
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Testing Approximate Stationarity Concepts
for Piecewise Affine Functions and Extensions

Lai Tian TIANLAI@SE.CUHK.EDU.HK

Anthony Man-Cho So MANCHOSO@SE.CUHK.EDU.HK

The Chinese University of Hong Kong

Abstract
We study various aspects of the fundamental computational problem of detecting approximate sta-
tionary points for piecewise affine (PA) functions, including computational complexity, regularity
conditions, and robustness in implementation. Specifically, for a PA function, we show that testing
first-order approximate stationarity concepts in terms of three commonly used subdifferential con-
structions is computationally intractable unless P = NP. To facilitate computability, we establish
the first necessary and sufficient condition for the validity of an equality-type (Clarke) subdiffer-
ential sum rule for a certain representation of arbitrary PA functions. Our main tools are nons-
mooth analysis and polytope theory. Moreover, to address an important implementation issue, we
introduce the first oracle-polynomial-time algorithm to test near-approximate stationarity for PA
functions. We complement our results with extensions to other subdifferentials and applications to
a series of structured piecewise smooth functions, including ρ-margin-loss SVM, piecewise affine
regression, and neural networks with nonsmooth activation functions.

Overview of Main Results1

For a continuously differentiable function f : Rd → R, a point x ∈ Rd is called stationary (or
critical) if ∇f(x) = 0. However, the situation is much more complicated when f is nondifferen-
tiable at x. Indeed, there are many different stationarity concepts for nonsmooth functions [2, 4]. In
this paper, we consider the complexity of and robust algorithms for checking whether a given point
is approximately stationary with respect to a piecewise differentiable function. When specialized
to the two-layer ReLU neural networks, this is a task already considered by Yun et al. [11]. We
emphasize that “detecting” and “finding” are two very different computational problems. While the
co-NP-hardness of detecting the local optimality of a given point in nonconvex optimization was
shown by Murty and Kabadi [5] in 1987, the complexity of “finding” a local minimizer was an
open question proposed by Pardalos and Vavasis [7] since 1992, and is recently settled negatively
by Ahmadi and Zhang [1].

With finite computational resources, an algorithm usually computes an approximate solution
rather than an exact one,2 though the precision can sometimes be arbitrarily high. When the ob-
jective function f is smooth, a point x is called ε-stationary if ∥∇f(x)∥ ⩽ ε. If the function f
is nonsmooth, the notion of approximation becomes very subtle because different approximation
schemes have varying degrees of computability. Specifically, we are interested in testing the fol-
lowing two solution notions:

1. The full version of the paper appears in arXiv with the same title.
2. With algorithms for linear programming as a remarkable exception.
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(ε-Stationary Point) We call a point x a (Clarke) ε-stationary point of f if 0 ∈ ∂f(x) + εB.

((ε, δ)-Near-Approximately Stationary (NAS) Point) If there exists a point y ∈ Bδ(x) such that
y is ε-stationary, we call x an (ε, δ)-Near-Approximate Stationary (NAS) point. In other
words, a point x is an (ε, δ)-NAS point if 0 ∈ ∂f(x+ δB) + εB.

A key motivation for the approximate stationarity testing problem is its role as a universal stop-
ping rule. This is especially significant as nearly all convergence results for a general ReLU net-
work are asymptotic, lacking a finite-time algorithm with theoretical guarantee. Our NAS testing
approach offers an algorithm-independent stopping rule, effectively transforming asymptotically
convergent algorithms into finite-time ones. We also mention that, for a black-box function in the
sense of [6], robust testing is impossible to implement in general [10, Theorem 2.7].

A. Contributions.

In summary, our contributions are as follows:

• We demonstrate that checking first-order approximate stationarity concepts for a piecewise
affine function, in terms of any one of three commonly used subdifferential constructions, is
computationally intractable. As a corollary, we prove that testing the First-Order Minimal-
ity (FOM) for the abs-normal form of piecewise differentiable functions is co-NP-complete,
confirming a conjecture by Griewank and Walther [3, p. 284].

• We establish the first necessary and sufficient condition for the validity of an equality-type
(Clarke) subdifferential sum rule for a certain representation of arbitrary piecewise affine
functions. Our new condition is a geometric property concerning a pair of convex polytopes.
Moreover, we introduce a new polynomial-time verifiable sufficient condition, which be-
comes simultaneously necessary and sufficient when a polytope related to the subdifferential
set is a zonotope.

• To address an important implementation issue, we introduce the first oracle-polynomial-time
algorithm to test near-approximate stationarity for a piecewise affine function. When special-
ized to the loss of two-layer neural networks with ReLU-type activation function, our new
algorithm is the first practical and robust stationarity test approach, resolving an open issue in
the work of Yun et al. [11].

• We complement our results with extensions to other subdifferentials and applications to a
series of structured piecewise smooth functions, including ρ-margin-loss SVM, piecewise
affine regression, and shallow/deep neural networks with nonsmooth activation functions.

In this extended abstract, we provide an informal overview of our main results. For formal
results and additional details, please refer to the full paper.

