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Abstract
Research into optimisation for deep learning is characterised by a tension between the computational
efficiency of first-order, gradient-based methods (such as SGD and Adam) and the theoretical
efficiency of second-order, curvature-based methods (such as quasi-Newton methods and K-FAC).
We seek to combine the benefits of both approaches into a single computationally-efficient algo-
rithm. Noting that second-order methods often depend on stabilising heuristics (such as Levenberg-
Marquardt damping), we propose AdamQLR: an optimiser combining damping and learning rate
selection techniques from K-FAC [39] with the update directions proposed by Adam, inspired by
considering Adam through a second-order lens. We evaluate AdamQLR on a range of regression and
classification tasks at various scales, achieving competitive generalisation performance vs runtime.

1. Introduction

Most frequently seen in the ML literature are first-order optimisers such as SGD, Adam [27] and
their variants, with some exploratory studies on second-order algorithms such as quasi-Newton
methods and K-FAC [39]. Broadly speaking, second-order algorithms aim to make more principled
individual updates, which in turn are more computationally costly than those employed by first-order
methods. Combined with a generally more complicated implementation, second-order methods have
not yet proven preferable to first-order approaches for most practitioners [2].

In part, this is a stability issue — inaccurate curvature approximations may cause a second-order
optimiser to take extremely large, destabilising update steps. Many approaches thus depend on
additional heuristics, such as curvature damping. It is then natural to ask if these heuristics might play
a more fundamental role than the curvature information, and similarly improve first-order techniques.

In this paper, we propose a damped automatic learning rate strategy: applying K-FAC’s damping
and learning rate selection techniques to Adam. The result is an efficient, scalable algorithm which
competes strongly and robustly with commonly-used optimisers. After a review of related work in
Section 2, we present the development of our algorithm in Section 3. We then justify our claims by
experiment in Section 4 before Section 5 concludes. Our main contributions are as follows:

• To our knowledge, we present the first use of damping and second-order approximations to
select learning rates in Adam

• We propose a variation of damping based on Adam’s internal curvature estimates which, when
applied to Adam’s update proposals, outperforms classical damping from e.g. K-FAC

• We show our method competes with methods using tuned learning rates, while exhibiting
robustness to hyperparameters
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2. Related Work

SGD and Adam [27] are arguably the most popular optimisers in ML. Adam belongs to a class of
adaptive first-order methods including Adagrad [14, 41] and RMSprop [54]. Balles and Hennig [4]
demonstrate that Adam essentially scales gradient signs by their variance. Zhang et al. [59] show
that Adam can be seen as a form of natural gradient mean field variational inference, whose mode-
fitting behaviour is known to underestimate variance, corresponding to overestimating curvature
in an optimisation task (see e.g. Figure 1.3 in Turner and Sahani [56]). Zhang et al. [60] use a
noisy quadratic model to ablate over Adam’s components. We seek to exploit the useful curvature
information ignored by these methods’ use of diagonal approximations or heuristics.

Second-order optimisers are seen more often in the optimisation literature than in practical ML.
Quasi-Newton methods [45] are inspired by a Taylor series truncated at quadratic order, with a
Hessian matrix characterising curvature. Martens [38] use the Hessian-vector product trick [48] to
work implicitly with the exact Hessian. Other work modifies the Hessian to avoid degeneracies — a
particular concern in saddle point-dense high-dimensional spaces [12, 47]. SHAMPOO [22] learns a
factorised set of preconditioning matrices. However, in non-convex, non-quadratic ML problems, the
raw Hessian may be badly misleading, leading to divergence.

For probabilistic models, the Fisher information matrix gives rise to the natural gradient family
of methods [1]. The Fisher matrix characterises curvature in KL-divergence space between the
predicted and ground truth probability distributions. Factorized Natural Gradient [21] approximates
the Fisher using a Gaussian graphical model, while the Kronecker-Factored Approximate Curvature
(K-FAC) method (Martens and Grosse [39] after an idea by Heskes [25]) imposes a block-diagonal
approximation to the Fisher and represents each block by a Kronecker product. Extensions to K-FAC
include EKFAC [18], which learns the approximate Fisher in an eigenvalue-aligned basis. K-BFGS
[20] applies a similar factorisation strategy to the Hessian matrix, retaining theoretical guarantees
from the classical BFGS optimiser [8, 15, 19, 52]. Although K-FAC can be applied in distributed
settings, this is somewhat complex [46], and the use of Fisher curvature requires new expressions to
be calculated for different loss functions. We also find K-FAC suffers a substantial overfitting risk.

Original efforts to dynamically adapt first-order learning rates imposed fixed learning rate
schedules [11, 33, 36, 53, 58], but recent developments involve more dynamic adaptations by
hypergradients [9, 13, 16, 35, 42], online Bayesian optimisation [26], or explicitly constructing
an optimisation framework around the unique characteristics of deep neural networks [5]. Zhang
et al. [60] and Kwatra et al. [30] adopt a similar quadratic model methodology to our work, but the
latter compute a finite-difference approximation to this model rather than using the exact curvature
information as we do, and introduces additional exploration/exploitation hyperparameters. Niu et al.
[44] uses a parallel approach to ours to incorporate momentum into L-BFGS [34].

3. AdamQLR

Let f(θ) be the loss function (which we seek to minimise) of some network parameterised by θ.
Adopting ML convention, we express second-order optimisers in the form θt ← θt−1 −C−1u(g),
where C is some curvature matrix (often a damped Hessian, Fisher or Gauss-Newton matrix).

