
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

New Horizons in Parameter Regularization: A Constraint Approach

Jörg K. H. Franke FRANKEJ@CS.UNI-FREIBURG.DE
University of Freiburg, Germany

Michael Hefenbrock
RevoAI, Germany

Gregor Koehler
German Cancer Research Center (DKFZ), Germany

Frank Hutter
University of Freiburg, Germany

Abstract
This work presents constrained parameter regularization (CPR), an alternative to traditional weight
decay. Instead of applying a constant penalty uniformly to all parameters, we enforce an upper
bound on a statistical measure (e.g., the L2-norm) of individual parameter groups. This reformulates
learning as a constrained optimization problem. To solve this, we utilize an adaptation of the
augmented Lagrangian method. Our approach allows for varying regularization strengths across
different parameter groups, removing the need for explicit penalty coefficients in the regularization
terms. CPR only requires two hyperparameters and introduces no measurable runtime overhead. We
offer empirical evidence of CPR’s effectiveness through experiments in the "grokking" phenomenon,
image classification, and language modeling. Our findings show that CPR can counteract the effects
of grokking, and it consistently matches or surpasses the performance of traditional weight decay.

1. Introduction

While deep neural networks have exhibited unparalleled expressivity, they also possess millions,
sometimes trillions, of parameters [5, 25]. This massive capacity makes them susceptible to overfit-
ting, where models memorize nuances of the training data but underperform on unseen examples. To
mitigate this, many different regularization techniques have been adopted, with weight decay and L2

regularization being the most popular [2, 8, 15, 28]. L2 regularization penalizes the squared magni-
tude of model parameters and (decoupled) weight decay (which is equivalent to L2 regularization
for non-adaptive gradient algorithms [18]) multiplies all weights with a constant at every step. This
seemingly simple act offers numerous benefits by curbing the growth of individual weights, reducing
the risk of relying on any particular feature excessively, and thus promoting model generalization.

However, not all parameters in a neural network have the same role or importance and different
weights could benefit from different regularizations. Similarly, it is unclear if a single weight
decay value is optimal for the entire duration of optimization, especially for large-scale training.
Indeed, Ishii and Sato [10] showed that a small deep learning model could benefit from layer-wise
weight decay values, and various works showed that scheduling weight decay could improve final
performance [3, 16, 20, 27]. This indicates that a dynamic penalty for each individual parameter
group could be beneficial for neural network training.

© J.K.H. Franke, M. Hefenbrock, G. Koehler & F. Hutter.



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Since scheduled or parameter-wise weight decay comes with additional hyperparameters (which
are often sensitive to the task), we propose a different approach to obtain customized, dynamic
parameter regularization. Instead of uniformly penalizing weights, we propose to keep them in
a certain range, thus ensuring stability without imposing regularization where it is unnecessary.
Constraining parameters, especially based on statistical measures like the L2 norm, provide a flexible
and adaptive form of regularization that accounts for the heterogeneity of parameters.

In this paper, we propose constrained parameter regularization (CPR), which enforces an upper
bound on a statistical measure of individual parameter groups (e.g., a weight matrix in a linear layer).
This allows us to reformulate regularization as a constrained optimization problem, which we address
by an adaptation of the augmented Lagrangian method. The resulting regularization strength is
individual to each parameter group and adaptive over time while being configurable by only two
hyperparameters.

It should be mentioned that CPR is not the first to use Lagrangian methods in machine learn-
ing [21]. Its application in deep learning focuses mainly on variational methods and generative
models. For example, Rezende and Viola [24] introduced the Generalized ELBO with Constrained
Optimization algorithm to optimize VAEs using Lagrange multipliers, and Kohl et al. [13] and Franke
et al. [6] adapted the method to train probabilistic U-nets and probabilistic Transformer models.
While these works leverage the Lagrangian to handle several losses in joint optimization problems,
our work leverages it to enable individual regularization strengths.

In the following, we introduce CPR for individualized and dynamic parameter regularization
(Section 2). Specifically, to avoid the need for separate penalty scaling coefficients, we formulate
regularization as a constraint problem and derive CPR as the solution to this problem (Section 2.1).
We identify three different ways for initializing upper bounds on the statistical measure (Section 2.2).
We provide empirical evidence of the benefit of CPR by showing improved performance over weight
decay in experiments on the “grokking” phenomenon (Section 3.1), image classification with ResNets
(Section 3.2) and a language modeling task with mid-scale GPT2 (Section 3.3). We provide an
open-source implementation of CPR which can be easily adapted by replacing the optimizer class.

