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Abstract
The model in constrained Markov decision processes (CMDPs) is often unknown and must be
learned online while still ensuring the constraint is met, or at least the violation is bounded with
time. Some recent papers have made progress on this very challenging problem but either need
unsatisfactory assumptions such as the knowledge of a safe policy, or have high cumulative regret.
We propose the Safe PSRL algorithm that does not need such assumptions and yet performs very
well, both in terms of theoretical regret bounds as well as empirically. The algorithm achieves an
efficient tradeoff between exploration and exploitation by use of the posterior sampling principle,
and provably suffers only bounded constraint violation by leveraging the idea of pessimism. Our
algorithm is based on a primal-dual approach. We establish a sub-linear Õ

(
H2.5

√
|S|2|A|K

)
upper bound on the Bayesian reward objective regret along with a bounded, i.e., Õ (1) constraint
violation regret over K episodes for an |S|-state, |A|-action, and horizon H CMDP.

1. Introduction

In this paper, we consider the problem of online learning for finite-horizon constrained MDPs
(CMDPs) [4]. The transition probability is not known to the agent, thereby requiring the agent to
learn about the system dynamics by observing the past states and actions. The performance of this
agent is measured by the notion of cumulative regret, i.e., the difference between the cumulative
reward of the learning agent and that of the optimal policy. This online learning problem thus leads
to the well-known trade-off between exploration and exploitation.

A common approach to balance this exploration-exploitation trade-off is the ‘Optimism in the
Face of Uncertainty’ (OFU) principle [20] which has been widely used for online learning in MDPs
[5, 16–18]. Another alternative for efficient exploration is posterior sampling [28]. The advantages
of posterior sampling over OFU stem from the fact that (i) known information about the model
can be incorporated into the algorithm through the prior distribution, and (ii) posterior sampling
algorithms have demonstrated superior empirical performance for online learning over OFU-type
algorithms including in the RL setting [24, 25]. Motivated by this superior empirical performance,
we utilize posterior sampling for efficient exploration and introduce the Safe PSRL algorithm.
Our algorithm further uses the primal-dual approach for CMDPs wherein the primal part performs
unconstrained MDP planning with a sampled transition probability, and the dual part updates the
Lagrangian variable to track the constraint violation.

We achieve bounded constraint violation regret by leveraging the idea of pessimism, introduced
earlier in the context of constrained bandits [22]. “Pessimism" is achieved by tightening the con-
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straint of the CMDP problem in every episode at decreasing levels. By appropriately balancing
exploration via posterior sampling and safe learning via pessimism, we show that the Safe PSRL

algorithm achieves sub-linear Õ
(

H2.5

τ−c0

√
|S|2|A|K

)
reward regret while achieving bounded, i.e.,

Õ(1)-constraint violation regret. Though the regret bounds in this paper are Bayesian in nature, the
algorithm shows superior empirical performance in the frequentist sense in comparison to comparable
OFU-type algorithms with frequentist regret bounds.

2. Preliminaries

An episodic finite-horizon MDP [26] can be formally defined by a tupleM = (S,A, H, s1, p, r),
where S and A denote the state and action spaces, H is the episode length, s1 is the initial state,
ph(s

′|s, a) is the non-stationary transition probability and rh(s, a) ∈ [0, 1] is the non-stationary
reward function. A non-stationary randomized policy π = (π1, . . . , πH) ∈ Π where πi : S →
∆A, maps each state to a probability simplex over the action space A. The value function of a
non-stationary randomized policy π, V π

h (s; r, p) at a state s ∈ S and time step h is defined as

V π
h (s; r, p) := Eπ

[∑H
i=h ri(si, ai)|sh = s, p

]
. A finite-horizon constrained MDP (CMDP) [4] is a

finite-horizon MDP with a required upper bound on the expectation of a cost function, {c, τ ∈ (0, H]}.
The non-stationary cost function is denoted by ch(s, a) ∈ [0, 1]. The total expected reward (cost)
of an episode under policy π with respect to the reward (cost) function r (c) is the respective value
function from the initial state s1, i.e., V π

1 (s1; r, p)(V
π
1 (s1; c, p)). Our objective for this CMDP

is to find a policy which maximizes the total expected objective reward under the constraint that
the total expected constraint cost is below a desired threshold. The optimal value is denoted by
V ∗(s1; r, p) = V π∗

1 (s1; r, p) where,

π∗ ∈ argmax
π∈Π

V π
1 (s1; r, p)

s.t. V π
1 (c, p) ≤ τ.

