eξ∼Ξ[F (x; ξ)], where ξ ∼ Ξ is
a random variable. We impose the assumption that the stochastic components F ( · ; ξ) : Rd → R
are Lipschitz continuous, possibly with a varying Lipschitz constant:

Assumption 2 For any ξ, the function F ( · ; ξ) is L(ξ)-Lipschitz. Moreover, we assume L(ξ) has
a bounded second moment: Namely, there exists L0 > 0 such that

Eξ∼Ξ[L(ξ)
2] ≤ L2

0 .

We note that Assumption 2 is weaker than assuming F ( · ; ξ) is L0-Lipschitz for all ξ. We also
remark that in the deterministic case, namely when Ξ is supported on a single point, the optimization
problem reduces to that of a L0-Lipschitz objective using exact evaluations.

3. Algorithms and Main Results

Before formally presenting our main result, we find it insightful to stress out the key idea, and in
particular how our algorithm differs from those of Lin et al. [14], Chen et al. [4]. The main strategy
employed by both of these papers is based on the following result.
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Proposition 3 (14, Theorem 3.1) For any δ ≥ 0 : ∇fδ(x) ∈ ∂δf(x). Hence, if x is an ϵ-
stationary point of fδ, then it is a (δ, ϵ)-stationary point of f .

Following this observation, both papers set out to design algorithms that produce an ϵ-stationary
point of fδ. A well known technique (which we formally recall later on) allows to use two possibly
noisy evaluations of f in order to produce a stochastic first-order oracle of fδ whose second moment
is bounded by σ2 = O(d). Noting that fδ is L1 = O(

√
d/δ)-smooth, the standard analysis of

stochastic gradient descent (SGD) for smooth nonconvex optimization shows that it obtains an ϵ-
stationary point of fδ within O(σ2L1ϵ

−4) = O(d3/2δ−1ϵ−4) oracle calls, recovering the main result
of Lin et al. [14]. The improved ϵ-dependence due to Chen et al. [4] was achieved by employing
a variance-reduction method instead of plain SGD, though other than that, their main algorithmic
strategy and analysis are the same.

Moreover, the algorithmic strategy we have described seems to reveal a barrier, (mistakenly)
suggesting the d3/2 dependence is unavoidable. Indeed, it is relatively straightforward to see that
any gradient estimator which is based on a constant number of function evaluations must have
variance of at least σ2 = Ω(d), while it is also known that any efficient smoothing technique must
suffer from a smoothness parameter of at least L1 = Ω(

√
d) [13]. Since the complexity of any

stochastic first-order method for smooth nonconvex optimization must scale at least as Ω(σ2L1) [2]
which in this case is unavoidably Ω(d3/2), we are stuck with this factor.

The main technical ingredient that allows us to reduce this factor is the following geometric
result which examines the Goldstein δ-subdifferential set under randomized smoothing.

Lemma 4 For any δ, γ ≥ 0 : ∂γfδ(x) ⊆ ∂δ+γf(x). Hence, if x is an (γ, ϵ)-stationary point of
fδ, then it is a (δ + γ, ϵ)-stationary point of f . In particular, any ( δ2 , ϵ)-stationary point of fδ/2 is a
(δ, ϵ)-stationary point of f .

Note that the lemma above strictly generalizes Proposition 3 [14, Theorem 3.1] which is read-
ily recovered by plugging γ = 0. The utility of this result is that it allows to replace the task of
finding an ϵ-stationary point of fδ to that of finding a (δ, ϵ)-stationary point of it (disregarding a
constant factor multiplying δ). To see why this is beneficial, recall that while fδ is O(

√
dL0δ

−1)-
smooth, it is merely L0-Lipschitz! Thus using a stochastic first-order nonsmooth nonconvex algo-
rithm which scales with the Lipschitz parameter (instead of the smoothness parameter), we save
a whole Ω(