B. Computational Hardness.

For smooth optimization, co-NP-hardness has been shown for detecting local optimality [5, Theo-
rem 2] and checking second-order sufficient condition [5, Theorem 4]. However, in the nonsmooth
case, little is known about the complexity of detecting various stationarity concepts. In the follow-
ing, we demonstrate that even checking a first-order necessary condition approximately in terms of
various subdifferential constructions is already computationally intractable unless P = NP.
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Theorem 1 (Hardness) Given a piecewise affine function f : Rd → R in the form of MAX-MIN3

representation with integer data. Determining whether dist
(
0, A

)
⩽ ε is

(a) strongly co-NP-hard, when the set A is ∂̂f(0) and ε ∈ [0,+∞) ∩Q;

(b) strongly NP-hard, when the set A is ∂Lf(0) and ε ∈ [0, 1/2) ∩Q;

(c) strongly NP-hard, when the set A is ∂f(0) and ε ∈ [0, 1/2) ∩Q.

We compare Theorem 1 with the classic hardness result of Murty and Kabadi [5]. In [5], check-
ing the local optimality of a point for a simply constrained indefinite quadratic problem [5, Problem
1] and for an unconstrained quartic polynomial objective [5, Problem 11] are both co-NP-complete.
However, these hardness results are inapplicable for checking first-order necessary conditions. In
fact, for any hard construction f : Rn → R ∪ {+∞} in [5] and a given point x ∈ Qn, testing
ε-stationarity can be done in polynomial time with respect to the input size. Quite the contrary,
in Theorem 1, we show that for unconstrained problems with piecewise affine objective functions,
even an approximate test of the first-order necessary condition for a certain point x = 0 is already
computationally intractable unless P = NP.

We present two noteworthy corollaries of Theorem 1. The first corollary of our hard construction
concerns the complexity of checking an optimality condition for functions representable in abs-
normal form [3, Definition 2.1]. The following result gives an affirmative answer to a conjecture of
Griewank and Walther [3, p. 284]:

Corollary 2 (Abs-normal form) Testing First-Order Minimality (FOM) for a piecewise differen-
tiable function given in the abs-normal form is co-NP-complete.

Another notable corollary is about the complexity of detecting an approximately (Clarke) stationary
point for the loss of a shallow modern convolutional neural network.

Corollary 3 (Convolutional neural networks) Let f : Rd → R be the loss function of a shallow
convolutional neural network with ReLU activation function and max-pooling operator. Then, for
any ε ∈ [0, 1/2) ∩ Q, testing the (Clarke) ε-stationarity dist

(
0, ∂f(θ)

)
⩽ ε for given network

parameters θ ∈ Qd is strongly NP-hard.

C. Exact Subdifferential Sum Rules

The computational hardness results for testing is partly due to the failure of exact subdifferential
calculus rules. For a general locally Lipschitz function, the calculus rules are only known to hold
in the weak form of set inclusions rather than equalities, except in several special cases (see [8,
Chapter 10]). Thus, to enhance the tractability of stationarity testing, it is of interest to find out a
condition, under which an equality-type calculus rule holds, so that the subdifferential set of the
function can be efficiently characterized.

In this section, we study the regularity conditions facilitating efficient ε-stationarity testing for
piecewise affine functions. In particular, we focus on PA functions f : Rd → R represented in the
following Difference of Sum-of-Max (DSM) form:

f(w) :=

 P∑
p=1

max
1⩽i⩽np

w⊤xp,i + ap,i

−

 Q∑
q=1

max
1⩽j⩽mq

w⊤yq,j + bq,j

 . (DSM)

3. See [9, Proposition 2.2.2] for details.
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One can immediately observe that any DSM function is a difference-of-convex function and is
typically subdifferential irregular (see [8, Definition 7.25]). We aim to investigate the validity of the
following equality for subdifferential of a DSM function f : Rd → R:

∂f(w) =
P∑

p=1

conv{xp,i : i ∈ A1,p(w)} −
Q∑

q=1

conv{yq,j : j ∈ A2,q(w)}, (1)

where the active sets A1,p(w) and A2,p(w) are defined by

A1,p(w) := argmax
1⩽i⩽np

w⊤xp,i + ap,i, A2,q(w) := argmax
1⩽j⩽mq

w⊤yq,j + bq,j ,

for any p and q. Given above exact sum rule in Equation (1), one can readily see that computing
the quantity dist(0, ∂f(w)) ∈ R+ for rational data is a special case of convex quadratic optimiza-
tion problem. It is well-known that such a problem can be approximately solved in polynomial
time. Therefore, efficient ε-stationarity detection for DSM functions can be guaranteed by an exact
subdifferential sum rule.

The goal of this section is to establish the necessary and sufficient condition for the validity
of exact subdifferential sum rule in Equation (1). To this end, we introduce a geometric condition
concerning polytope pairs.

Definition 4 (Compatible polytopes) Two polytopes A and B in Rd are called compatible if for
any vectors a ∈ A and b ∈ B such that a− b ∈ ext(A−B), it holds a+ b ∈ ext(A+B).