Practical second-order methods for ML are necessarily approximate, as the curvature C is other-
wise intractably large. Further engineering is then required to mitigate the impact of approximate
curvature and non-convexity of f . For example, K-FAC [39] is motivated by a particular Kronecker
factorisation of a block-diagonal C, but then applies a raft of corrections and adaptive heuristics
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Algorithm 1 Adam [27]
m0,v0 ← 0
for t = 1, 2, · · · until θ converged do
gt ← ∇θf(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)(gt ⊙ gt)
m̂t ← mt

1−βt
1

v̂t ← vt

1−βt
2

dt ← m̂t√
v̂t+ϵ

θt ← θt−1 − αdt

end for

Algorithm 2 AdamQLR
m0,v0 ← 0
for t = 1, 2, · · · until θ converged do

gt ← ∇θf(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)(gt ⊙ gt)
m̂t ← mt

1−βt
1

v̂t ← vt

1−βt
2

dt ← m̂t√
v̂t+ϵ

Update learning rate α according to (3)
Update damping λ according to (2)
θt ← θt−1 − αdt

end for

(including multiple periodically-updated damping/factorised Tikhonov regularisation terms, momen-
tum, weight decay, exponential moving averages of curvature statistics and approximate exchange of
expectations and Kronecker products). These additions are seemingly integral to K-FAC’s success.

A natural question is then whether accepting first-order methods’ inaccurate curvature models and
applying second-order stability techniques would blend the computational efficiency and optimisation
accuracy of each. Our proposal is thus to adapt Adam using techniques from K-FAC.

3.1. Adam Revisited

Algorithm 1 restates the Adam optimisation algorithm from Kingma and Ba [27] applied to f , with
some minor notational changes. Our proposed algorithm derives from our anecdotal observation that
Adam often makes good choices of update direction dt =

m̂t√
v̂t+ϵ

.

As we detail in Appendix C, the 1√
v̂t+ϵ

term in Algorithm 1 effectively performs a curvature
transformation on the averaged gradient m̂t using an approximate empirical Fisher matrix. This has
widely-known limitations compared to using the true Fisher [29], and the square root is motivated
only by a desire to be “conservative” [27]. Indeed, Adam is very similar to one construction of natural
gradient mean-field variational inference [59], a technique known to prioritise locally fitting modes
of the target probability distribution [56]. Underestimating global variance in this way corresponds
to overestimating local curvature in optimisation, justifying Adam’s conservative estimate.

3.2. Adopting Heuristics from K-FAC

K-FAC [39] features three stabilising heuristics: Levenberg-Marquardt damping, and learning rate
and momentum selection according to a local second-order model. Since Adam already implements
a momentum correction in m̂t, we consider only the first two techniques.

Levenberg-Marquardt damping [31, 37, 51] replaces the curvature matrix C with the damped
matrix C+ λI, and can variously be interpreted as approximating a trust region, enforcing positive
definiteness of C, preventing large updates in low-curvature directions and interpolating between
gradient descent and full second-order updates. In effect, it imposes a ‘minimum curvature’ on the
objective to avoid issues from near-zero eigenvalues of C.
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Let M(θ) be an approximate model of f around θt−1, defined by a truncated Taylor series:

M(θ) = f(θt−1) + (θ − θt−1)
Tgt +

1

2
(θ − θt−1)

T(C+ λI)(θ − θt−1). (1)

The damping parameter λ is adapted by comparing the change in objective value predicted by the
model (M(θt) −M(θt−1)) to the actual observed change (f(θt) − f(θt−1)). This adjustment
quantifies the model’s reliability by a reduction ratio ρ, incorporating stepping factors1 ωdec, ωinc:

ρ =
f(θt)− f(θt−1)

M(θt)−M(θt−1)
; λ←


ωdecλ if ρ > 3

4

λ if 1
4 ≤ ρ ≤ 3

4

ωincλ if ρ < 1
4

. (2)

Once an update direction dt has been chosen, a learning rate α is selected according to the
second-order model M . Specifically, we minimise M(θt−1 − αdt) with respect to α, which yields

α =
gT
t dt

dT
t (C+ λI)dt

. (3)

A minor rearrangement shows the large matrix C only appears in products with vectors. The
Jacobian-vector product trick [48], efficient Fisher decompositions [39] and similar techniques
compute these matrix-vector products using only one additional forward pass per product with C. In
practice, the information value of these calculations outweighs the additional computational cost.

3.3. Extending Adam

Incorporating K-FAC’s damping and learning rate selection strategies into Adam yields Algorithm 2.
We name this family of algorithms AdamQLR, where QLR indicates an optimiser-agnostic quadratic-
model learning rate selection logic, which may be applied more broadly (e.g. to SGD).

For C, we use the (true) Fisher matrix throughout, inspired by its connection with Adam’s v̂t

buffer (see Appendix C.3), its use at the heart of K-FAC and its positive semi-definite guarantee.
Particularly large choices of α affected AdamQLR’s training stability, and the problem worsened
with larger models, as these increase the prevalence of low-curvature regions of the space which
induce very large update sizes. We found this issue was most effectively mitigated by clipping the
learning rate to some maximum αmax, and that larger batch sizes tended to improve our curvature
estimates, leading to better performance despite the higher cost of each forward pass.

With these choices made, note that the only remaining hyperparameters are β1, β2 and ϵ (from
Adam) and an initial damping value λ0. As it is common for Adam’s hyperparameters to be fixed
at the default values suggested by Kingma and Ba [27], and we show λ and αmax to be sufficiently
insensitive that a default value can be recommended (Appendix B.2), we claim that AdamQLR is
suitable for use without explicit hyperparameter tuning, and justify that claim in Section 4.

Compared to Adam, the additional forward passes required to compute M(θt) and (C+ λI)dt

turn out not to impede performance in our experimental results, though we note a careful implemen-
tation would amortise the former cost. Our only significant additional memory cost is storing the
vector (C+ λI)dt, making our approximate memory footprint four times that of SGD (as opposed
to Adam’s footprint of three times SGD).