(1)

3. The Learning Problem

We consider the setting where an agent repeatedly interacts with a finite-horizon CMDP M =
(S,A, H, s1, p, r, {c, τ}) over multiple episodes and with stationary transition probability (i.e., ph =
p,∀h). We employ the Bayesian framework and regard the transition probability p as random with
a prior distribution µ1. The realized transition probability is unknown to the learning agent. We
consider settings where transition probability lies in the set Θc0 with the following property:

Assumption 1 For all p̂ ∈ Θc0 , there exists a policy πp̂
0 such that V πp̂

0
1 (c, p̂) ≤ c0 < τ .

Moreover, we assume that the support of the prior distribution µ1 is a subset of Θc0 and c0 is known.
The agent interacts with the environment for K episodes, each of length H . In each episode, the
agent starts from a state s1 and chooses a Markov policy πk determined by the information gathered
until that episode. This policy is then executed until the end of the episode, while collecting the
rewards and costs. The main objectives of the learning agent are to minimize the Bayesian regrets:

(1) With respect to the reward defined as BR(K; r) := E
[∑K

k=1

(
V π∗
1 (s1; r, p)− V πk

1 (s1; r, p)
)]

,

(2) With respect to the constraint defined as BR(K; c) := E
[∑K

k=1

(
V πk

1 (s1; c, p)− τ
)]

.
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4. The Safe PSRL Algorithm

We propose the Safe Posterior Sampling-based Reinforcement Learning (Safe PSRL) algorithm
for the finite-horizon CMDP model. This algorithm leverages the idea of posterior sampling to
balance exploration and exploitation. It also takes a primal-dual approach to handle the constraint
cost objective along with reward maximization objective. We further introduce the idea of pessimism
[22] to ensure that the cost regret is bounded. This “pessimism" is achieved by considering a “more
constrained" CMDP problem as compared to the original problem. This is done by decreasing the
constraint threshold by ϵk in each episode k. Formally, we consider the objective:

max V π
1 (r, p)

s.t. V π
1 (c, p) ≤ τ − ϵk.

(2)

The algorithm starts with the prior distribution µ1 on the transition probability. Then, at every
time step t, the learning agent maintains a posterior distribution µt on the unknown transition
probability p given by µt(Θ) = P(p ∈ Θ|Ft) for any set Θ ⊆ Θc0 . Here Ft is the information
available at time t. In parallel, at the beginning of each episode k, transition probability p̂k is sampled
from the posterior distribution µtk (where tk is the time step corresponding to beginning of episode
k). We then consider the Lagrangian defined as Lk(π, λ) = V π

1 (r, p̂k) +
λk
ηk

(τ − ϵk − V π
1 (c, p̂k)).

The learning agent then chooses a Markov policy πk (primal update) which maximizes the
above Lagrangian. The (dual) parameter λk is updated according to the sub-gradient algorithm
as: λk+1 = (λk + V πk

1 (c, p̂k) + ϵk − τ)+. The agent then applies the policy πk for the H steps of
episode k. The Safe PSRL algorithm is summarized next.

