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Abstract
Contrastive Language-Image Pre-training (CLIP) has shown remarkable success in the field of mul-
timodal learning by enabling joint understanding of text and images. In this paper, we introduce
a novel method called Multi-head CLIP, inspired by Stein Variational Gradient Descent (SVGD)
and Sharpness-aware Minimization (SAM). Our approach aims to enhance CLIP’s learning ca-
pability by encouraging the model to acquire diverse features while also promoting convergence
towards a flat loss region, resulting in improved generalization performance. We conduct exten-
sive experiments on two benchmark datasets, YFCC15M and CC3M, to evaluate the effectiveness
of our proposed method. The experimental results consistently demonstrate that multi-head CLIP
outperforms both the original CLIP architecture and CLIP with the SAM optimizer.

1. Introduction

In recent years, the domain of multimodal representation learning, particularly in the context of
natural images and text, has gained significant attention from researchers. A notable breakthrough
in this field is the Contrastive Language-Image Pre-training (CLIP) framework, which employs
contrastive learning techniques from self-supervised learning to pretrain vision-language models
[27]. By leveraging large amounts of unlabeled data, CLIP enables the model to learn powerful
joint representations of images and text. As a result, CLIP has exhibited impressive performance
across various downstream tasks, even in the zero-shot setting.

Given the simplicity and the immense potential of CLIP, researchers have invested significant
efforts to enhance and refine the framework of CLIP from various perspectives. For example, [17]
and [23] have introduced the self-supervision of data to improve the utilization of training data. [15]
proposed a new encoder-decoder architecture and a dataset bootstrapping method to enhance data
quality. Others have proposed fine-grained representations alignment [29] and new loss function [6]
to improve the performance.
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In this work, we present a new perspective aimed at extending the existing CLIP framework.
Rather than restricting the model to learn a single representation for each piece of data, our approach
introduces the concept of learning multiple representations. We propose that learning diverse repre-
sentations within a flat loss region may capture more comprehensive information, potentially leading
to improved performance in downstream tasks. Our method, called multi-head CLIP, is designed
to learn diverse representations simultaneously, drawing inspirations from two popular algorithms:
Stein Variational Gradient Descent (SVGD) [19] and Sharpness-aware minimization (SAM) [5].
Similar to SVGD, we incorporate a diverse regularization term to encourage distinct representations
for the same data. At the same time, building on the ideas of SAM, we encourage the model to
converge to a flat minima by constraining the parameters of different representation to remain close
to each other. Note that flatness of loss in the parameter space does not contradict with diversity of
representations, as different representations may have very similar loss – our approach aims to find
regions in parameter space where there are diverse representations all achieving similarly low loss.
To evaluate the effectiveness of our proposed multi-head CLIP, we conduct experiments comparing
its performance to the original CLIP framework and CLIP trained with SAM. The results demon-
strate that Multi-head CLIP achieves superior zero-shot performance, suggesting that the multiple
learned representations are more beneficial for downstream tasks than a single representation.

2. Method

In this section, we first briefly review the original CLIP method and then present our proposed new
method multi-head CLIP.

2.1. Background: Contrastive Language-Image Pre-training (CLIP)

CLIP is a contrastive learning method that tries to learn representations for image and text data
[27]. It first maps the image and text data into different embeddings in the space embedding space
using the corresponding image and text encoders. Then, it uses the InforNCE loss on top of these
embeddings to encourage the image and text embeddings from the same pair of data to stay close
(positive pair) and keep others to stay away (negative pair).

CLIP shows remarkable ability of learning representations that could enable great zero-shot
learning performance. For example, when pretraining with large number of image-text pair data, it
performs well on image classification task without training on the specific dataset (e.g., ImageNet).

2.2. Our Method: Multi-head CLIP

CLIP provides a single representation for each data through image/text encoder. Intuitively, having
multiple representations per data can capture more information than a single representation by cap-
turing different perspective of the data. Such multiple representations also give the flexibility to use
for downstream tasks and could improve the performances. In this paper, we propose a new method
called multi-head CLIP that is able to provide multiple diverse representations for each data and
allow better performance on several benchmarks.