One of our main results is the following characterization of the validity of exact sum rule.

Theorem 5 (Exact sum rule for DSM) Let a DSM function f : Rd → R with data {(xp,i, ap,i)}p,i
and {(yq,j , bq,j)}q,j be given. Fix a point w. Define polytopes X and Y as

X :=

P∑
p=1

conv{xp,i : i ∈ A1,p(w)}, Y :=

Q∑
q=1

conv{yq,j : j ∈ A2,q(w)}.

The following are equivalent.

(a) ∂f(w) = X − Y .

(b) X and Y are compatible polytopes.

D. Robustness in Inplementation

Up to this point, our focus has been exclusively on the exact ε-stationarity testing problem, which
involves verifying whether 0 ∈ ∂f(w) + εB holds for a point w. However, in practice, exact
nondifferentiable points are almost impossible to reach, primarily due to algorithmic randomization
or finite-precision limitations. Therefore, a need arises for a robust stationarity testing approach.
This approach, when queried at a point w, certifies 0 ∈ ∂f(w + δB) + εB for given precisions
ε, δ ⩾ 0, if w is sufficiently close to an ε-stationary point w∗. In this section, we present the main
algorithmic results of this paper regarding robust testing for general DSM functions.

We begin by abstracting the procedure for exact ε-stationarity testing into the following oracle.

Definition 6 (Oracle) A stationarity test oracle for a DSM function f is an oracle whose input are
vectors {(xp,i, ap,i)}p,i∈[np], {(yq,j , bq,j)}q,j∈[mq ] ⊆ Qd+1, a point w ∈ Qd, and a rational number
ε ⩾ 0. This oracle decides dist

(
0, ∂f(w)

)
⩽ ε or not.
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Problem Setup. We adopt a constructive viewpoint, wherein we certify the (ε, δ)-NAS status
of a point w for a DSM function f only when we find a point w∗ ∈ Bδ(w) that satisfies 0 ∈
∂f(w∗) + εB. Note that if a point w∗ ∈ Bδ(w) successfully passes the exact stationarity test using
an implementation of the oracle in Definition 6, then w must indeed be an (ε, δ)-NAS point. In
other words, there are no false positives in this test. The question that arises is whether, if w is
sufficiently close to an ε-stationary point, we can always find a point w∗ near w that is ε-stationary.
In other words, we aim to control the occurrence of false negatives in our robust test.

Suppose we have an ε-stationary point w∗ ∈ Rd. When a point w is sufficiently close (within a
distance of δ) to w∗, our objective is to certify the condition: 0 ∈ ∂f(w+δB)+εB. To quantify the
required degree of proximity, we introduce the following separation constants for DSM functions.

Definition 7 (Separation) Let R := max{∥xp,i∥, ∥yq,j∥}p,q,i,j and a point w be given. We define
functions vp : Rd → R and uq : Rd → R for any p ∈ [P ] and q ∈ [Q] as

vp(w) := max
1⩽i⩽np

x⊤
p,iw + ap,i, uq(w) := max

1⩽j⩽mq

y⊤
q,jw + bq,j .

We also define the extended-real-valued function δsep : Rd → R++ ∪ {+∞} as

δsep(w) := sup
γ

12R

s.t. γ ⩽ vp(w)− x⊤
p,iw − ap,i, ∀p ∈ [P ], i ∈ [np] : vp(w) ̸= x⊤

p,iw + ap,i,

γ ⩽ uq(w)− y⊤
q,jw − bq,j , ∀q ∈ [Q], j ∈ [mq] : uq(w) ̸= y⊤

q,jw + bq,j .

We can now formulate the robust stationarity testing problem for DSM functions as follows.

Robust Stationarity Testing of DSM (RST-DSM)

Instance. A DSM function f with data {(xp,i, ap,i)}p∈[P ],i∈[np], {(yq,j , bq,j)}q∈[Q],j∈[mq ] ⊆
Qd+1 and P,Q, np,mq ∈ N. A point w ∈ Qd. The precision parameters 0 ⩽ ε, δ ∈ Q.

Question. Either

(i) find a vector w∗ ∈ Qd such that ∥w −w∗∥ ⩽ δ and dist
(
0, ∂f(w∗)

)
⩽ ε, or

(ii) assert that any vector w∗ ∈ Rd with dist
(
0, ∂f(w∗)

)
⩽ ε satisfies

∥w −w∗∥ > min{δ, δsep(w∗)}.

Our main algorithmic results in this paper are a robust testing algorithm and a “rounding” sub-
procedure. The following result guarantees that our new algorithms will correctly answer the RST-
DSM question in oracle-polynomial time.

Theorem 8 (Polynomality) Let vectors {(xp,i, ap,i)}p,i∈[np], {(yq,j , bq,j)}q,j∈[mq ] ⊆ Qd, point
w ∈ Qd, and rational precisions ε, δ ⩾ 0 be given. Suppose we have an implementation of the
stationarity test oracle for the DSM function in Definition 6. There exists an oracle-polynomial-
time algorithm that provides the correct answer to Problem RST-DSM.
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