Algorithm 1: Safe-PSRL
Input: K,µ1, c0, τ ;
Initialization: λ1 ← 0;
for episodes k = 1, . . . ,K do

Kϵ ← 5, ϵk ←
Kϵ|H|1.5

√
|S|2|A|(log k|S||A|H+1)√
k log k|S||A|H

, ηk ← (τ − c0)H
√
k, tk = (k − 1)H + 1 ;

Generate p̂k ∼ µtk(.) ;
Compute πk ∈ argmaxπ V

π
1 (r − λk

ηk
c, p̂k) (Policy Update) ;

λk+1 ← max(0, λk + V πk
1 (c, p̂k) + ϵk − τ) (Dual Update);

for t = (k − 1)H + 1, . . . , kH do
Choose action at ∼ πk(st), Observe st+1 ∼ p(.|st, at);
Update the posterior distribution µt+1 according to Bayes’s rule ;

end
end

Theorem 1 Suppose Assumption 1 holds, then the regrets of the Safe PSRL algorithm are:

BR(K; r) = Õ
(

H2.5

τ − c0

√
|S|2|A|K

)
BR(K; c) = Õ

(
C ′′(H − τ) +H1.5

√
|S|2|A|C ′′

)
= O(1),

where C ′′ = O(H
3|S|2|A|
(τ−c0)2

) is independent of K.
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5. Regret Analysis

A key property of posterior sampling [24] is the posterior sampling lemma.

Lemma 2 For any function f , we have E [f(p̂t)] = E [f(p)] where p is the transition probability
and p̂t is the sampled transition probability from the posterior distribution µt at time t.

The following is a restatement [24] of the sub-linear regret bound achieved when using posterior
sampling for unconstrained finite horizon MDPs.

Lemma 3 The Bayesian regret of the PSRL algorithm for unconstrained MDPs is given by∑K
k=1 E

[
V πk

1 (c, p)− V πk

1 (c, p̂k)
]
≤ H1.5

√
30|S|2|A|K log(|S||A|KH) + 2H .

5.1. Cost Constraint Violation Analysis

We can decompose the constraint violation regret BR(K; c) as follows:

E

[
K∑
k=1

(
V πk

1 (c, p)− τ
)]

=
K∑
k=1

E
[
V πk

1 (c, p)− V πk

1 (c, p̂k)
]
+

K∑
k=1

E
[
V πk

1 (c, p̂k)− τ
]

≤
K∑
k=1

E
[
V πk

1 (c, p)− V πk

1 (c, p̂k)
]
+

K∑
k=1

E [λk+1 − λk − ϵk] (by dual update rule of algorithm)

=
K∑
k=1

E
[
V πk

1 (c, p)− V πk

1 (c, p̂k)
]
+ E [λK+1]−

K∑
k=1

ϵk (3)

≤ H1.5
√

30|S|2|A|K log(|S||A|KH) + 2H + E [λK+1]−
K∑
k=1

ϵk (4)

where the last upper bound follows by use of Lemma 3 to upper bound the first term in (3). We next
upper bound the dual parameter E [λK+1] by the use of Lyapunov-drift analysis [22].

Lemma 4

E [λK+1] ≤
1

ζ
log

11H2

3ρ2
+H +

C′′∑
1

ϵk + C ′′(H − τ) +
4(H2 + ϵ2K+1 + ηK+1H)

(τ − c0)
. (5)

where C ′′ = 80H3|S|2|A|
(τ−c0)2

, ρ = −(τ − c0)/4 and ζ = ρ/(H2 +Hρ/3).

Next, we bound the
∑

k ϵk term:

K∑
k=1

ϵk ≥
∫ K+1

1
ϵudu ≥ 10H1.5

√
|S|2|A|Klog|S||A|HK − 10H1.5

√
|S|2|A|log|S||A|H. (6)

Thus, putting together (4), (5) and (6), the leading terms of Õ(
√
K) cancel out and we get

BR(K; c) = Õ
(
C ′′(H − τ) +H1.5

√
|S|2|A|C ′′

)
= Õ(1).
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5.2. Reward Objective Regret Analysis

Let πϵk,∗ be the optimal policy for the pessimistic optimization problem (2) and πϵk,p̂k be the optimal
policy for a similar pessimistic optimization problem, but where the transition probability is the
sampled p̂k instead of the true p. We then decompose the reward regret term BR(K; r) as follows:

K∑
k=1

E
[
V π∗
1 (r, p)− V πk

1 (r, p)
]
=

C
′′−1∑
k=1

E
[
V π∗
1 (r, p)− V πk

1 (r, p)
]
+

K∑
k=C′′

E
[
V π∗
1 (r, p)− V πk

1 (r, p)
]

≤ C
′′
H +

K∑
k=C′′

E
[
V π∗
1 (r, p)− V πϵk,∗

1 (r, p)
]
+

K∑
k=C′′

E
[
V πϵk,∗
1 (r, p)− V πϵk,p̂k

1 (r, p̂k)
]

+
K∑

k=C′′

E
[
V πϵk,p̂k

1 (r, p̂k)− V πk
1 (r, p̂k)

]
+

K∑
k=C′′

E [V πk
1 (r, p̂k)− V πk

1 (r, p)] (splitting into four parts)

≤ C
′′
H +

K∑
k=C′′

E
[
V π∗
1 (r, p)− V πϵk,∗

1 (r, p)
]
+ 0 (by the posterior sampling property in Lemma 2)

+
K∑

k=C′′

E
[
V πϵk,p̂k

1 (r, p̂k)− V πk
1 (r, p̂k)

]
+

K∑
k=C′′

E [V πk
1 (r, p̂k)− V πk

1 (r, p)]

≤ C
′′
H +

K∑
k=C′′

E
[
V π∗
1 (r, p)− V πϵk,∗

1 (r, p)
]
+

K∑
k=C′′

E
[
V πϵk,p̂k

1 (r, p̂k)− V πk
1 (r, p̂k)

]
+H1.5

√
30|S|2|A|K log(|S||A|KH) + 2H( by the regret bound in Lemma 3) (7)

Lemma 5 [21] The first summation term above can be bounded as
∑K

k=C′′ E
[
V π∗
1 (r, p)− V πϵk,∗

1 (r, p)
]

≤
∑K

k=C′′
ϵkH
τ−c0

= Õ
(

H2.5

τ−c0

√
|S|2|A|K

)
.

By optimality of πk and the update rule of the dual parameter λk, we can prove the following lemma:

Lemma 6
∑K

k=C′′ E
[
V πϵk,p̂k

1 (r, p̂k)− V πk
1 (r, p̂k)

]
= Õ

(
H

τ−c0

√
K
)

Now, putting together (7), Lemma 5 and Lemma 6, we get that BR(K; r) = Õ
(

H2.5

τ−c0

√
|S|2|A|K

)
.

6. Experimental Results

We now evaluate the empirical performance of the Safe PSRL algorithm and compare it with the
state-of-the-art DOPE algorithm [8] and the OptPess-PrimalDual algorithm [21]. We consider
the setting of a media streaming service [8] and evaluate the cumulative regret for the Safe PSRL,
DOPE, and OptPess-PrimalDual algorithms. The transition probability is fixed and not sampled
from a prior distribution (i.e., the evaluation is not Bayesian in nature, but frequentist). We further
scale the ϵk parameters of the Safe PSRL and OptPess-PrimalDual algorithm, by varying
the coefficient of the ϵk parameters denoted by Kϵ, to control the pessimism. The performance of
our algorithm is also compared against the DOPE algorithm, which requires a known safe policy.
We choose the optimal policy of the given CMDP with a tighter constraint threshold c0 = 1 as
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(a) (b) (c)

Figure 1: Cumulative objective regret.