1. In the most general form we allow separate decrease and increase factors, but in practice we will often choose
ωdec =

1
ωinc

for simplicity. We also require 0 < ωdec < 1 < ωinc.
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4. Experiments

We examine the training and test performance of AdamQLR in a variety of settings:

UCI Energy [55] on an MLP with one hidden layer of 50 units; 4 000 epochs
UCI Protein [49] on an MLP with one hidden layer of 100 units; 200 epochs
Fashion-MNIST [57] on an MLP with one hidden layer of 50 units; 10 epochs
SVHN [43] on a ResNet-18 [23]; 10 epochs
CIFAR-10 [28] on a ResNet-18 [23]; 72 epochs

We also demonstrate preliminary scalability to ImageNet in Appendix B.1.9. On UCI datasets we
generate random splits using the same sizes as Gal and Ghahramani [17] and use MSE loss; otherwise,
we separate the standard test set, choose 1/6 (Fashion-MNIST and SVHN) or 1/10 (CIFAR-10) of the
remaining data to form a validation set, and use cross-entropy loss. Our complete code is available at
https://github.com/rmclarke/AdamThroughASecondOrderLens. We compare:

SGD Minimal Classical mini-batched stochastic gradient descent, with tuned learning rate
SGD Full SGD Minimal with additional tuned momentum and weight decay
Adam [27] with tuned learning rate and fixed defaults for other hyperparameters
K-FAC [6, 39] with tuned initial damping
AdamQLR (Tuned) Algorithm 2, using Fisher curvature for C. We tune initial damping, damping

adjustment factors ωdec, ωinc and learning rate clipping
AdamQLR (Untuned) AdamQLR with fixed batch size 3 200, initial damping 0.001,

ωdec =
1

ωinc
= 0.5 and learning rate clipping 0.1 (justified by Appendix B.2)

Except for AdamQLR (Untuned), we also tune the batch size. All hyperparameter tuning uses ASHA
[32] over 200 random initialisations, where we target a fixed number of training epochs, subject to a
maximum runtime of 15 minutes (only reached for CIFAR-10; see Appendix B.1.10 for experiments
using runtime as the primary constraint). For our loss evolution figures, we perform 50 runs using
each of the best hyperparameters found (measured by final validation loss), then plot the mean and
standard deviation of the median trends of each of 50 bootstrap samples of the results. Following
Botev and Martens [6], where damping is present we clip it to ensure λ ≥ 10−8.

Our most notable result is that AdamQLR (Untuned), despite receiving no tuning budget and using
the same hyperparameters for each dataset, competes very strongly with the tuned implementation of
Adam. In general, the QLR-computed learning rates accelerate initial convergence, while damping
provides some defence against overfitting (at the cost of increased final training loss). We also
replicate Martens et al. [40]’s obervation of K-FAC’s susceptibility to overfitting, decreasing its
appeal for the training task. Throughout, Adam and SGD (Full) remain strong contenders — perhaps
unsurprising given their ubiquity in ML. We observed substantially different training dynamics
between ResNet and Transformer models, an investigation of which we leave to future work.

5. Conclusion

We propose AdamQLR, an extension to Adam incorporating K-FAC’s learning rate selection and
adaptive damping strategies. Our algorithm reduces the overfitting seen in other techniques, and our
suggested default hyperparameters compete with tuned optimisers. That AdamQLR competes so
strongly with K-FAC, despite representing an algorithmic ‘midpoint’ between Adam and K-FAC,
suggests an interesting direction for future work.
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Figure 1: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions
per algorithm. Hyperparameters chosen by ASHA over 200 initialisations. Note changes of scale on
the time axes. See also results on accuracy metrics and learning rate evolutions in Figures 3 and 4.
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Appendix A. Notes

A.1. Ethics Statement

Our work proposes a general optimisation algorithm for neural networks, so is unlikely to influence a
particular societal problem. However, increasing the effectiveness of optimisation methods makes
it easier for both benevolent and malevolent actors to develop systems aligned with their goals,
so this class of risk is unavoidable. Of additional concern is that the typical setting of seeking to
optimise a test metric by minimising a training metric fundamentally misaligns our algorithms with
our objectives, and that misalignment may cause unexpected downstream consequences if poorly
understood by the model developer. Finally, it would be naïve to presume any one optimisation
algorithm is a panacea for all settings, and any errant belief in this vein may cause promising research
directions to be incorrectly dismissed if a supposedly ‘universal’ optimiser happens to perform poorly
on it.

A.2. Reproducibility Statement

We describe our algorithm fully in Section 3, provide full source code to the reviewers and will
publish this code to the community after deanonymisation. The descriptions in this paper describe all
the modifications we make to Adam and provide an complete intuitive summary of our contribution,
while the source code allows any fine detail of our implementation or experiments to be inspected.

A.3. Limitations

While we have evaluated our algorithm on a range of datasets and models, we have necessarily
left many important settings untested. Thus, even though we expect our method to generalise well
to other settings, we should recognise that it has likely not yet been tested in those settings. In
particular, the learning rate selection strategy used by K-FAC and our work assumes the optimisation
space is approximately convex and quadratic, which will not generally be true of machine learning
problems — this motivates our use of damping to defend against particularly ill-posed updates.
With sufficient damping, we effectively define a ‘trust region’ beyond which the surface can be
non-quadratic without harming our method. Further, since Adam is known not to perform well in
certain (poorly-understood) circumstances [4], we might expect AdamQLR to have difficulty with
the same class of problems.

A.4. Hyperparameter Search Space

We use similar hyperparameter search spaces (with unused hyperparameters removed) for each
dataset and algorithm combination. These are detailed in Table 1.

A.5. Chosen Hyperparameters

The best hyperparameters selected by ASHA for each setting considered in this work are indicated in
Table 2.

A.6. Compute Used

Our experiments were performed on one of the two sets of hardware shown in Table 3. All runtime
comparisons were performed on like-for-like hardware. We make use of GPU acceleration throughout,
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Table 1: Hyperparameter search spaces for Section 4

Hyperparameter Search Range

Batch Size Uniform in {50, 100, 200, 400, 800, 1 600, 3 200}

Learning Rate α
SGD: Logarithmic in [10−6, 10−1]
Adam: Logarithmic in [10−6, 1]

Learning Rate Clipping αmax Logarithmic in [10−4, 10]
Momentum Logarithmic in [10−4, 0.3], subtracted from 1

Weight Decay Logarithmic in [10−10, 1]
Initial Damping λ0 Logarithmic in [10−8, 1]

Damping Decrease Factor ωdec Logarithmic in [0.5, 1.0]
Damping Increase Factor ωinc Logarithmic in [1.0, 4.0]