Given a dataset D = {(xIi , xTi )}ni=1, our goal is to learn useful representations for each image-
text pair (xIi , x

T
i ) using neural networks f I(xIi ; θ

I) and fT (xTi ; θ
T ). In particular, for a given

input x, image encoder f I(x; θI) outputs m representations {f I(x; θIi )}mi=1 (similar for text encoder
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Figure 1: Our proposed multi-head CLIP method. Both image encoder and text encoder output m
representations for each image-text pair (m = 1 becomes the original CLIP model). The
objective consists 3 parts as shown in (1): loss function L(θ), diversity regularization
Rdiv and closeness regularization Rclose.

fT (x; θ)), where θI = (θI1, . . . , θ
I
m) and θT = (θT1 , . . . , θ

T
m). Here we use the same architecture

but allow different parameters for these m heads of the output.
Our method aims to minimize the following objective with such multi-head network f I and fT :

min
{θIi },{θTi }

∑
i

L(θIi , θ
T
i ) + λdiv

∑
M∈{I,T}

Rdiv(θ
M ) + λclose

∑
M∈{I,T}

Rclose(θ
M ), (1)

where L(θ) is the loss function, Rdiv is the diversity regularization, Rclose is the closeness regu-
larization and λdiv and λclose are regularization coefficient to control the strength of regularization
effects. Note that when m = 1, our method goes back to the original CLIP method. Also, to im-
prove the parameter efficiency, the different head of f I and fT will share the parameters in lower
layers and only keep the top layers’ parameters different. See Figure 1 for an illustration.

For loss function, we use the common contrastive objective in self-supervised learning [26],
following the same setup in CLIP. Since we minimize the sum of loss over all representations, this
ensures the loss is small across all representations so that the quality of all representations are good.

The diversity term Rdiv encourages the representation learned by each head to be different so
that multiple representations can capture more diverse information than a single representation.
Specifically, we use the norm to measure the difference between representations:

Rdiv(θ1, . . . , θm) = −
∑
i<j

∥∥fθi − fθj
∥∥2
2
, (2)

where
∥∥fθi − fθj

∥∥2
2
= (1/n)

∑
x ∥f(x; θi)− f(x; θj)∥22 is used to approximate the ideal norm

Ex[∥f(x; θi)− f(x; θj)∥22]. Note that in CLIP, the representation is normalized so that ∥f(x; θi)∥2 =
1. Therefore, we will use the equivalent form Rdiv(θ1, . . . , θm) = (1/n)

∑
i<j

∑
x f(x; θi)

⊤f(x; θj)
in the experiments. We will discuss more details about the diversity term in Section 3.1.

The closeness term Rclose encourages θ1, . . . , θm to be close in the parameter space. Note that
this is different from the diversity term that encourages the diversity in the representation space.
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Specifically, we use

Rclose(θ1, . . . , θm) =
∑
i<j

∥∥θi − θ̄
∥∥2
2
, (3)

where θ̄ = (1/m)
∑

i θi is the average of θi’s. As we will discuss in Section 3.2, this term is
motivated by the recent success of SAM [5] that tries to find a flat solution in the sense that the loss
in the whole local region are small. Similarly, we use the closeness term to ensure these different
head are close in the parameter space while keeping loss low, and therefore find a flat region that
has better generalization performance.

3. Intuitions and Connections with Existing Methods

In this section, we discuss the connections between two regularization terms with existing methods.

3.1. Diversity Term: Connection to Stein Variational Gradient Descent

SVGD SVGD is a well-known particle-based sampling algorithm to obtain samples from a target
distribution [19]. Specifically, SVGD uses a set of m particles {θi}mi=1 and moves them according
to the update rule below to approximate the target distribution p∗: for each particle θi, we have

θt+1
i ← θti + ηtϕ(θ

t
i), ϕ(θ) =

1

m

m∑
j=1

[k(θtj , θ)∇ log p∗(θ
t
j) +∇θtj

k(θtj , θ)], (4)

where ηt is the stepsize and k(x, y) is a kernel. The second term 1
m

∑m
j=1∇θtj

k(θtj , θ) above can
be viewed as a diversity term that encourages different particles to stay away from each other [19].
Liu [18] showed that the empirical measures of the SVGD samples weakly converge to the target
distribution when the number of particles goes to infinity.