(a) (b) (c)

Figure 2: Cumulative constraint regret.

the safe policy. Figure 1(a) shows that the Safe PSRL algorithm significantly outperforms the
DOPE and OptPess-PrimalDual algorithms in terms of objective regret. At the same time, it
ensures that the constraint regret is negative for almost all of the episodes, as shown by Fig. 2(a). The
results show that the constraint is satisfied in almost all of the episodes, which is stronger than the
theoretical guarantee for Safe PSRL. Further, though the OptPess-PrimalDual algorithm
appears to perform better than the DOPE algorithm in Fig. 1(a) in terms of objective regret, it has
very high constraint regret, as shown in Fig. 2(a). On the other hand, DOPE satisfies the constraint in
every episode and exhibits very low constraint regret. We further evaluate Safe PSRL for various
values of Kϵ and note that, in all instances, the constraint regret is negative for almost all of the
episodes, as shown by Fig. 2(b). Moreover, the objective regret in Fig. 1(b) increases as the levels
of pessimism expressed by Kϵ increase. Therefore, for suitable levels of pessimism, Safe PSRL
algorithm ensures low objective regret while satisfying the constraint objective. Differently, Fig. 2(c)
shows that the OptPess-PrimalDual algorithm is unable to achieve low regret even at high
levels of pessimism. Considering Fig. 1(c) and Fig. 2(c) together, we see that the algorithm achieves
low objective regret at the expense of exploding constraint regret. Overall, Safe PSRL is able
to achieve superior objective regret performance while satisfying the constraint for almost all the
episodes. This result is further achieved without the knowledge of a safe policy.
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Appendix A. Proofs

A.1. Proof of Lemma 4

We restate the following lemma [22] which states the Lyapunov-drift conditions for the boundedness
of a random process.

Lemma 7 [22] Consider a random process S(t) with a Lyapunov function Φ(k) such that Φ(0) = 0
and ∆(k) = Φ(k + 1) − Φ(k) is the Lyapunov drift. Given an increasing sequence {φk} and
constants ρ and νmax with 0 < ρ ≤ νmax, if the expected drift E [∆(k)|S(k) = s] satisfies the
following conditions:
(i) There exists constants ρ > 0 and φk > 0 s.t. E [∆(k)|S(k) = s] ≤ −ρ when Φ(k) ≥ φk, and
(ii) |Φ(k + 1)− Φ(k)| ≤ νmax holds with probability 1, then

E
[
eζΦ(t)

]
≤ E

[
eζΦ0

]
+

2eζ(νmax+φt)

ζρ
, where ζ = ρ/(ν2max + νmaxρ/3).

We divide the episodes into two parts, i.e. k < C ′′ and k ≥ C ′′ where C ′′ = 80H3|S|2|A|
(τ−c0)2

. We can
clearly see that for k ≥ C ′′, we have ϵk ≤ τ−c0

2 . Thus, for k ≥ C ′′, Problem (2) is feasible for all
p̂k ∈ Θc0 by Assumption 1. For k ≥ C ′′, we show that the Lyapunov function Φ(λ) = λ satisfies the
conditions of Lemma 7 and thus provide a bound on the exponential moment of the dual variable λ.

Lemma 8 For k ≥ C ′′, when λ ≥ φk, we have, E [λk+1 − λk|λk = λ] ≤ ρ and |λk+1 − λk| ≤ H
with probability 1, where φk := 4(H2 + ϵ2k + ηkH)/(τ − c0) and ρ := −(τ − c0)/4. Thus, we have,

E
[
eζλK+1

]
≤ E

[
eζλC′′

]
+

2eζ(H+φK+1)

ζρ
, where ζ = ρ/(H2 +Hρ/3).

Proof Now for k ≥ C ′′, consider:

λk+1
2

2
− λk

2

2
= λk(λk+1 − λk) +

1

2
(λk+1 − λk)

2

= λk(V
πk
1 (c, p̂k) + ϵk − τ) +

1

2
(V πk

1 (c, p̂k) + ϵk − τ)2

= λk(V
πk
1 (c, p̂k) + ϵk − τ)− ηkV

πk
1 (r, p̂k) + ηkV

πk
1 (r, p̂k) +

1

2
(V πk

1 (c, p̂k) + ϵk − τ)2

≤ λk(V
πk
1 (c, p̂k) + ϵk − τ)− ηkV

πk
1 (r, p̂k) + ηkH +

1

2
(V πk

1 (c, p̂k) + ϵk − τ)2

≤ λk(V
πk
1 (c, p̂k) + ϵk − τ)− ηkV

πk
1 (r, p̂k) + ηkH + (V πk

1 (c, p̂k)− τ)2 + ϵ2k

(Using
(a+ b)2

2
≤ a2 + b2)