Table 2: Optimal hyperparameters used to produce the results of Section B.1.3

Dataset Algorithm
Batch
Size

Learning
Rate

Learning
Rate

Clipping
Momentum

Weight
Decay

Initial
Damping

Damping
Decrease

Factor

Damping
Increase
Factor

Rosenbrock

GD Minimal — — — — — — — —
GD Full — — — — — — — —
Adam — 9.8848×10−2 — — — — — —

AdamQLR (Tuned, Hessian) — — 6.098 — — 3.0270×10−6 0.9 2.1
AdamQLR (Untuned) — — 0.100 — — 1.0000×10−3 0.5 2.0

UCI Energy

SGD Minimal 100 9.8838×10−2 — — — — — —
SGD Full 400 6.9156×10−2 — 0.9962 1.2866×10−4 — — —

Adam 800 2.9913×10−2 — — — — — —
K-FAC 50 — — — — 1.0047×10−2 — —

AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0
AdamQLR (Tuned) 400 — 2.843 — — 8.7094×10−2 0.5 2.3

UCI Protein

SGD Minimal 400 7.0021×10−2 — — — — — —
SGD Full 100 2.1694×10−4 — 0.9970 1.5361×10−8 — — —

Adam 800 5.4189×10−3 — — — — — —
K-FAC 3200 — — — — 2.1064×10−1 — —

AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0
AdamQLR (Tuned) 800 — 0.141 — — 1.5054×10−4 0.5 1.9

Fashion-MNIST

SGD Minimal 100 8.0075×10−2 — — — — — —
SGD Full 800 5.8068×10−2 — 0.9289 1.6522×10−8 — — —

Adam 400 2.5634×10−3 — — — — — —
K-FAC 3200 — — — — 1.9224×10−1 — —

AdamQLR (Tuned, Hessian) 3200 — 0.269 — — 2.5420×10−5 1.0 2.8
AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0

AdamQLR (Undamped) 3200 — 0.149 — — — — —
AdamQLR (Tuned) 3200 — 0.219 — — 4.9595×10−3 0.6 1.3

CIFAR-10

SGD Minimal 200 3.4672×10−2 — — — — — —
SGD Full 400 3.8337×10−2 — 0.9203 8.7353×10−4 — — —

Adam 100 2.0380×10−4 — — — — — —
K-FAC 1600 — — — — 9.0326×10−1 — —

AdamQLR (Tuned, Hessian) 200 — 0.001 — — 2.1848×10−4 0.5 2.1
AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0

AdamQLR (Undamped) 200 — 0.001 — — — — —
AdamQLR (Tuned) 400 — 0.001 — — 7.1607×10−6 0.5 1.2

SVHN

SGD Minimal 1600 3.8629×10−2 — — — — — —
SGD Full 1600 6.0953×10−3 — 0.9862 8.6112×10−7 — — —

Adam 800 4.1027×10−4 — — — — — —
K-FAC 800 — — — — 6.4013×10−1 — —

AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0
AdamQLR (Tuned) 200 — 0.001 — — 2.6287×10−8 0.7 1.3
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Table 3: System configurations used to run our experiments.

Type CPU GPU (NVIDIA) Python JAX CUDA cuDNN

Consumer Desktop Intel Core i7-3930K RTX 2080GTX 3.10.11 0.3.25 11.4 8.05
Local Cluster Intel Core i9-10900X RTX 2080GTX 3.10.11 0.3.25 11.8 8.05

Table 4: Licences under which we use datasets in this work

Dataset Licence Source Input Output Total Size

UCI Energy
Creative Commons Attribution 4.0

International (CC BY 4.0)
Tsanas and Xifara [55];

Gal and Ghahramani [17]
8-Vector Scalar 692

UCI Protein None specified
Rana [49];

Gal and Ghahramani [17]
9-Vector Scalar 45 730

Fashion-MNIST MIT Xiao et al. [57] 28× 28 Image Class (from 10) 60 000
CIFAR-10 None specified Krizhevsky [28] 32× 32 Image Class (from 10) 60 000

SVHN None specified Netzer et al. [43] 32× 32 Image Class (from 10) 99 289

with the JAX [7], Haiku [24] and KFAC-JAX [6] libraries, along with various related components of
the DeepMind JAX Ecosystem [3].

Producing experimental data for every plot in this paper required approximately 228.3 GPU-hours
on the Local Cluster and 9.5 GPU-hours on the Consumer Desktop. This accounts for performing
multiple trials in parallel on the same GPU where capacity exists and for hyperparameter search, but
excludes development, debugging and unit testing time, which would substantially increase these
figures.

A.7. Datasets

The datasets we use are all standard in the ML literature; we outline their usage conditions in Table 4.

Appendix B. Additional Experiments

B.1. Algorithm Comparisons

In this Section, we provide some additional viewpoints into our main results of Section 4.

B.1.1. UCI ENERGY

UCI Energy provides a low-dimensional regression task on a small dataset, which is amenable to
hosting long experiments to explore convergence behaviour. We consider 4 000 epochs of training
and plot bootstrap-sampled median training and test loss trends in Figure 1a.

Our principal benchmarks fall much as we would expect: SGD Minimal makes respectable, if
sluggish, progress during optimisation, but is outclassed by the more rapid initial convergence of
SGD Full and Adam. Both these latter methods achieve strong test performance on this small-scale
problem, with SGD Full outperforming all other methods. Despite making rapid initial progress,
K-FAC quickly begins overfitting, reaching a final test loss similar to the AdamQLR methods.

Generally, AdamQLR (Tuned) competes comparably with its vanilla baseline. The QLR computed
learning rates accelerate initial progress, while the addition of damping provides some defence against
overfitting, at the cost of a higher final training loss. Note also that AdamQLR’s substantially lower
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variation indicates a robustness beyond that seen in other methods — the Untuned variation performs
very competitively considering its competition has undergone hyperparameter tuning.

B.1.2. UCI PROTEIN

UCI Protein is another low-dimensional regression task, but with far more data points, allowing for a
computationally-efficient study of a larger dataset. We show 200 epochs of training in Figure 1b.