Given that SVGD is a sampling algorithm that samples from target distribution p∗, one common
way to use SVGD as a deep learning algorithm is to adapt the Bayesian perspective and try to
sample the optimal parameter θ from p(θ|D), i.e., posterior of parameter θ given training data D.
With some derivations (see Appendix B for details), we have the SVGD update in (4) becomes

ϕ(θ) = −N

m

m∑
j=1

[k(θtj , θ)∇L̃(θtj)] +
1

m

m∑
j=1

[∇θtj
k(θtj , θ)], (5)

where L̃(θ) := L(θ) + λ ∥θ∥22 is the train loss with ℓ2 regularization with some λ. In particular, the
first term above can be viewed as the weighted sum of the gradient of m particles, and the second
term is encouraging the diversity of these particles.

Connection to diversity term We now show that the diversity term shares similar idea as SVGD
at high level. In fact, the kernel k(x, y) plays an important role in SVGD to encourage the di-
versity among different particles. We choose kernel k(θ, θ′) = exp(−∥fθ − fθ′∥22 /h) that mea-
sures the similarity in the representation space. Suppose we have approximate

∥∥fθi − fθj
∥∥2
2
≈

Ex[∥f(x; θi)− f(x; θj)∥22] with sufficient many samples. The update (5) now becomes

ϕ(θti) ≈
N

m

m∑
j=1

e
− 1

h

∥∥∥fθi−fθj

∥∥∥2
2 · ∇L̃(θtj) +

1

m

m∑
j=1

e
− 1

h

∥∥∥fθi−fθj

∥∥∥2
2 · 2

h
Ex[∇f(x; θtj)(f(x; θti)− f(x; θtj))︸ ︷︷ ︸

g(θti ,θ
t
j)
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We claim that the second term would encourage the similar representations to move away from
each other, and it is approximately the same as the gradient on diversity term Rdiv in (2). To see
this, recall that we have the closeness term that encourages θi’s to be close to each other. Therefore,
the Jacobian matrix ∇f(xk; θj) is approximately the same as the Jacobian matrix ∇f(xk; θi). This
leads to g(θi, θj) roughly points to the same direction as ∇θiEx[∥f(x; θi)− f(x; θj)∥22], which is
the direction of the gradient on diversity term. Since such direction increases the distance between
fθi and fθj , we can see that moving according to such direction encourages the representations of
each particle to become diverse.

3.2. Closeness Term: Connection to Sharpness-Aware Minimization

SAM Sharpness-Aware Minimization (SAM) has recently shown to achieve good performance
compared with SGD on various tasks [5]. The main idea of SAM is to not only minimize the loss at
current parameter L(θ), but also minimize the loss around the local region of current parameter by
minimizing the loss under worst-case perturbation, that is

min
θ

max
∥ε∥2≤ρ

L(θ + ε),

where ρ is the hyperparameter that controls the size of neighborhood. In general, solving the inner
maximization problem exactly is hard so that one could use the first order approximation

ε(θ) = argmax
∥ε∥≤ρ

ε⊤∇L(θ) = ρ∇L(θ)/ ∥∇L(θ)∥2 .

Intuitively, SAM seeks flat minima (in the sense of largest eigenvalue of Hessian) by minimizing
such worst-case perturbed loss, and flat minima is believed and observed to have close connection
with the good generalization performance [9, 11, 12].

Connection to closeness term The closeness term in (3) is motivated by SAM that minimizes
the loss in the local region and tries to generalizes SAM to go beyond the worst-case perturbation.
In fact, we can view SAM as using 2-head network that outputs f(x; θ) and f(x; θ + ε(θ)) in our
framework. Our method tries to generalize this 2-head network to arbitrary m-head network, by
allowing m outputs f(x; θ1), . . . , f(x; θm) while still maintaining θ1, . . . , θm stay close. In this
way, the closeness term could still keep the advantages of SAM and tries to find the flat minima that
could generalize well.