√
d) factor, yielding the optimal dimension dependence. It is interesting to note that

treating the smoothed objective as if it were nonsmooth leads to such an improvement.
In particular, using the optimal stochastic first-order algorithm of Cutkosky et al. [6] that has

complexity O(σ2δ−1ϵ−3), as described in Algorithm 1, results in the following convergence guar-
antee:2

Theorem 5 Let δ, ϵ ∈ (0, 1), and suppose f(x0) − infx f(x) ≤ ∆. Under Assumption 2, there
exists

T = O

(
d ·
(
∆L2

0

δϵ3
+

L3
0

ϵ3

))
2. Notably, using the stochastic algorithm of Zhang et al. [20] (instead of Algorithm 1), when paired with our analysis,

yields the desired linear dimension dependence as well – albeit with with a worse convergence rate with respect to ϵ,
on the order of dδ−1ϵ−4.
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Algorithm 1 Optimal Stochastic Nonsmooth Nonconvex Optimization Algorithm
1: Input: Initialization x0 ∈ Rd, smoothing parameter δ′ > 0, clipping parameter D > 0, step

size η > 0, iteration budget T ∈ N
2: Initialize: ∆1 = 0
3: for t = 1, . . . , T do
4: Sample ξt ∼ Ξ
5: Sample st ∼ Unif[0, 1]
6: xt = xt−1 +∆t

7: zt = xt−1 + st∆t

8: gt = GRADESTIMATOR(zt, δ
′, ξt) ▷ Uses two noisy function evaluations

9: ∆t+1 = min
(
1, D

∥∆t−ηgt∥

)
· (∆t − ηgt)

10: end for
11: M = ⌊ δ′D⌋, K = ⌊ T

M ⌋
12: for k = 1, . . . ,K do
13: xk = 1

M

∑M
m=1 z(k−1)M+m

14: end for
15: Sample xout ∼ Unif{x1, . . . ,xK}
16: Output: xout.

Algorithm 2 GRADESTIMATOR(x, δ′, ξ)

1: Input: Point x ∈ Rd, smoothing parameter δ′ > 0, random seed ξ.
2: Sample w ∼ Unif(Sd−1)
3: Evaluate F (x+ δ′w; ξ) and F (x− δ′w; ξ)
4: g = d

2δ′ (F (x+ δ′w; ξ)− F (x− δ′w; ξ))w ▷ Unbiased estimator of ∇fδ′(x)
5: Output: g.

such that setting δ′ = δ
2 , η = Θ

(
∆+δL0

dL2
0T

)
, D = Θ

((
(∆+δL0)

√
δ√

dL0T

)2/3)
, and running Algorithm 1

with Algorithm 2 as a subroutine, outputs a point xout satisfying E[
∥∥∇f(xout)

∥∥
δ
}] ≤ ϵ using 2T

noisy function evaluations.

Remark 6 (Parallel complexity) At each iteration, Algorithm 1 determines gt by calling Algo-
rithm 2 (GRADESTIMATOR), which requires 2 evaluations of F ( · ; ξt). More generally, gt can
be set as the average of k independent, possibly parallel calls to this subroutine, which would re-
quire 2k function evaluations. An easy generalization of Lemma 8 shows this would result in the
second-moment bound on the order of

E[∥gt∥2 |xt, st,∆t] ≲
dL2

0

k
+ ∥E[gt]∥2 ≤ L2

0

(
d

k
+ 1

)
.

With the rest of the proof of Theorem 5 as is, this yields an expected number of rounds of

T = O

((
d

k
+ 1

)
·
(
∆L2

0

δϵ3
+

L3
0

ϵ3

))
,
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though the total number of queries would be k times larger than above, and equal to

O

(
(d+ k) ·

(
∆L2

0

δϵ3
+

L3
0

ϵ3

))
.

In particular, letting k = Θ(d) removes the dimension dependence in the parallel complexity alto-
gether, while maintaining the same complexity overall (up to a constant).