Here we see greater distinction between the generalisation performance of each algorithm. SGD
Full achieves a slight improvement over SGD Minimal, but still lags behind the other methods.
K-FAC is now clearly the best-performing algorithm, as might perhaps be expected since it computes
the most granular curvature approximation when choosing an update direction. However, we still
see meaningful benefit from the AdamQLR (Tuned) algorithm, which now comfortably outperforms
Adam. We observe AdamQLR (Tuned)’s automatic learning rate selection is capable of outperforming
methods which require a sensitive explicit choice of learning rate — the Untuned variant is clearly
superior to tuned SGD on this task and is only slightly worse than a tuned Adam.

B.1.3. FASHION-MNIST

Fashion-MNIST provides a first foray into higher-dimensional data, but at a scale still approachable by
MLP models. Using a 10-epoch training window, we plot bootstrapped loss evolutions in Figure 1c.

At this slightly larger experimental scale, the benefits of our proposed algorithm become more
apparent. Despite achieving the best final training loss of any method, K-FAC significantly overfits
even before reaching other algorithms’ final training losses. While this is a recognised issue with
K-FAC [40], and the fundamental idea of minimising a test loss by optimising a training loss frustrates
the application of naïvely-powerful optimisers, the impact is to make K-FAC undesirable in this
application. SGD Full, Adam and AdamQLR all perform very similarly, generalising better than
K-FAC and overfitting to a far lesser degree. AdamQLR is the most performant algorithm by a very
small margin. We emphasise that the number of training epochs was chosen arbitrarily based on
existing work, so the flattening-out of AdamQLR’s test loss at later times indicates robustness, not
preferential treatment. We note again the strong performance of AdamQLR (Untuned).

B.1.4. SVHN

With SVHN, we progress to a full-colour image dataset and a substantially larger-scale ResNet-18
model, which we tune for 10 epochs and present in Figure 1d. The periodicity in these loss evolutions
corresponds to individual epochs, and is simply an artifact of training.

On this more realistically-scaled problem, we achieve substantial gains over Adam. SGD Minimal
fulfils its expected role as a mediocre baseline, but SGD Full performs admirably in this setting,
matching the other algorithms’ initial rate of convergence in both training and test losses, and
achieving the lowest test loss of any method. However, it then overfits, while other methods reach
similar test losses more stably. K-FAC again fails to generalise its impressively low training losses,
instead becoming stuck at a test loss almost ten times larger than its final training loss.

We see particuarly strong performance from the Adam-based methods. While Adam itself overfits
before matching its competitors’ test performance, AdamQLR reaches impressively low test losses
and remains more stable there. Even though SGD Full transiently achieves better performance,
AdamQLR is a more promising candidate for general application, as it achieves similar losses with
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greater robustness and meaningfully reduced hyperparameter tuning effort. Finally, the Untuned
variant performs impressively at both training- and test-time, reinforcing its efficiency and utility.

B.1.5. CIFAR-10

Finally, in a simulation of larger-scale learning, we train a ResNet-18 on CIFAR-10 over 72 epochs.
Here we include conventional data augmentation of 4-pixel padding, random cropping and random
left-right flipping, and display our results in Figure 1e.

Adam is now slower to converge in both training and test loss, suggesting this could be an
ill-suited setting in which Adam can be expected to underperform [4]. Otherwise, increasingly
intricate algorithms make progressively faster progress at training-time, even if the generalisation
performances are all very similar. The latter effect may reflect inherent issues in the training-test
learning paradigm as well as the performance of any particular optimiser.

B.1.6. ROSENBROCK FUNCTION

The Rosenbrock Function [50] provides a visualisable low-dimensional test bed for optimisation
algorithms, containing substantial non-linear correlations between its inputs and anisotropic cur-
vature. We consider 200 optimisation steps, using N (0, I)-sampled initial (x, y) values during
hyperparameter tuning, and plot trajectories from the fixed starting point (1,−1) as our test case
in Figure 2. As there is no probabilistic model, we cannot apply K-FAC in this setting, so omit it.
For the same reason, in this section only, we use Hessian curvature in AdamQLR, and use gradient
descent (GD) in place of SGD. Since there is no separate validation set, we tune hyperparameters on
the same objective function as is used for ‘training’.

Figure 2: Optimisation trajectories over 200 steps
from a fixed initial point on the Rosenbrock Func-
tion. Hyperparameter tuning used 200 standard-
normal random initial points.

Here, GD Minimal makes good initial
progress into the central ‘valley’, but its learn-
ing rate is too small to continue along the valley
floor. GD Full’s hyperparameters cause it to
bounce unstably around the optimisation space.
Because SGD cannot adapt to different gradi-
ent magnitudes, it must select conservative step
sizes to avoid diverging when initialised away
from the optimum — an effect particularly pro-
nounced in GD Minimal, where there is no mo-
mentum buffer. Adam’s adaptive buffers allow
it to target the valley more directly, eventually
making slow progress along the valley floor, but
it takes time to learn the new dynamics in the
latter regime, and we see it initially ‘overshoot’
the valley.

By contrast, AdamQLR (Tuned) reaches the
valley floor efficiently, then shows an appealing
understanding of the objective function geom-
etry, tracking along the valley for substantial distances. SGD-based methods tend to take small,
cautious steps along the floor, producing steady but slow convergence, while the Adam-based meth-
ods are able to take larger steps, making faster progress. AdamQLR (Untuned)’s learning rate clipping
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Figure 3: Median training (left) and test (right) accuracy trajectories, bootstrap-sampled over 50
repetitions per algorithm. Hyperparameters chosen by ASHA over 200 initialisations. Note changes
of scale on the time axes.

threshold, being chosen for neural network applications, is too small here, but it also makes efficient
progress into the valley and quickly adapts to the changing dynamics without overshooting. While this
relatively simple function is not representative of the more complicated spaces of machine learning
model parameters, our strategy displays a promising understanding of its correlated curvature.