2. Constrained Parameter Regularization

In this section, we introduce Constrained Parameter Regularization (CPR), where we adapt the
augmented Lagrangian method to enforce upper bounds on regularization terms. Please find a review
of the augmented Lagrangian method in Appendix A. Compared to classical regularization, with
a fixed regularization coefficient γ, the proposed approach will allow for variable regularization
coefficients λj (Lagrange multipliers) for j = 1, · · · , J parameter groups θj ⊆ θ that should be
regularized. These regularization coefficients are updated alongside the network parameters θ.

2.1. Regularization through constraints

Classical weight decay, as introduced earlier, is used as a means to restrict the freedom of parameter
adaptation. This restriction is applied with a scaling factor γ (hyperparameter) and applies uniformly
to all parameters. However, we conjecture that applying an individual adaptation pressure instead
may be beneficial. Unfortunately, this would require a separate coefficient for each parameter group
where a separate weight decay should be applied. To avoid the need for separate scaling coefficients,
we formulate regularization as a constrained problem. Here, the loss function L(θ,X,y), with

2



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

network parameters θ, takes the place of the objective. Consequently, the learning problem becomes

minimize
θ

L(θ,X,y) s.t. cj(θ
j) = R(θj)− κj ≤ 0, for j = 1, · · · , J, (1)

where R(θj) is a regularization function (e.g., the L2-norm in case of weight decay) for a parameter
group θj ⊆ θ, j = 1, · · · , J , and κ ∈ R denotes a chosen bound.

To solve Equation 1, we follow the augmented Lagrangian method with slight modifications.
First, instead of performing a full optimization of the loss before updating λ̄, we perform updates
in every step. This is motivated by the fact that full optimization is generally infeasible in a deep
learning setting. Moreover, similar to the difference between weight decay and L2-regularization, we
treat the update between the loss-dependent and the constraint-dependent part separately. Hence,
instead of introducing L̂(x, λ̄, µ) analogously to Equation 3, and performing optimization on this
objective, we independently apply updates for both steps. Consequently, the constraint violations
do not accumulate in momentum terms. We also remove the influence of the learning rate on the
regularization. From a practical perspective, our modification does not interfere with gradient-based
optimization algorithms and can be readily combined with any such optimizer. The full algorithm is
given by Algorithm 1 in Appendix B.

Conceptually, the method can be understood as the λj accumulating constraint function values
(weighted with µ) over the iterations. These then increase (or decrease) the influence of the constraint
(via its gradient) on the search direction. When points in the feasible domain are found for which
cj(θ) ≤ 0, λ is decreased until it eventually reaches 0. If, on the other hand, the optimal solution lies
on the boundary, where cj(θ) = 0, λ should converge to a value λ⋆ where the update direction of the
optimizer and the gradient of the constraints cancel each other. However, this situation is unlikely to
occur in a deep learning setting due to the stochasticity of minibatches and potential adaptations to
the learning rate.

2.2. Initialization of Bounds

The upper bound κ is the most crucial hyperparameter for CPR, and we identify three ways to
initialize it. (1) Set κ uniform (Kappa-K): Set one value for all regularized parameter groups as
an initial value for the upper bound, κ ∈ R+. (2) Set κ based on θ-initialization (Kappa-kI0):
Initialize the upper bound based on the initial parameter groups’ regularization function, which
could be affected by a parameter group’s individual size and/or initialization scheme (e.g. a depth-
dependent initialization): κi = k ·R(θit=0), with k ∈ R+ as the factor of the initial measure. (3) Set
κ with warm start (Kappa-Is): Instead of selecting a factor k of the initial regularization function,
train our model parameters θ for a specific number of update steps and then bind the regularization
to the current regularization function value: κi = R(θit=s), with s ∈ N+ as a hyperparameter for the
start of the regularization; please find an integration in CPR in Appendix B.2.

3. Experiments

We now describe three experiments to better understand CPR and the initialization of κ. Preliminary
experiments showed that µ is not a sensitive hyperparameter, and we chose µ = 1.0 for all our
experiments. This leads to the upper bound κ as the sole hyperparameter of CPR. In our experiments,
we consider a weight matrix in a neural network as an individual parameter group and regularize all
parameters in a network except for biases and normalization weights.