4. Experiments

Setup To show the efficacy of the proposed optimization approach, we compare it against to the
optimizer used by the original CLIP as well as the SAM optimizer. We use two mid-scale datasets,
Conceptual Captions 3M (CC3M) and a 15M subset of the YFCC100M (YFCC15M), to pretrain
all the models. Following prior work [7, 27], we use ResNet-50 as the image encoder and the
transformer as the text encoder.

In order to examine the isolated impact of the optimizer, we maintain consistency among all
models by keeping the hyperparameters unrelated to optimization unchanged. We tune the learn-
ing rate, weight decay, and other optimization-related parameters and report the highest achieved
accuracy. All the models are trained on 8 Nvidia V100 GPUs. See Appendix C for details of
hyperparameters.
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Results We conducted extensive experiments to evaluate the performance of our proposed multi-
head CLIP approach compared to the original CLIP with AdamW optimizer and CLIP with SAM
optimizer. The evaluation was performed on two benchmark datasets, CC3M and YFCC15M, with
zero-shot performance reported using the ImageNet dataset [3].

To evaluate the performance of multi-head CLIP, we utilized the multiple representations learned
from each sample. Two approaches were explored: concatenating the features and using the aver-
age as the feature for the data. Through experimentation, we found that using the average feature
yielded better performance. Table 1 summarizes the top-1 accuracies achieved by each method.
Notably, multi-head CLIP outperformed both CLIP with adamW optimizer and CLIP with SAM
optimizer on both datasets. On the CC3M dataset, multi-head CLIP achieved an accuracy of 23.5%,
surpassing the accuracy of CLIP with AdamW optimizer (19.4%) and CLIP with SAM optimizer
(22.6%). This result indicates that the incorporation of multiple representations in our proposed
method enables the model to capture more diverse and discriminative features, enhancing its ability
to recognize and classify images effectively. Similarly, on the YFCC15M dataset, Multi-head CLIP
achieved an accuracy of 33.9%. In comparison, CLIP with AdamW optimizer obtained an accuracy
of 31.3%, while CLIP with SAM optimizer achieved 29.1%. These results demonstrate the consis-
tent superiority of multi-head CLIP in leveraging multiple representations to enhance the model’s
understanding of both image and text inputs.

The improved performance of Multi-head CLIP can be attributed to its ability to learn diverse
representations while encouraging convergence to a flat loss region. By promoting diversity among
representations, the model gains a broader perspective and captures a richer set of features, leading
to enhanced generalization capabilities.

Algorithm Optimizer Pre-training dataset Top-1 accuracy on ImageNet
CLIP AdamW CC3M 19.4%
CLIP SAM CC3M 22.6%

Multi-head CLIP AdamW CC3M 23.5%

CLIP AdamW YFCC15M 31.3%
CLIP SAM YFCC15M 29.1%

Multi-head CLIP AdamW YFCC15M 33.9%

Table 1: Comparison of Top-1 accuracies on ImageNet

5. Conclusion

In this work, we introduced a new method called multi-head CLIP that extends the original CLIP
framework. Our approach allows the model to learn multiple representations for each data point, re-
sulting in improved performance compared to the original CLIP. Our experiments demonstrated that
multi-head CLIP outperforms the original CLIP, indicating that better representations are learned.
This finding suggests that the idea of learning multiple representations for each data point has
broader applications and benefits. By enabling the model to learn diverse representations, our
method shows promising results and opens up new possibilities for improving representation learn-
ing in various tasks.
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Appendix A. Related Works

Vision-language pretrained models Recently CLIP [27] has attracted lots of attention due to its
ability to learn powerful representations of images and texts for downstream tasks from millions of
data. It uses the contrastive learning [26] to align the cross-modal representation of image and text
to learn these features. ALIGN [10] was also developed concurrently using the similar idea. Later,
many works have been proposed to improve the performance of CLIP under the similar framework
[6, 16, 17, 23, 29]. Unlike previous works that only provides one representation per data, our method
is able to provide multiple representations for each data that capture more relevant information.