B.1.7. FASHION-MNIST, SVHN AND CIFAR-10 ACCURACY

In Figure 1, we plotted experimental results in terms of the loss metric used during training. For
Fashion-MNIST, SVHN and CIFAR-10, we also plot classification accuracy in metrics in Figure 3.
These illustrate broadly the same patterns as we discussed in the main body of the paper.
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B.1.8. LEARNING RATE EVOLUTION

In Figure 4, we plot the trajectories of average learning rates selected by AdamQLR and K-FAC
against the fixed values used in SGD and Adam.

Learning rate schedules are widely known to be important in certain training problems, particu-
larly at larger scales, so it is unsurprising that various algorithms’ sense of the ‘optimal’ learning
rate varies over time. For the most part, the chosen schedules give an approximately exponen-
tial decay in learning rate, interestingly excluding the warm-up behaviour commonly specified in
manually-designed schedules. In UCI Energy and UCI Protein, we observe a resemblance between
the fixed learning rates chosen by SGD and Adam and the typical values selected by AdamQLR and
K-FAC, but this connection is much less clear in larger datasets, suggesting this scheduling behaviour
becomes more important as problems grow in scale.

Curiously, although AdamQLR (Tuned) is able to choose a learning rate clipping value, it only
seems to use this to completely disable its adaptive approach — as in SVHN and CIFAR — by setting
the threshold lower than the learning rates our QLR strategy would otherwise select. This suggests
automatic learning rate selection may not be as useful a tool as we might intuitively think, with a fixed
value imposing helpful stability on training. Further, it is interesting to note that AdamQLR (Untuned)
chooses growing learning rates on SVHN and CIFAR-10 which differ dramatically from those of
other methods, yet achieves similar results in loss and accuracy space. In summation, these results
suggest we might do well to explore other approaches to improving machine learning optimisers,
beyond focussing on learning rates.

B.1.9. IMAGENET

In our explorations, while AdamQLR demonstrated competitive performance with smaller network
architectures, its efficacy waned when scaling to larger models, specifically with a ResNet-50
[23] applied to the ImageNet classification task. We adopt the model and accuracy-time evaluation
strategy from Dahl et al. [10] to shed light on these discrepancies, using untuned Adam and AdamQLR
baselines alongside their ‘SGD + Heavy ball momentum’ setting (which we call SGD-ImageNet.

From our preliminary plots of training and test accuracy over time in Figure 5, at the initial phase,
the performance hierarchy stands as Adam > AdamQLR > SGD-ImageNet. However, as training
progresses, AdamQLR plateaus at a training accuracy of around 70% and a test accuracy of around
50%. Unlike Adam and SGD-ImageNet, which continue their ascent, our method stagnates, unable
to further optimise.

A primary reason for this stagnation is the non-convergence of the learning rate in the later
stages of training. The algorithm, designed to compute an optimal learning rate for every update
step, fails to decrease this rate as training advances, resulting in the persistent large learning rates.
This phenomenon suggests that the Levenberg-Marquardt rule, which we employed for damping
updates, failed to adjust its damping values for the tail-end of the training process. Future iterations
of our algorithm might benefit from a more adaptive damping update mechanism to ensure smoother
learning rate annealing. Another intrinsic challenge with our approach is the computation of the
optimal learning rate at each step, which requires one evaluation of Fisher vector product per step.
For expansive models like ResNet-50, this operation introduces a non-trivial computational overhead.
The marginal gains in performance, as observed in our experiments, do not sufficiently offset the
increased computational costs for these larger models.
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Figure 4: Median learning rate trajectories, bootstrap-sampled over 50 repetitions per algorithm.
Hyperparameters chosen by ASHA over 200 initialisations. Note changes of scale on the time axes.
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Figure 5: Training (left) and test (right) accuracy vs total training time with ResNet-50 on ImageNet

While our method, AdamQLR, introduces promising improvements for certain scenarios, its
application to larger networks, like ResNet-50 on ImageNet, surfaces limitations that warrant further
research and refinement. We believe that addressing these highlighted challenges can pave the way
for a more universally robust optimisation strategy.

B.1.10. FIXED-RUNTIME COMPARISONS

Our main results in Section 4 impose a primary constraint of a fixed number of epochs, with a
secondary constraint of a runtime limit. To develop additional context on AdamQLR’s performance,
we repeat these experiments without the primary number-of-epochs constraint, such that our hyperpa-
rameter tuning directly optimises for the best loss attained after the 15 minute runtime limit, and the
algorithms are evaluated on the same metric. Figure 6 shows partial results where we optimised for
final validation loss, while Figure 7 shows partial results where the hyperparameters were optimised
to minimise final training loss. This latter setting allows us to compare the naïve power of each
optimiser to optimise the given objective in isolation.

These results display an interesting tendency for K-FAC to wildly diverge in the later phases of
training on Fashion-MNIST, an effect which AdamQLR is largely able to avoid. Broadly speaking,
AdamQLR gives competitive generalisation performance on UCI Energy and UCI Protein in Figure 6,
with a more pronounced overfitting behaviour on larger datasets. However, on CIFAR-10 AdamQLR
(Tuned) achieves the strongest generalisation, and even on SVHN its performance is competitive.
We additionally see an effective demonstration of AdamQLR’s optimisation power in Figure 7 —
although training performance on Fashion-MNIST again lags behind Adam in this setting, larger
datasets achieve particularly strong training loss evolutions.

B.2. Sensitivity Studies

To justify our configurations and further demonstrate the utility of our algorithm, we conduct a
range of sensitivity experiments for AdamQLR (Tuned) trained on Fashion-MNIST under the same
conditions as in Section B.1.3. All hyperparameters except for the one under investigation are fixed
at the best values found for ASHA in those experiments. Again, our plots show the averages of
median trends of bootstrap-sampled sets of 50 repetitions for each configuration considered.
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Figure 6: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions
per algorithm. Hyperparameters chosen by ASHA over 200 initialisations to minimise validation
loss after a fixed runtime of 15 minutes. Note changes of scale on the time axes.
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Figure 7: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions
per algorithm. Hyperparameters chosen by ASHA over 200 initialisations to minimise training loss
after a fixed runtime of 15 minutes, characterising the naïve power of each algorithm. Note changes
of scale on the time axes.
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Figure 8: Ablation studies over learning rate, which is scaled by a variety of constant factors k for
our Fashion-MNIST trial from Section B.1.3.