High probability guarantee. While Theorem 1 shows that Algorithm 1 yields the desired ex-
pected complexity, many practical applications require high probability bounds, namely producing
a point x such that

Pr[∥∇f(x)∥δ ≤ ϵ] ≥ 1− γ

for some small γ > 0. A naive application of Markov’s inequality to the expected complexity shows
that Algorithm 1 produces such a point within

O

(
d ·
(

∆L2
0

δϵ3γ3
+

L3
0

ϵ3γ3

))
(1)

noisy function evaluations, which is rather crude with respect to the probability parameter γ. Adapt-
ing a technique due to Ghadimi and Lan [10] to our setting, we can design an algorithm with a
significantly tighter high-probability bound. The original idea of Ghadimi and Lan [10] for the
case of smooth stochastic optimization, which was also used by Lin et al. [14], consists of several
independent calls to the main algorithm, yielding a list of candidate points. Subsequently, a post-
optimization phase estimates the gradient norm of any such point, returning the minimal — which
is likely to succeed due to a concentration argument. We note that adapting this technique to our
setting is not trivial, since the post-optimization phase should attempt at estimating ∥∇f(·)∥δ rather
than ∥∇f(·)∥, which is hard in general. Luckily, using Lemma 4, the former can be bounded by∥∥∇fδ/2(·)

∥∥
δ/2

, which in turn can be bounded (with high probability) using a sequence of evalu-
ations at nearby points. This procedure is described in Algorithm 3, whose convergence rate is
presented in the following theorem.

Theorem 7 Let γ, δ, ϵ ∈ (0, 1), and suppose f(x0) − infx f(x) ≤ ∆. Under Assumption 2,
there exist T = O

(
d ·
(
∆L2

0
δϵ3

+
L3
0

ϵ3

))
, R = O(log(1/γ)), S = O

(
log(1/γ)

γ

)
such that setting

δ′ = δ
2 , η = Θ

(
∆+δL0

dL2
0T

)
, D = Θ

((
(∆+δL0)

√
δ√

dL0T

)2/3)
, and running Algorithm 3 outputs a point

xout satisfying
Pr
[∥∥∇f(xout)

∥∥
δ
} ≤ ϵ

]
≥ 1− γ

using

O

(
d ·
(
∆L2

0 log(1/γ)

δϵ3
+

L3
0 log(1/γ)

ϵ3
+

L2
0 log

2(1/γ)

γϵ2

))
noisy function evaluations.

Notably, the number of function evaluations guaranteed by the theorem above is significantly
smaller than in Eq. (1). We also remark that even in the (easier) case in which the function evalua-
tions are noiseless, the lack of smoothness or convexity of the objective function provably necessi-
tates the use of randomization in the optimization algorithm, resorting to high probability guarantees
[12].
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Algorithm 3 Algorithm with Post-Optimization Validation
1: Input: Initialization x0 ∈ Rd, smoothing parameter δ′ > 0, clipping parameter D > 0, step

size η > 0, iteration budget per round T ∈ N, number of rounds R ∈ N, validation sample size
S ∈ N.

2: Initialize: M = ⌊ δ′D⌋
3: for r = 1, . . . , R do
4: Call Algorithm 1 with x0,

δ
2 , D, η, T and obtain zr1, . . . , z

r
M , xr

out =
1
M

∑
m∈[M ] z

r
m

5: for s = 1, . . . , S do
6: for m = 1, . . . ,M do
7: Sample ξm,s ∼ Ξ
8: gr

m,s = GRADESTIMATOR(zrm, δ′, ξm,s) ▷ Unbiased estimator of ∇fδ′(z
r
m)

9: end for
10: ĝr

s =
1
M

∑M
m=1 g

r
m,s

11: end for
12: ĝr = 1

S

∑S
s=1 g

r
s

13: end for
14: r∗ = argminr∈[R] ∥ĝr∥
15: Output: xr∗

out.
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Appendix A. Proof of Theorem 5