Stein Variational Gradient Descent Stein Variational Gradient Descent (SVGD) is a particle-
based variational inference algorithm that aims to sample from an unknown target distribution [19].
Specifically, it uses the Stein’s method to design an iterative method that transports a set of particles
by performing a type of functional gradient descent on the KL divergence. SVGD has been used in
many applications in deep learning, such as generative models [28], reinforcement learning [8, 20]
and meta learning [30].
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Sharpness-aware minimization Sharpness-aware minimization [5] is a recently proposed op-
timization method that improves the generalization of models by minimizing the loss in the local
neighborhood in the parameter space. Similar method was also proposed in Zheng et al. [31] concur-
rently. Since then, several variants of SAM have been proposed to improve either the performance
[13, 14, 32] or the computational efficiency [4, 21, 22, 24, 25]. Bahri et al. [1], Chen et al. [2]
showed that SAM is able to improve the performance in various tasks in computer vision and nat-
ural language processing. In this work, we also leverage the idea of SAM to design the closeness
term in our method.

Appendix B. Derivation for (5)

Recall SVGD uses a set of m particles {θi}mi=1 and moves them according to the update rule below
to approximate the target distribution p∗: for each particle θi, we have

θt+1
i ← θti + ηtϕ(θ

t
i), ϕ(θ) =

1

m

m∑
j=1

[k(θtj , θ)∇ log p∗(θ
t
j) +∇θtj

k(θtj , θ)],

where ηt is the stepsize and k(x, y) is a kernel.
Often in the classification setting, we model the loss function L(θ) as negative log-likelihood of

training data L(θ) = (1/N)
∑

i− log p(xi|θ). Thus, by the Bayes’ theorem we have the posterior
becomes

p(θ|D) ∝ p(D|θ)p0(θ) = e−NL(θ)p0(θ),

where p0(θ) is the prior. Choosing the prior p0(θ) as Gaussian distribution N(0, σ2I), we know the
SVGD update above becomes

ϕ(θ) = −N

m

m∑
j=1

[k(θtj , θ)∇L̃(θtj)] +
1

m

m∑
j=1

[∇θtj
k(θtj , θ)],

where L̃(θ) := L(θ) + ∥θ∥22 /2σ2N is the train loss with ℓ2 regularization. In particular, the first
term above can be viewed as the weighted sum of the gradient of m particles, and the second term
is encouraging the diversity of these particles.

Appendix C. Experiment Details

For the CC3M dataset, all three models are trained from scratch for 30 epochs. We use a batch size
of 128 and the cosine learning rate schedule with 10000 warmup steps. In the case of the model
trained with adamW, we set the initialize learning rate to 1e-3, while setting the weight decay to
0.1. As for the model trained with SAM, we use a weight decay of 1e-4 and set ρ = 0.1. In the
case of multi-head CLIP, we adopt a learning rate of 2e-3 and a weight decay of 0.2, use 5 heads.
Moreover, we set the regularization coefficients Rclose = 0.05 and Rdiv = 0.05.

Similarly, for the YFCC15M dataset, we train all three models for 32 epochs. We use a batch
size of 128 and the cosine learning rate schedule with 10000 warmup steps. In the case of the model
trained with adamW, we set the initialize learning rate to 5e-4, while setting the weight decay to 0.2.
As for the model trained with SAM, we use a learning rate of 0.1 and a weight decay of 1e-4 and
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set ρ = 0.1. In the case of multi-head CLIP, we adopt a learning rate of 8e-4 and a weight decay of
0.33, use 5 heads. Moreover, we set the regularization coefficients Rclose = 0.02 and Rdiv = 0.006.
We also use a smaller logit scale of log(1/0.3) instead of log(1/0.07) in the original CLIP.
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