Figure 9: Ablation studies over learning rate clipping αmax for our Fashion-MNIST trial from
Section B.1.3.

B.2.1. LEARNING RATE RESCALING

Firstly, we analyse the accuracy of our learning rate selection strategy by executing our algorithm as
normal, but setting α← kα for each k in {2−1.0, 2−0.8, 2−0.6, · · · , 21.0}. This scaling is performed
after any clipping has taken place. In effect, we investigate the potential for systemic bias in our
learning rate selection by asking if our results would improve with a constant scaling factor on those
learning rates.

Our results in Figure 8 show the k = 21.0 case exhibiting large variance due to unstable runs,
while the best training losses are obtained for k slightly larger than unity. This makes sense given our
use of damping: if stability can be achieved without damping for any given update, then the damping
will serve only to downsize our proposed update step, so we should expect the best results to be
obtained by slightly increasing it again. However, test loss appears generally less sensitive to k, with
the lowest value obtained for k = 1: this would also be expected under damping, since we would
hope the damping would increase generalisation performance. In aggregate, these results confirm our
approach accurately selects the correct learning rate to use for any given optimisation step.
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Figure 10: Ablation studies over initial damping value λ0 for our Fashion-MNIST trial from
Section B.1.3.

B.2.2. LEARNING RATE CLIPPING

We continue by considering the learning rate clipping threshold αmax, selecting values in {10−4.0,
10−3.5, 10−3.0, · · · , 100.0} and plotting our results in Figure 9.

On Fashion-MNIST, we see a clear preference for a higher learning rate clipping threshold,
corresponding to less aggressive clipping, with the effect shrinking after a point as the threshold
becomes larger than any learning rate selected by AdamQLR. This makes sense — we introduce
learning rate clipping to mitigate the effects of unstably large learning rates, and if these do not
arise, we will only harm performance by clipping learning rates. Fashion-MNIST training proceeded
successfully without clipping, so this hyperparameter is only of particular importance in larger
problems where it is a more vital component of a stable training algorithm. However, it is reassuring to
confirm that a sufficiently high learning rate clipping threshold will not drastically harm performance
on otherwise stable problems.

B.2.3. INITIAL DAMPING

Next, we consider the initial value λ0 assigned to our Levenberg-Marquardt damping term λ, testing
values in {10−8.0, 10−7.5, 10−7.0, · · · , 100.0}. Here, we seek to quantify the trade-off between
damping’s stabilising effect and its tendency to worsen training loss. Figure 10 presents our results.

With the exception of the very smallest values, we see our performance is largely insensitive to
λ0. This matches our empirical observation that damping becomes most important for larger-scale
problems than our Fashion-MNIST setting, and thus has minimal effect here. However, given its
substantial importance in these more complex experiments, it is reassuring that the inclusion of
damping does not dramatically worsen performance when its influence is not required.

B.2.4. BATCH SIZE

In Figure 11, we consider each batch size available to ASHA in Section B.1.3 ({50, 100, 200, 400,
800, 1 600, 3 200}) to investigate the effect of this hyperparameter on our algorithm.

Since the optimal batch size selected by ASHA for AdamQLR was generally large (3 200 in this
case), it is perhaps unsurprising that we see divergence from smaller batches. This also matches our
intuition: unlike classical first-order methods, AdamQLR uses each batch to (implicitly) construct
a full curvature matrix for the optimisation surface, which magnifies the importance of having a
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Figure 11: Ablation studies over batch size for our Fashion-MNIST trial from Section B.1.3.

Figure 12: Ablation studies over damping stepping factor for our Fashion-MNIST trial from Sec-
tion B.1.3.

low-bias sample of the training data. Empirically, we found the computational benefits of fewer
batches outweighed the increased cost of computing each batch, so this preference for larger batch
sizes aligns with our desire to minimise runtime. Thus, our results show a clear trend that larger
batch sizes give greater training and generalisation performance.

B.2.5. DAMPING STEPPING FACTOR

Finally, we explore the effect of different stepping factors by setting ωinc to values in {20.0, 20.2, 20.4,
· · · , 22.0}, then choosing a symmetric ωdec =

1
ωinc

. Our results are plotted in Figure 12.
Similarly to learning rate clipping, the impact of different damping stepping factors only becomes

most apparent when damping plays a key role in stabilising the optimiser, which does not happen in
this Fashion-MNIST test case. However, the plots match our subjective observation that the behaviour
at the very start of training is critical to defining the optimisation trajectory, with a high variance at
around 2 s of runtime indicating an increased sensitivity here. Moreover, the results reinforce our
intuition that the exact factor by which the damping λ is modified is not crucially important, so long
as AdamQLR is capable of making rapid adjustments over successive optimisation iterations when
this becomes necessary.
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Figure 13: Evolution of Levelberg-Marquardt damping, as measured by Training (left) and Test
(right) loss on Fashion-MNIST (top) and CIFAR-10 (bottom)

B.3. Ablation Studies

In addition to the algorithms plotted in Section 4, we conduct additional experiments to study
the impact of different components of AdamQLR on its overall performance. Specifically, we
examine the effects of Levenberg-Marquardt damping and the choice of curvature matrix used to
construct our quadratic model. We use the same experimental configuration as in Section 4, including
hyperparameter tuning with ASHA, and plot bootstrapped average trends over 50 repetitions of the
best hyperparameters found.

B.3.1. LEVENBERG-MARQUARDT DAMPING

Appropriate damping is viewed as a necessity in many second-order algorithms in order to defend
against degenerate parameter updates, and Figure 13 examines its inclusion in AdamQLR. We
consider vanilla Adam alongside two versions of AdamQLR: one which includes damping, and
another which excludes it, and perform hyperparameter optimisation as before on each algorithm.