As previously discussed, the key to obtaining the improved rate is Lemma 4. We start by proving
it, followed by two additional propositions, after which we combine the ingredients in order to
conclude the proof.
Proof [Proof of Lemma 4] Let g ∈ ∂γfδ(x). Then, by definition, there exist y1, . . . ,yk ∈ B(x, γ)
(for some k ∈ N) such that g =

∑
i∈[k] λi∇fδ(yi), where λ1, . . . , λk ≥ 0 with

∑
i∈[k] λi = 1. By

Proposition 3 we have for all i ∈ [k] :

∇fδ(yi) ∈ ∂δf(yi) . (2)

Further note that since ∥yi − x∥ ≤ γ, then by definition

∂δf(yi) ⊆ ∂δ+γf(x) . (3)

By combining Eq. (2) and Eq. (3) we get that for all i ∈ [k] : ∇fδ(yi) ∈ ∂δ+γf(x). Since
∂δ+γf(x) is a convex set, we get that

g =
∑
i∈[k]

λi∇fδ(yi) ∈ ∂δ+γf(x) ,

which finishes the proof.

The following lemma is essentially due to Shamir [16], showing that it is possible to construct
a gradient estimator whose second moment scales linearly with respect to the dimension d.

Lemma 8 Let

gt =
d

2δ′
(
F (xt + st∆t + δ′wt; ξt)− F (xt + st∆t − δ′wt; ξt)

)
wt ,

as generated by GRADESTIMATOR (Algorithm 2) when called at iteration t of Algorithm 1. Then

Eξt,wt [gt|xt−1, st,∆t] = ∇fδ′(xt−1 + st∆t) = ∇fδ′(zt)

and
Eξt,wt [∥gt∥

2 |xt−1, st,∆t] ≤ 16
√
2πdL2

0 .

Proof For the sake of notational simplicity, we omit the subscript t throughout the proof. For the
first claim, since −w ∼ w we have

Eξ,w[g|x, s,∆] = Eξ,w

[
d

2δ′
(
F (x+ s∆+ δ′w; ξ)− F (x+ s∆− δ′w; ξ)

)
w |x, s,∆

]
=

1

2

(
Eξ,w

[
d
δ′F (x+ s∆+ δ′w; ξ)w |x, s,∆

]
+ Eξ,w

[
d
δ′F (x+ s∆+ δ′(−w); ξ)(−w) |x, s,∆

] )
= Eξ,w

[
d
δ′F (x+ s∆+ δ′w; ξ)w |x, s,∆

]
.

9
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Using the law of total expectation, we get

Eξ,w[g|x, s,∆] = Ew

[
d
δ′Eξ

[
F (x+ s∆+ δ′w; ξ)w |w,x, s,∆

]
|x, s,∆

]
= Ew

[
d
δ′ f(x+ s∆+ δ′w)w |x, s,∆

]
= ∇fδ′(x+ s∆) ,

where the last equality is due to Flaxman et al. [9, Lemma 2.1]. The second moment bound follows
from Shamir [16, Lemma 10], with the explicit constant pointed out by Lin et al. [14, Lemma E.1].

The following result of Cutkosky et al. [6] provides a stochastic first-order nonsmooth non-
convex optimization method, whose convergence scales linearly with the second-moment of the
gradient estimator.

Theorem 9 (6) Let δ′, ϵ ∈ (0, 1), and let h : Rd → R be an L-Lipschitz function such that
h(x0)− infx h(x) ≤ ∆h. Suppose GRADESTIMATOR(x, ξ) returns an unbiased gradient estimator
of ∇h(x) whose second moment is bounded by σ2. Then there exists T = O

(
σ2∆h
δ′ϵ3

)
such that

setting η = ∆h
σ2T

, D =
(
(δ′)1/2∆h

σT

)2/3
and running Algorithm 1 uses T calls to GRADESTIMATOR

and satisfies

• z(k−1)M+m ∈ B(xk, δ
′) for all m ∈ [M ], k ∈ [K] (where M,K, (zt)

T
t=1 are defined in the

algorithm).