3



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

0

1

A
cc

u
ra

cy
AdamW

train

val

AdamCPR (std) AdamCPR (l2norm)

Optimization Steps

0.0

0.2

S
td

attn in layer

Optimization Steps Optimization Steps

101 102 103

Optimization Steps

0.000

0.025

M
ea

n
L

2

attn in layer

101 102 103

Optimization Steps

101 102 103

Optimization Steps

0.0

0.5

1.0

L
a
m

b
d
a

0.000

0.005

L
a
m

b
d
a

Figure 1: Experiments on the modular addition task: The training steps on the x-axis are displayed
in log scale. We display the training and validation accuracy in red and blue (top), the
standard deviation of the attention-in weight matrix (middle), and the mean L2 norm
(bottom). In the left column, we use AdamW for optimization, and next to it AdamCPR
with standard deviation (middle) and L2 norm (right) as regularization function. We see
the λ value during training (purple) and the dotted black line represents the upper bound κ.

3.1. Modular Addition

In the realm of neural network regularization, the phenomenon of grokking has garnered significant
attention. As discovered by Power et al. [22], grokking is characterized by a sudden generalization
after prolonged training without discernible improvements in training or validation loss. We train
a 1-layer Transformer on the modular addition task which is the primary benchmark for studying
this phenomenon [17]. To explore CPR’s possibilities, we compare it to AdamW with weight decay
γ = 1.0 [12, 18]. We consider two regularization variations for CPR: one constraint based on the
L2 norm and one on the standard deviation. The standard deviation is interesting since it does not
constrain the weight parameters to be centered around zero. We use Kappa-kI0 for the initialization
of κ with a factor of k = 0.8 for the L2 norm and k = 0.9 for the standard deviation. We found these
factors by a small grid search influenced by the rescaling described by Liu et al. [17]. A list of all
hyperparameters can be found in Appendix C.

The results are presented in Figure 1. They reveal that AadmCPR nearly mitigates the effects
of grokking and achieves faster convergence. Both constraint variations successfully bridge the
performance gap between training and validation by dynamically regularizing parameters. Notably,
the CPR based on standard deviation exhibited a more uniform behavior across the weight matrix.
But at the end of the training, the variation with the standard deviation displays a less stable behavior.
This may be caused by not encouraging a zero-centered parameter distribution. A unique feature of
our approach is the individual adaptation of each parameter. For a granular analysis of each layer’s
behavior, we point to additional plots in Appendix C, where we see individual λj adaptions over the
training progress. Due to its greater stability, we resort to the L2 norm in the following experiments.

4



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

0.0 0.0001 0.001 0.01 0.1 1.0

Weight Decay

1e-4.0

1e-3.5

1e-3.0

1e-2.5

1e-2.0

1e-1.5

1e-1.0

L
e
a
rn

in
g

R
a
te

70 70 71 70 71 73

74 75 75 75 75 74

75 75 75 75 75 73

74 74 74 75 75 59

73 73 73 74 73 25

68 68 70 72 54 4

63 64 65 62 17 1

AdamW

0.005 0.01 0.02 0.04 0.08 0.16
Kappa

1e-4.0

1e-3.5

1e-3.0

1e-2.5

1e-2.0

1e-1.5

1e-1.0

L
e
a
rn

in
g

R
a
te

70 70 70 70 70 70

75 74 75 75 75 75

75 75 75 75 75 75

75 76 76 75 75 75

72 73 75 76 76 75

64 67 69 71 72 72

39 46 53 57 60 63

AdamCPR (Kappa-K)

4 8 16 32 64 128 256
Factor k

1e-4.0

1e-3.5

1e-3.0

1e-2.5

1e-2.0

1e-1.5

1e-1.0

L
e
a
rn

in
g

R
a
te

70 70 70 70 70 70 70

75 75 75 74 74 75 75

76 76 76 76 75 75 75

74 75 75 75 76 76 75

68 70 72 74 75 76 76

55 59 64 67 69 71 72

28 32 38 45 51 56 60

AdamCPR (Kappa-kI0)

250 500 1000 2000 4000 8000 16000
Warm start steps s

1e-4.0

1e-3.5

1e-3.0

1e-2.5

1e-2.0

1e-1.5

1e-1.0

L
e
a
rn

in
g

R
a
te

71 71 71 71 71 70 70

76 76 76 76 75 74 75

75 76 77 76 76 75 75

71 74 76 75 75 74 75

65 73 76 72 74 73 73

58 70 73 72 70 69 69

41 63 67 66 64 64 64

AdamCPR (Kappa-Is)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Figure 2: Mean percentage of correct labels across three seeds of a ResNet18 trained on CI-
FAR100 with use of AdamW (top left), AdamCPR with Kappa-K initialization (top
right), Kappa-kI0 (bottom left), and Kappa-Is (bottom right).