On Fashion-MNIST, we see minimal effect from the inclusion of damping, as the problem does
not suffer greatly from degenerate parameter updates. Thus, especially when the internal model
of objective space performs well and damping is pushed to very low values, the damping makes a
proportionally very small difference to the updates we take. As such, while we do benefit slightly
from damping here, the advantage is very slight.

On CIFAR-10, however, we see more dramatic differences from the inclusion of damping,
though we note the difference in horizontal scale is likely due to different optimal batch sizes chosen
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Figure 14: Evaluation of the choice of curvature matrix for the learning rate and damping calculations
in AdamQLR

by ASHA. Adjusting for this factor of two, we see very little difference between undamped and
damped AdamQLR. This result is surprising — since the model is larger and is substantially more
overparameterised than in the Fashion-MNIST case, there are likely to be more parameters to which
the output of our network is insensitive, corresponding to low-curvature directions of optimisation
space. These low-curvature directions correspond to small eigenvalues of the curvature matrix, so a
naïve curvature-based approach would take very large steps in these directions. Because the problem
is inherently non-convex and non-quadratic, such large steps would not be well-motivated, and we
would suffer a resulting penalty in our rapidly-excursing loss. However, during our development
of AdamQLR, we observed damping to play an important role in avoiding the destabilisation of
training. Further, damping clearly stabilises the algorithm enough here to allow for more aggressive
optimisation over time; with all this in mind, we retain damping in our default AdamQLR approach.

B.3.2. CURVATURE MATRIX

As discussed in Appendix C, there is good reason to motivate both the Hessian and the Fisher
matrices as curvatures to use to select the learning rate α at each update step. To explore their relative
merits, we consider two versions of AdamQLR: one which uses Hessian curvature to compute a
learning rate and update damping, and another which uses Fisher curvature for the same purposes.
The performance of hyperparameter-optimised versions of each setting is compared alongside vanilla
Adam in Figure 14.

On Fashion-MNIST, we see a slight advantage for Fisher curvature compared to the Hessian
curvature, both of which stick generalise very slightly better than vanilla Adam. Curiously, the
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CIFAR-10 results show the Hessian-based AdamQLR technique to make slow progress at the very
beginning of training, then proceed similarly to the Fisher version. Again, we note that different
optimal batch sizes are likely responsible for most of the horizontal scaling difference. The similarity
of these results, combined with the subjectively greater stability of the Fisher version of AdamQLR
in our development process, justify our use of the Fisher curvature as the default in our algorithm.
While Fisher-vector products are more intricate than Hessian-vector products, requiring a rederived
component for each loss function, a relatively small number of different loss functions see regular
use in practice, so we accept this additional burden.

Appendix C. Curvature Matrices: Hessian and Fisher

In this section we discuss in more detail the two main candidates for the curvature matrix C in our
algorithm. Recall from Section 3 that throughout we consider an arbitrary function f(θ) representing
the loss function of some network parameterised by theta.

C.1. Hessian Matrix

In this setting, the Hessian curvature matrix follows naturally from the definition of the objective
function. A first derivative with respect to θ yields the gradient vector g = (∇θf)(θ), and repeating
the derivative yields the Hessian H = (∇θ(∇θf)

T)(θ).

C.2. Fisher Information Matrix

To draw a connection with the Fisher matrix, we must restate our problem in a probabilistic form.
We shall separate the loss function from the neural network, naming the latter wθ(·), and consider
input-output data pairs (x,y). Let the input data have some ground truth distribution p(x), and
suppose we choose to interpret the output of the network as a probabilistic relationship, such that
wθ(x) = log p(y|x).

For this model w, the Fisher Information Matrix (FIM, or “the Fisher”) is defined as:

F = Ex∼p(x)Ey∼p(y|x)

[
∂ log p(y|x)

∂θ

∂ log p(y|x)
∂θ

T
]
. (4)

In its exact form, the Fisher bears many favourable properties for use in optimisation: it is positive
semi-definite by construction (so represents a convex space), it is amenable to efficient computation
in the form of a matrix=vector product, and provides a parameterisation-independent view of the
problem (as in the Natural Gradient Descent [1] family of methods).

Since ∂ log p(y|x)
∂θ is the Jacobian of the network output wθ with respect to the parameters θ, the

outer product of derivatives is readily available as part of our standard training regime. Although
p(x) is unknown, in the mini-batched training setting it is commonly approximated by the empirical
distribution p̂(x implied by our training dataset. It is important to stress that the expectation of y
is taken with respect to the output distribution of the network, not with respect to any ground-truth
or empirical distribution p̂(y|x) given by the training data. However, some previous work uses the
latter distribution as an approximation, resulting in the empirical Fisher matrix, which is known to be
inferior to the true Fisher.
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C.3. Adam and Fisher Matrix

While Adam is described by its authors as representing an approximation to the Fisher matrix [27],
we seek here to make the connection more explicit.

The matrix computed inside the expectation of Equation 4 has as its diagonal the elementwise
square of ∂ log p(y|x)

∂θ . This is connected to the quantity gt = ∇θf(θt−1) computed by Adam; by the
chain rule, gt is precisely the product of ∂ log p(y|x)

∂θ and the derivative of the loss function with respect
to the model output. Neglecting the effect of the latter allows us to view Adam’s second-moment
buffer v̂t as an approximation to the diagonal of the outer product in Equation 4.

Further, because gt is averaged over a mini-batch of input data, we are automatically taking
approximate expectations over p̂(x) and p̂(y|x). The approximation arises because the underlying
Fisher matrix is not constant, so the contributions from each mini-batch relate to different underlying
curvatures. However, the argument motivates the idea that Adam develops an approximation to the
diagonal of the empirical Fisher matrix in its buffer v̂t.

From this perspective, Adam’s elementwise division by the reciprocal of v̂t is simply multiplica-
tion by the inverse (approximate) empirical Fisher, and we may interpret ϵ as a fixed damping term.
This picture is slightly corrupted by the square root of v̂t being the quantity actually used by Adam;
this operation brings the eigenvalues of the approximate empirical Fisher closer to one, in particular
increasing problematic near-zero eigenvalues to more stable values, thus justifying Kingma and Ba’s
statement that the square root permits more “conservative” preconditioning.
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