• Ez1,...,zT

[
1
K

∑K
k=1

∥∥∥ 1
M

∑M
m=1∇h(z(k−1)M+m)

∥∥∥] ≤ ϵ .

In particular, its output xout ∼ Unif{x1, . . . ,xK} satisfies E[
∥∥∇f(xout)

∥∥
δ′
}] ≤ ϵ.

We are now ready to complete the proof of Theorem 5. By Lemma 8, GRADESTIMATOR

(Algorithm 2) returns an unbiased estimator of ∇fδ/2 whose second moment is bounded by σ2 =

O(dL2
0), using two evaluations of F ( · ; ξ). Thus applying Theorem 9 with h = fδ/2, δ′ = δ

2

ensures that Algorithm 1 returns a ( δ2 , ϵ)-stationary point of fδ/2, which by Lemma 4 is a (δ, ϵ)-
stationary point of f . Recall that

∥∥f − fδ/2
∥∥
∞ ≤ δL0

2 and f(x0)− infx f(x) ≤ ∆, thus fδ/2(x0)−
infx fδ/2(x) ≤ ∆+ δL0

2 =: ∆h. We finish the proof by noting that overall we have obtained

T = O

(
σ2∆h

δ′ϵ3

)
= O

(
dL2

0(∆ + δL0)

δϵ3

)
= O

(
d ·
(
∆L2

0

δϵ3
+

L3
0

ϵ3

))
.

Appendix B. Proof of Theorem 7

Recall that we saw in the proof of Theorem 5 that ∂δ′fδ′(·) ⊆ ∂2δ′f(·) according to Lemma 4, and
that for all m ∈ [M ] : zr

∗
m ∈ B(xr∗

out, δ
′) by according to Theorem 9. Thus

∥∥∥∇f(xr∗
out)
∥∥∥
δ
=
∥∥∥∇f(xr∗

out)
∥∥∥
2δ′

≤
∥∥∥∇fδ′(x

r∗
out)
∥∥∥
δ′
≤

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇fδ′(z
r∗
m )

∥∥∥∥∥∥ .
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By denoting gr := 1
M

∑
m∈[M ]∇fδ′(z

r
m), r ∈ [R] we get that it suffices to show

Pr

[∥∥∥gr∗
∥∥∥2 ≤ ϵ2

]
= Pr

[∥∥∥gr∗
∥∥∥ ≤ ϵ

]
≥ 1− γ . (4)

By definition of r∗ we have∥∥∥ĝr∗
∥∥∥2 = min

r∈[R]
∥ĝr∥2 ≤ min

r∈[R]

(
2 ∥gr∥2 + 2 ∥ĝr − gr∥2

)
≤ 2

(
min
r∈[R]

∥gr∥2 + max
r∈[R]

∥ĝr − gr∥2
)

,

thus ∥∥∥gr∗
∥∥∥2 ≤ 2

∥∥∥ĝr∗
∥∥∥2 + 2

∥∥∥ĝr∗ − gr∗
∥∥∥2

≤ 4

(
min
r∈[R]

∥gr∥2 + max
r∈[R]

∥ĝr − gr∥2
)
+ 2

∥∥∥ĝr∗ − gr∗
∥∥∥2

≤ 4 · min
r∈[R]

∥gr∥2 + 6 ·max
r∈[R]

∥ĝr − gr∥2 . (5)

We now turn to bound each of the summand above with high probability. First, by Theorem 5
we can set T = O

(
d ·
(
∆L2

0
δϵ3

+
L3
0

ϵ3

))
so that E[∥gr∥] ≤ ϵ

8 for any r ∈ [R], hence by Markov’s
inequality

Pr

[
4 ·min

r∈R
∥gr∥2 > ϵ2

4

]
= Pr

[
min
r∈R

∥gr∥ >
ϵ

4

]
≤
∏
r∈[R]

Pr
[
∥gr∥ >

ϵ

4

]
≤ 2−R .