3.2. Image Classification

To evaluate CPR’s effectiveness and design choices further, we tested CPR in image classification
using ResNet18 on the CIFAR100 dataset [9, 14]. We compared AdamW to AdamCPR with the three
initializations described in Section 2.2 and L2-norm as a measure for the regularization constraint.
For the κ initialization Kappa-K, we use a range of κ = [0.005, . . . , 0.16], for Kappa-kI0 a
range of k = [4, . . . , 256], and for Kappa-Is a range of s = [250, . . . , 4000] steps. Thus, the
warmup steps we used for κ are in the same range as the learning rate warmup (500 steps). The
ResNet18 was trained on a consumer GPU with no significant runtime difference between AdamW
and AdamCPR. For a detailed list of training hyperparameters, we refer the reader to Table 3.
Figure 2 shows the best mean validation performance for different learning rates and regularization
hyperparameters. According to our experiments, the best configurations of AdamCPR outperform
AdamW with different weight decay values. We found that initializing with Kappa-Is performs
better than selecting a uniform κ in Kappa-K or a factor k in Kappa-kI0. This could be because
the warm started bounds may be considered “learned” since they reflect the actual magnitudes and
distributions of the parameter groups in the training process and also depend on the training data. So
the upper bound could be better adapted to the learning task. Finally, we want to note the seemingly
linear dependence between the learning rate and well-performing initialization factors k when using
Kappa-kI0-

5



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Table 1: The perplexity (PPL) of the GPT2 experiments. The values below the method denote the
weight decay factor γ in case of AdamW and for AdamCPR the warm-start steps s of the
Kappa-Is initialization.

Model Runtime AdamW AdamCPR
Size 1e-3 1e-2 1e-1 5k 10k 20k

GPT2s 200k 17.98 17.84 18.58 17.96 17.68 17.80
GPT2s 400k - 17.43 - - 17.32 -
GPT2m 200k - 14.23 - - 14.03 -

3.3. Language Modelling

We also performed experiments training a mid-size GPT2 language model [23] on Openwebtext [7].
For an efficient implementation, we use flash attention [4] and rotary position embedding [26]. We
compared AdamW on different weight decay values to AdamCPR. We use the L2-norm as a measure
for the regularization constraint and the warm-started κ initialization Kappa-Is. We use a learning
rate warmup for 5k steps, a cosine annealing, and train for 200k steps. We orientated the warmup
steps of κ based on the warmup steps of the learning rate and evaluated initializing κ after 5k, 10k,
and 20k steps. The complete hyperparameters can be found in Appendix E. The GPT2 model is
trained on 8 A100 GPUs and the runtime for AdamW and AdamCPR did not differ. The mean
results across three random seeds in Table 1 suggest that CPR outperforms the best weight decay
configuration and that the selection for the warmup time for AdamCPR seems to not be very sensitive
in this case. To investigate the scalability of our results above, we also performed experiments over
a longer runtime (GPT2s 400k) and on a larger model (GPT2m). We used the same weight decay
and Kappa-Is initialization as in the best GPT2s/200k experiment. We find again that AdamCPR
outperforms AdamW, which could indicate that CPR is also capable of optimizing larger models
or longer training. We show the learning curves of the best AdamW and best AdamCPR run in
Figure E.1. We observe that CPR regularizes the model more strongly in the early stages of training
which may lead to better final performance.

4. Conclusion & Future Work

In this work, we introduce constrained parameter regularization (CPR), a method for regularization
of neural network training via constraints. By enforcing an upper bound on a regularization function,
we achieve effective regularization of the neural network training. The constraints are handled by an
adaptation of the augmented Lagrangian method without notable runtime overhead over standard
weight decay. We provide empirical evidence for the capabilities of CPR weight decay on modular
addition, image classification, and language modeling. CPR can be combined with any gradient-based
optimizer and requires only a minor addition to the training loop. Nonetheless, CPR does require
tuning of the hyperparameter κ to achieve superior performance. Future work could focus on a more
efficient initialization of κ. For example, investigations could explore the relationship between the
learning rate, parameter initialization, and the bound on the regularization function. Furthermore, one
could adjust the upper bound during optimization to enhance regularization and increase tolerance
against unfavorable initialization.

6



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Acknowledgement

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under grant number 417962828. We acknowledge funding by the European Union (via ERC
Consolidator Grant DeepLearning 2.0, grant no. 101045765). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
for funding this project by providing computing time on the GCS Supercomputer JUWELS [11] at
Jülich Supercomputing Centre (JSC).

References

[1] D. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific,
1996. ISBN 1886529043.

[2] S. Bos and E. Chug. Using weight decay to optimize the generalization ability of a perceptron.
In Proceedings of International Conference on Neural Networks (ICNN’96), volume 1, pages
241–246 vol.1, 1996. doi: 10.1109/ICNN.1996.548898.