≤ λk(V
πk
1 (c, p̂k) + ϵk − τ)− ηkV

πk
1 (r, p̂k) + ηkH +H2 + ϵ2k

≤ λk(V
π
p̂k
0

1 (c, p̂k) + ϵk − τ)− ηkV
π
p̂k
0

1 (r, p̂k) + ηkH +H2 + ϵ2k

( By optimality of πk in primal update )

≤ λk(c0 + ϵk − τ) + ηkH +H2 + ϵ2k

10
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≤ −λk(τ − c0)

2
+ ηkH +H2 + ϵ2k

( as for k ≥ C ′′, ϵk ≤
(τ − c0)

2
)

Now for λ ≥ φk where φk := 4(H2 + ϵ2k + ηkH)/(τ − c0), we have:

E [λk+1 − λk|λk = λ] ≤ E

[
λ2
k+1 − λ2

k

2λk
|λk = λ

]
(Using x− y ≤ x2 − y2

2y
, for y > 0)

=
1

λ
E

[
λ2
k+1 − λ2

k

2
|λk = λ

]

≤ 1

λ
E
[
−λk(τ − c0)

2
+ ηkH +H2 + ϵ2k|λk = λ

]
= −(τ − c0)

2
+

ηkH +H2 + ϵ2k
λ

≤ −(τ − c0)

2
+

(τ − c0)

4

= −(τ − c0)

4
:= ρ

Further, |λk+1 − λk| = |V πk
1 (c, p̂k) + ϵk − τ | ≤ H with probability 1. Thus, by lemma 7, we

have :

E
[
eζλK+1

]
≤ E

[
eζλC′′

]
+

2eζ(H+φK+1)

ζρ
, (8)

where ζ = ρ/(H2 +Hρ/3).

The above inequality (8) can be simplified as follows:

=⇒ eζE[λK+1] ≤ E
[
eζλC′′

]
+

2eζ(H+φK+1)

ζρ
(By Jensen’s inequality)

=⇒ E [λK+1] ≤
1

ζ
log

[
E
[
eζλC′′

]
+

2eζ(H+φK+1)

ζρ

]

Further,

λC′′ ≤ λ1 +

C′′−1∑
1

(V πk

1 (c, p̂k) + ϵk − τ)+

≤
C′′∑
1

ϵk + C ′′(H − τ) := λmax
C′′

Continuing,

E [λK+1] ≤
1

ζ
log

[
eζλ

max
C′′ +

2eζ(H+φK+1)

ζρ

]

11
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≤ 1

ζ
log

[
eζλ

max
C′′ +

8H2eζ(H+φK+1)

3ρ2

]
( Using ζ ≥ 3(τ − c0)

13H2
)

≤ 1

ζ
log

[
11H2

3ρ2
eζ(H+φK+1+λmax

C′′ )
]

=
1

ζ
log

11H2

3ρ2
+H + φK+1 + λmax

C′′

=
1

ζ
log

11H2

3ρ2
+H +

C′′∑
1

ϵk + C ′′(H − τ) +
4(H2 + ϵ2K+1 + ηK+1H)

(τ − c0)

A.2. Proof of Lemma 6

Proof
K∑

k=C′′

E
[
V πϵk,p̂k

1 (r, p̂k)− V πk
1 (r, p̂k)

]
=

K∑
k=C′′

E
[
λk

ηk

(
V πϵk,p̂k

1 (c, p̂k)− V πk
1 (c, p̂k)

)]

+

K∑
k=C′′

E
[(

V πϵk,p̂k

1 (r, p̂k)−
λk

ηk
V πϵk,p̂k

1 (c, p̂k)