By setting R ≥ ⌈log2(2/γ)⌉ =⇒ 2−R ≤ γ
2 we conclude that

Pr

[
4 ·min

r∈R
∥gr∥2 > ϵ2

4

]
≤ γ

2
. (6)

For the second summand in Eq. (5), note that for all r ∈ [R] :

E [ĝr] = E

[
1

S

S∑
s=1

gr
s

]
=

1

S

S∑
s=1

(
1

M

M∑
m=1

E
[
gr
m,s

])

=
1

M

M∑
m=1

(
1

S

S∑
s=1

E
[
gr
m,s

]) Lemma 8
=

1

M

M∑
m=1

∇fδ′(z
r
m) = gr ,

thus E[ĝr−gr] = 0, and that it follows from the second claim in Lemma 8 that for any r ∈ [R], s ∈
[S] :

E
[
∥ĝr

s − gr∥2
]
≤ 16

√
2πdL2

0

M
.

Noting that (gr
1 − gr), . . . , (gr

S − gr) are independent as they are functions of the independent
samples ξm,1, . . . , ξm,S , m ∈ [M ], we apply a simple concentration bound (Lemma 10) to get for

11
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any λ > 0 :

Pr

[
∥ĝr − gr∥2 ≥ λ

16
√
2πdL2

0

MS

]
= Pr

∥∥∥∥∥ 1S
S∑

s=1

(gr
s − gr)

∥∥∥∥∥
2

≥ λ
16
√
2πdL2

0

MS


= Pr

∥∥∥∥∥
S∑

s=1

(gr
s − gr)

∥∥∥∥∥
2

≥ λS · 16
√
2πdL2

0

M

 ≤ 1

λ
,

hence by the union bound

Pr

[
max
r∈[R]

∥ĝr − gr∥2 ≥ λ
16
√
2πdL2

0

MS

]
≤ R

λ
.

Setting λ := ⌈2Rγ ⌉ =⇒ R
λ ≤ γ

2 , we see that S ≳ dL2
0 log(1/γ)
Mϵ2γ

suffices for having λ
16

√
2πdL2

0
MS ≤ ϵ2

4 ,
under which the inequality above shows that

Pr

[
max
r∈[R]

∥ĝr − gr∥2 ≥ ϵ2

4

]
≤ γ

2
. (7)

By combining Eq. (6) and Eq. (7) and applying the union bound to get Eq. (5), we have proved
Eq. (4) as required. Finally, recalling that GRADESTIMATOR (Algorithm 2) requires 2 noisy func-
tion evaluations, it is clear that the total number of evaluations performed by Algorithm 3 is bounded
by

2R · (T +MS) = O

(
d ·
(
∆L2

0 log(1/γ)

δϵ3
+

L3
0 log(1/γ)

ϵ3
+

L2
0 log

2(1/γ)

γϵ2

))
.

Appendix C. Concentration Lemma

Lemma 10 Let X1, . . . , XN ∈ Rd be independent random vectors such that for all i ∈ [N ] :

E[Xi] = 0, E[∥Xi∥2] ≤ σ2
i . Then E

[∥∥∥∑N
i=1Xi

∥∥∥2] ≤∑N
i=1 σ

2
i . In particular,

Pr

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
2

≥ λ ·
N∑
i=1

σ2
i

 ≤ λ−1

for any λ > 0.

Proof By linearity of expectation we have

E

∥∥∥∥∥∥
∑
i∈[N ]

Xi

∥∥∥∥∥∥
2 =

∑
i∈[N ]

E
[
∥Xi∥2

]
+

∑
i ̸=j∈[N ]

E[⟨Xi, Xj⟩] =
∑
i∈[N ]

E
[
∥Xi∥2

]
≤
∑
i∈[N ]

σ2
i ,

where we used the assumption that for any i ̸= j : Xi, Xj are independent, thus E[⟨Xi, Xj⟩] = 0.
The second claim follows from Markov’s inequality.
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