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[4] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

[5] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. The Journal of Machine Learning Research,
23(1):5232–5270, 2022.

[6] Jörg Franke, Frederic Runge, and Frank Hutter. Probabilistic transformer: Modelling ambigu-
ities and distributions for rna folding and molecule design. Advances in Neural Information
Processing Systems, 35:26856–26873, 2022.

[7] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

[8] Stephen Hanson and Lorien Pratt. Comparing biases for minimal network construction with
back-propagation. In Advances in Neural Information Processing Systems, volume 1. Morgan-
Kaufmann, 1988.

7

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR’16), pages 770–778, 2016.

[10] Masato Ishii and Atsushi Sato. Layer-wise weight decay for deep neural networks. In Image
and Video Technology, pages 276–289, Cham, 2018. Springer International Publishing.

[11] Jülich Supercomputing Centre. JUWELS Cluster and Booster: Exascale Pathfinder with
Modular Supercomputing Architecture at Juelich Supercomputing Centre. Journal of large-
scale research facilities, 7(A138), 2021. doi: 10.17815/jlsrf-7-183. URL http://dx.doi.
org/10.17815/jlsrf-7-183.

[12] D. Kingma and M. Welling. Auto-encoding variational bayes. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR’14). CBLS, 2014.

[13] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R Ledsam,
Klaus Maier-Hein, SM Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger. A probabilistic
u-net for segmentation of ambiguous images. Advances in neural information processing
systems, 31, 2018.

[14] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[15] Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances
in Neural Information Processing Systems, 4, 1991.

[16] Aitor Lewkowycz and Guy Gur-Ari. On the training dynamics of deep networks with l_2
regularization. In Advances in Neural Information Processing Systems, volume 33, pages
4790–4799, 2020.

[17] Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
In The Eleventh International Conference on Learning Representations, 2023.

[18] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proceedings of the
International Conference on Learning Representations (ICLR’19), 2019. Published online:
iclr.cc.

[19] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA,
2e edition, 2006.

[20] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[21] John Platt and Alan Barr. Constrained differential optimization. In Neural Information
Processing Systems, volume 0, 1987.

[22] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets. 1st Mathematical Reasoning
in General Artificial Intelligence Workshop, ICLR 2021, 2021.

8

http://dx.doi.org/10.17815/jlsrf-7-183
http://dx.doi.org/10.17815/jlsrf-7-183
iclr.cc


NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

[23] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[24] Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv preprint arXiv:1810.00597,
2018.

[25] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117,
2015.

[26] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021.

[27] Juseung Yun, Byungjoo Kim, and Junmo Kim. Weight decay scheduling and knowledge
distillation for active learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, pages 431–447. Springer, 2020.

[28] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight
decay regularization. In International Conference on Learning Representations, 2018.

9



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Appendix
Appendix A. Background on the augmented Lagrangian

A.1. The augmented Lagrangian method

We briefly review the augmented Lagrangian method, see e.g. [1], which our method is based on.
For the derivation, we follow the motivation of Nocedal and Wright [19, pp. 523-524].

Consider the following inequality-constrained optimization problem

minimize
x

f(x) s.t. c(x) ≤ 0,

with f(x) : Rn → R and a constraint c(x) : Rn → R. One way to address the constraint is to find
an equivalent, unconstrained problem with the same optimal solution. For example,

minimize
x

F (x) with F (x) = max
λ≥0

f(x) + λ · c(x). (2)

Evidently, for any infeasible point x with c(x) > 0, λ · c(x) in the inner maximization can yield
arbitrarily high values (→∞). Thus, any solution candidate must clearly be feasible. Unfortunately,
F (x) is not suitable for gradient-based optimization, as it provides no useful gradient information to
restore feasibility. To alleviate this problem, we consider a smooth approximation of F (x), namely

F̂ (x, λ̄, µ) = max
λ≥0

f(x) + λ · c(x)− 1

2µ
(λ− λ̄)2, (3)

where λ̄ ∈ R may be seen as a point we wish to remain proximal to and µ ∈ R+ as a factor
determining the strength with which this proximity is enforced. For µ→∞, F̂ (x, λ̄, µ)→ F (x).

The maximization in F̂ (x, λ̄, µ) has a closed form solution with λ⋆ = (λ̄+ µ · c(x))+, where
(·)+ = max{0, ·}, see Appendix A.2 for the derivation.