)]
−

K∑
k=C′′

E
[(

V πk

1 (r, p̂k)−
λk

ηk
V πk

1 (c, p̂k)

)]

≤
K∑

k=C′′

E
[
λk

ηk

(
V πϵk,p̂k

1 (c, p̂k)− V πk
1 (c, p̂k)

)]
+ 0 (By optimality of πk in primal update )

≤
K∑

k=C′′

E
[
λk

ηk
(τ − ϵk − V πk

1 (c, p̂k))

]

≤
K∑

k=C′′

E
[
1

ηk
((λk(λk+1 − λk) + τ2)

]
(By update rule for λk)

≤ E

[
K∑

k=C′′

1

ηk
(
λ2
k

2
−

λ2
k+1

2
) +

K∑
k=C′′

1

2ηk
(λk+1 − λk)

2 +
K∑

k=C′′

τ2

ηk

]

≤ E
[
(λC′′)2

2ηC′′

]
+

K∑
k=C′′

H2

2ηk
+

K∑
k=C′′

H2

ηk
(As ηk increases with k)

≤
(
∑C′′

k=1 ϵk + C
′′
(H − τ))2

2ηC′′
+

3H

2

K∑
C′′

1

(τ − c0)
√
k

= Õ
(

H

τ − c0

√
K

)

Appendix B. Experiment Setup

We consider the setting of a media streaming service [8] from a wireless base station. The base
station provides the streaming service at two different speeds. These speeds follow independent

12
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Bernoulli distributions denoted by parameters µ1 = 0.9 and µ2 = 0.1, with µ1 corresponding
to the faster service. The data packets arriving at the device are stored in a buffer and sent out
according to a Bernoulli random process with mean γ. The buffer size sh evolves as sh+1 =
min (max (0, sh +Ah −Bh) , N) where Ah is the number of packet arrivals, Bh is the number of
packet departures, and N = 10 is the maximum size of the buffer. The device desires to minimize
the cost of running out of packets, i.e., an empty buffer, while restricting the use of the faster service.
We model this scenario as a finite horizon CMDP with the state representing the buffer size and
actions {1, 2} denoting the choice of speed. We set the objective cost as r(s, a) = 1{s = 0} and the
constraint cost as c(s, a) = 1{a = 1}. The episode length H is 10 and the threshold τ is 5.

The algorithms are evaluated over K = 400, 000 episodes. They are carried out 10 times and
averaged to obtain the regret plots. All the experiments are performed on a 2019 MacBook Pro with
1.4 GHz Quad-Core Intel Core i5 processor and 16GB RAM.

Appendix C. Related Work

Posterior (or Thompson) sampling goes back to the work of [28], but attracted less attention for
several decades until empirical evidence [9] showed its superior performance for online learning.
Recently, it has been widely applied to various settings like multi-armed bandits [2, 3, 19], MDPs
[23–25] and POMDPs [15].

OFU-based algorithms have been widely used for efficient learning in CMDPs, e.g., in the
setting of PAC performance guarantees for finite-horizon CMDPs [14, 18], or to provide regret
bounds for CMDPs in the finite-horizon setting [7, 13] and infinite-horizon average cost setting
[27]. Policy gradient algorithms for CMDPs [11, 12] have also been studied. However, these
algorithms do not provide bounded or zero constraint violation guarantees. Recently, some OFU-
based approaches for safe learning with bounded or zero constraint violation guarantees have been
proposed [6, 10, 21, 29, 30]. But these either assume the transition model is known, or assume that a
safe policy is known to the algorithm (and can be used by it), e.g., in [8, 21]. The OptPess-PrimalDual
algorithm in [21] is the closest comparable algorithm to our Safe PSRL algorithm.

While the use of the posterior sampling principle for constrained RL problems is under-explored
(despite the promise of better empirical performance), [1] indeed introduces a PSRL algorithm for
CMDPs but for the average setting. Moreover, it only achieves a Õ(

√
K) constraint violation regret

which is worse than our Õ(1) bound.
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