Consequently,
F̂ (x, λ̄, µ) = f(x) + h(x, λ̄, µ) (4)

with

h(x, λ̄, µ) =

{
c(x)(λ̄+ µ

2 c(x)), if λ̄+ µ · c(x) ≥ 0

− 1
2µ λ̄

2 else.
(5)

The constraint thus only interferes with the minimization (gradient) of f(x) if (λ̄+ µ · c(x))+ ≥ 0.
We can now try to solve the unconstrained problem F̂ (x, λ̄, µ) with familiar methods, such

as gradient descent, and obtain an approximate solution to the original problem. Specifically, the
gradient of F̂ (x, λ̄, µ) with respect to x is given by

∇xF̂ (x, λ̄, µ) = ∇xf(x) + λ⋆ · ∇xc(x). (6)

The quality of the approximation, and thus the solution, clearly depends on µ and λ̄. However, after
solving F̂ (x, λ̄, µ) for some value of λ̄, we can perform an update step λ̄ ← λ⋆ and attempt to
perform minimization again. Intuitively, if the previous minimization of F̂ (x, λ̄, µ) resulted in an
infeasible solution with c(x) > 0, λ̄ is increased. Hence, the next minimization of F̂ (x, λ̄, µ) likely
results in a solution with less constraint violation. On the other hand, if c(x) ≤ 0, λ̄ is decreased.
Subsequently, the influence of the constraint is decreased. This loop of alternating minimization of

10



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

F̂ (x, λ̄, µ) and update to λ̄ can be repeated until a sufficiently good solution is found or the procedure
converges if λ̄ does not receive updates anymore.

For multiple constraints cj(x), j = 1, · · · , J , the above can be readily extended with a multiplier
λj for each constraint. Since the maximization in the smooth approximation is separable in the λj ,
the same update rule may be applied for each λj separately using on the respective constraint cj(x).

A.2. Derivation of the Lagrange multiplier update

For simplicity, we consider a single constraint. Note that multiple constraints can be addressed
separately as the optimization problem would be separable in the respective λj . We need to solve

maximize
λ≥0

f(x) + λ · c(x)− 1

2µ
(λ− λ̄)2.

The optimal point of this problem is equivalent to the optimal point of

minimize
λ

− f(x)− λ · c(x) + 1

2µ
(λ− λ̄)2 s.t. − λ ≤ 0.

To find candidates for optimal points, we need to solve the Karush–Kuhn–Tucker (KKT) system with
the Lagrange function L(λ, ψ) and the Lagrange multiplier ψ

L(λ, ψ) = −f(x)− λ · c(x) + 1

2µ
(λ− λ̄)2 − ψ · λ

Which leads to the KKT system

∇λL(λ, ψ) = 0 ⇐⇒ 0 = −c(x) + 1

µ
(λ− λ̄)− ψ

∇ψL(λ, ψ) ≤ 0 ⇐⇒ 0 ≥ −λ
λ · ψ = 0 (7)

According to the complementary conditions Equation 7, the constraint is either active, hence λ = 0
and ψ ≥ 0 or inactive, such that λ > 0, and consequently, ψ = 0.

Case: λ = 0 and ψ ≥ 0
Here, λ = 0 (by assumption), and ψ is given by

∇λL(λ, ψ) = 0 ⇐⇒ 0 = −c(x) + 1

µ
(0− λ̄)− ψ

ψ = −c(x)− λ̄

µ

Since we require ψ ≥ 0 for a KKT point, (note that µ > 0)

0 ≤ ψ = −c(x)− λ̄

µ

⇐⇒ 0 ≤ −µ · c(x)− λ̄
⇐⇒ 0 ≥ λ̄+ µ · c(x)

11



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Consequently, λ = 0 is a candidate for the optimal point only when 0 ≥ λ̄+ µ · c(x).
Case: λ > 0 and ψ = 0 (inactive constraint)
For this case we get

∇λL(λ, ψ) = 0 = −c(x) + 1

µ
(λ− λ̄)− 0

0 = −µ · c(x) + λ− λ̄
λ = λ̄+ µ · c(x)

Due to the geometry of the problem (quadratic with bound constraint), λ = 0 is the optimal
solution if the constraint is active, i.e., if ψ ≥ 0, which is the case if 0 ≥ λ̄+ µ · c(x). Consequently,
the optimal solution is given by

λ⋆ = (λ̄+ µ · c(x))+. (8)

Plugging this into F̂ (x, λ̄, µ), we get

F̂ (x, λ̄, µ) =

{
f(x) + c(x)(λ̄+ µ

2 c(x)), if λ̄+ µ · c(x) ≥ 0

f(x)− 1
2µ λ̄

2, else

And the gradient with respect to x is

∇xF̂ (x, λ̄, µ) =

{
∇xf(x) +∇xc(x)(λ̄+ µ · c(x)), if λ̄+ µ · c(x) ≥ 0

∇xf(x)− 0 else

Or more compactly by using Equation 8

∇xF̂ (x, λ̄, µ) = ∇xf(x) +∇xc(x) · λ⋆.

12



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Appendix B. The CPR Algorithm

B.1. The CPR Algorithm with Kappa-K or Kappa-kI0

Algorithm 1 Optimization with constrained parameter regularization (CPR) .

Require: Loss Function L(θ,X,y) with parameters θ, and data D = {(Xn,yn)}Nn=0

Require: Hyperparameters: Learning rate η ∈ R+, Lagrange multiplier update rate µ ∈ R+

Require: Optimizer Opt(·) for minimization, Regularization function R(θ) (e.g. L2-norm)
1: # Initialization
2: t← 0
3: θt ← Initialize(L(·))
4: λjt ← 0 for j = 1, · · · , J

5: κj ← Initialize(θj0) for j = 1, · · · , J ▷ Initializing the upper bound, see Section 2.2
6: # Training
7: for Xt,yt ∼ D do
8: θt+1 ← θt +Opt(L(θt,Xt,yt), η) ▷ Classic parameter update using, e.g., Adam.

9: for each regularized parameter group θjt in θt do

10: λjt+1 ←
(
λjt + µ · (R(θjt )− κj)

)+
11: θjt+1 ← θjt+1 −∇θjR(θ

j
t ) · λ

j
t+1

12: end for
13: t← t+ 1
14: end for

13



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

B.2. The CPR Algorithm with Kappa-Is

Algorithm 2 Optimization with constrained parameter regularization (CPR) and Kappa-Is .

Require: Loss Function L(θ,X,y) with parameters θ, and data D = {(Xn,yn)}Nn=0

Require: Hyperparameters: Learning rate η ∈ R+, Lagrange multiplier update rate µ ∈ R+,
starting step s for CBR.

Require: Optimizer Opt(·) for minimization, Regularization function R(θ) (e.g. L2-norm)
1: # Initialization
2: t← 0
3: θt ← Initialize(L(·))
4: λjt ← 0 for j = 1, · · · , J

5: κj ←∞ j = 1, · · · , J
6: # Training
7: for Xt,yt ∼ D do
8: θt+1 ← θt +Opt(L(θt,Xt,yt), η) ▷ Classic parameter update using, e.g., Adam.

9: for each regularized parameter group θjt in θt do

10: λjt+1 ←
(
λjt + µ · (R(θjt )− κj)

)+
11: θjt+1 ← θjt+1 −∇θjR(θ

j
t ) · λ

j
t+1

12: if t = s then ▷ Kappa-kIs initialization, see Section 2.2.

13: κj ← R(θjt )
14: end if
15: end for
16: t← t+ 1
17: end for

14



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Appendix C. Experiments on Modular Addition Task

Table 2: Hyperparameters in the modular addition task.

Parameter Value

Modular addition p-value 113
Train fraction 0.3
Batch size 512
Model dim 128
Number of layers 1
Number of heads 4
Activation ReLU
Initialization type sqrt_dim
Learning rate 0.001
Adam β1 0.9
Adam β2 0.98
Exclude from regularization bias, norm

15



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

0.0

0.5

1.0
A

cc
u
ra

cy
AdamCPR (std)

train

val

0.0

0.1

0.2

S
td

token embeddings.weight

0.0

0.1

0.2

S
td

position embeddings.weight

0.0

0.1

0.2

S
td

layers.0.attn.in proj weight

0.0

0.1

0.2

S
td

layers.0.attn.out proj.weight

0.0

0.1

0.2

S
td

layers.0.mlp.0.weight

0.0

0.1

0.2

S
td

layers.0.mlp.2.weight

101 102 103

Optimization Steps

0.0

0.1

0.2

S
td

head.weight

0

20

40

L
a
m

b
d
a

0

20

40

L
a
m

b
d
a

0

20

40

L
a
m

b
d
a

0

20

40

L
a
m

b
d
a

0

20

40

L
a
m

b
d
a

0

20

40

L
a
m

b
d
a

0

20

40
L

a
m

b
d
a

Figure C.1: Experiments on the modular addition task to illustrate the effect of CPR with regulariza-
tion on the standard deviation on the different layers in the neural network. The x-axis
displays the training steps in log scale. The top row shows the training and the validation
accuracy in red and blue respectively. In the rows below, we see the standard deviation
of the different layers during the training progress.

16



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

0.0

0.5

1.0
A

cc
u
ra

cy
AdamCPR (l2norm)

train

val

0.000

0.005

M
ea

n
L

2
n
o
rm token embeddings.weight

0.000

0.005

M
ea

n
L

2
n
o
rm position embeddings.weight

0.000

0.005

M
ea

n
L

2
n
o
rm layers.0.attn.in proj weight

0.000

0.005

M
ea

n
L

2
n
o
rm layers.0.attn.out proj.weight

0.000

0.005

M
ea

n
L

2
n
o
rm layers.0.mlp.0.weight

0.000

0.005

M
ea

n
L

2
n
o
rm layers.0.mlp.2.weight

101 102 103

Optimization Steps

0.000

0.005

M
ea

n
L

2
n
o
rm head.weight

0.000

0.002

0.004

L
a
m

b
d
a

0.000

0.002

0.004

L
a
m

b
d
a

0.000

0.002

0.004

L
a
m

b
d
a

0.000

0.002

0.004

L
a
m

b
d
a

0.000

0.002

0.004

L
a
m

b
d
a

0.000

0.002

0.004

L
a
m

b
d
a

0.000

0.002

0.004

L
a
m

b
d
a

Figure C.2: Experiments on the modular addition task to illustrate the effect of CPR with regulariza-
tion on the standard deviation on the different layers in the neural network. The x-axis
displays the training steps in log scale. The top row shows the training and the validation
accuracy in red and blue respectively. In the layer below, we see the mean L2 norm of
the different layers during the training process.

17



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Appendix D. Experiments on Image Classification

Table 3: Hyperparameters of the ResNet18 on CIFAR100 experiment.

Parameter Value

Seed 1,2,3
Dataset CIFAR100
Batch size 128
Training Steps 20000
Model ResNet18
Optimizer AdamW / AdamCPR
Learning Rate 0.001
Beta1 0.9
Beta2 0.98
Weight Decay 0.1
Lr Schedule Cosine with warmup
Lr Warmup Steps 500
Lr Decay Factor 0.1
Rescale Alpha 0, 0.8 . . . 16
CPR-µ 1.0
CPR-κ 0.8 . . . 16
CPR-k 4 . . . 256
CPR-κ warm-start steps 250 . . . 16000

18



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Appendix E. Experiments on Language Modelling

0 25000 50000 75000 100000 125000 150000 175000 200000

Optimization Steps

18

20

22

24

P
P

L

AdamW wd=1e-2

AdamCPR l2 10k

17.6

18.4

Figure E.1: Experiments on OpenWebText and a GPT2s model. The validation PPL of AdamW
and the best CPR are displayed in blue and green respectively. We can notice that CPR
regularized the training more at the beginning of the training.

19



NEW HORIZONS IN PARAMETER REGULARIZATION: A CONSTRAINT APPROACH

Table 4: Hyperparameters of the language modeling task (GPT2 and Openwebtext).

Parameter GPT2s 200k GPT2s 400k GPT2m

GPUs 8
Gradient Clip Val 1.0
Max Steps 200k 400k 200k
Precision bf16-mixed
Seed 1234
Optimizer AdamW or AdamCPR
Learning Rate 0.002
Weight Decay 0.1
Beta1 0.9
Beta2 0.99
Eps 1.0× 10−9

Stat Measure L2 norm
Kappa None, 0.005 · · · 0.16
Kappa Factor False, 4 · · · 256
Lagmul Rate 1.0
Kappa Adapt True / False
Kappa Init After Steps False, 250 · · · 16k
Bias Weight Decay False
Normalization Weight Decay False
Lr Num Warmup Steps 4000
Lr Decay Factor 0.1
Lr Schedule Cosine
Deepspeed Stage 2
Model Dimension 768 768 1024
Number of Layers 12 768 24
Number of Heads 12 12 16
Fed Forward Dim 3072 3072 4048
Attn Dropout 0.1
Resi Dropout 0.1
Embed Dropout 0.1
Rotary Pos Embed True
Rotary Emb Fraction 0.5
Softmax Scale True
Key Dim Scaler True
Gating False
Use Glu False
Use Bias True
Flash Attn True
Initializer Xavier Uniform
Dataset Name Openwebtext
Max Sample Len 1024
Batch Size 32 32 24
Val Ratio 0.0005

20


	Introduction
	Constrained Parameter Regularization
	Regularization through constraints
	Initialization of Bounds

	Experiments
	Modular Addition
	Image Classification
	Language Modelling

	Conclusion & Future Work
	Background on the augmented Lagrangian
	The augmented Lagrangian method
	Derivation of the Lagrange multiplier update

	The CPR Algorithm
	The CPR Algorithm with Kappa-K or Kappa-kI0
	The CPR Algorithm with Kappa-Is

	Experiments on Modular Addition Task
	Experiments on Image Classification
	Experiments on Language Modelling

