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Abstract
Variance reduced gradients methods were introduced to control the variance of SGD (Stochastic
Gradient Descent). Model-based methods are able to make use of a known lower bound on the
loss, for instance, most loss functions are positive. We show how these two classes of methods can
be seamlessly combined. As an example we present a Model-based Stochastic Average Gradient
method MSAG, which results from using a truncated model together with the SAG method. At each
iteration MSAG computes an adaptive learning rate based on a given known lower bound. When
given access to the optimal objective as the lower bound, MSAG has several favorable convergence
properties, including monotonic iterates, and convergence in the non-smooth, smooth and strongly
convex setting. Our convergence theorems show that we can trade-off knowing the smoothness
constant Lmax for knowing the optimal objective to achieve the fast convergence of variance re-
duced gradient methods. Moreover our convergence proofs for MSAG are very simple, which is in
contrast to the original convergence proofs of SAG.
Keywords: Variance reduced, finite sum minimization, Polyak step size, model-based method,
adaptive learning rates.

1. Introduction

Consider the finite sum problem

x∗ ∈ argmin
x∈Rd

f(x), f(x) := 1
n

n∑
i=1

fi(x), (1)

where we assume that fi(x) is a convex differentiable function. We denote the optimal value of (1)
by f∗ ∈ R. Let x0 be a given initial point. We also assume throughout we have access to a lower
bound f(x) ≥ f . Most loss functions are positive thus f = 0.

Here we propose an adaptive step size for variance reduced gradient methods that leverages this
lower bound f. Our focus will be on the SAG (Stochastic Average Gradient) method [25], though
we also show how our approach can be extended to other variance reduced methods such as SVRG
in the appendix in Section B. This adaptive step size results from a model-based viewpoint of SAG,
and thus we call it MSAG (Model-based SAG step size).

We present a comprehensive convergence theory for MSAG that assumes no access to the smooth-
ness constant Lmax, and instead assumes access to the best possible lower bound f = f(x∗). Our
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convergence theory includes both non-smooth, convex smooth and strongly convex functions. In the
non-smooth setting we prove possibly the first O(1/

√
t) convergence rate for an incremental method

that has access to f(x∗) for convex and continuously differentiable functions. In the smooth setting,
we prove that MSAG has the same complexity results of SAG except without assuming access to
Lmax and with notably worse constant factors as compared to SAG. These convergence results show
that, up to worse constant factors, we can exchange knowing Lmax for knowing f(x∗).

Another interesting aspect of our convergence theory is that the proof technique completely
sidesteps the issue of SAG having a biased gradient. The original proof of convergence of SAG [25]
is notoriously difficult because SAG uses a biased estimate of the gradient1. In contrast, our proofs
are straight-forward, and nowhere do we need to bound an expectation of the quantity ⟨ḡk, xk − x∗⟩
where ḡk is this biased gradient estimate.

Since we will often not have access to f(x∗) in practice, we also show how a lower bound on
f(x∗) can be easily estimated for convex functions by observing the iterates of SAG and accumu-
lating some scalar quantities.

1.1. Background

This work touches on two fields of work; model-based methods and VR (variance reduced) methods.
VR methods are stochastic gradient type methods that use an estimate of the gradient whose

variance reduces goes to zero [12]. Because the variance reduces to zero, in the smooth setting VR
methods converge towards the solution of (1) at a faster rate of O(1/t) and O(ρt) for convex and
strongly convex functions, respectively, where ρ ∈ (0, 1). This is a faster rate than SGD (Stochastic
Gradient Descent), which converges at a rate of O(1/

√
t) and O(1/t) for convex and strongly

convex functions, respectively [10]. The first VR methods with this faster rate of convergence
was SVRG [16] and SAG [25]. SVRG relies on saved snapshots of the past full batch gradient
to reduce the variance, and SAG relies on averages of stochastic gradients. These two different
strategies encompass most VR methods, with Loopless SVRG [14] using snapshots, and SAGA [6],
MISO [19] using averages. At the intersection of these two approaches are the SARAH [21] and
SPIDER [9] method, which both make use of a snapshot (or resetting) and averaging.

An exception to these two strategies are the dual coordinate ascent based methods [22, 26] which
instead use that the coordinate gradients have variance that reduces to zero.

As for work on VR methods with adaptive step sizes, the AI-SARAH method [27] uses local
estimates of the smoothness constant instead of the global smoothness constant. Both [7] and [3]
combine SVRG with the diagonal preconditioner of Adagrad [8] to achieve a O(1/t) rate for smooth
and convex functions. In [15] the authors also achieve a O(1/t) rate by combining the stochastic
Polyak step size [18] with a novel variance reduced scheme.

Model-based methods build a simple local model of the objective function, which is then used
within a proximal point framework [2, 5]. Our approach is based on the recent MoMo (Momentum
Model-based) method [23], which combines momentum with model-based truncation. In [23] the
authors show how SGDM (SGD with momentum) can be interpreted as a model-based method.
They then use this interpretation to combine SGDM with truncation. The result is the MoMo method,
a practical new adaptive learning rate for SGD. Analogously, we show how SAG can be interpreted
as a model-based method and use this interpretation to introduce truncation and an adaptive step

1. There is now some more recent work on the analysis of SAG that is more straightforward [20] using coercive opera-
tors.
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size for SAG. Viewing SGDM as a model-based interpretation relies on approximating the expected
true risk by a discrete measure over past sampled points. Since we consider here the finite-sum
problem (1) we do not need this additional approximation.

1.2. Contributions.

Here we make the following contributions.

Variance Reduced as Model Based. VR methods build estimates of the full batch gradient. We
show how these estimates can be interpreted as building a model of the full batch loss function.
Using this model within the proximal point framework gives the underlying VR method. Our focus
here is on the SAG method, but this interpretation extends to other methods. For instance we show
in Section B how SVRG can be interpreted as a model-based method.

Truncation. Now that we see that VR methods are implicitly building a model of the loss function,
we can also incorporate truncation into this model. Truncation is used when we have a known lower
bound on the loss function, such as f(x) ≥ 0. Since we know the loss function is lower bounded,
our model of the loss function should satisfy this same lower bound. Imposing this lower bound on
our model is what we call truncation. In Lemma 1 we give MSAG, which is an adaptive step size for
SAG based on truncation. We also show in Section D that the MSAG can be derived as a step size
that minimizes an upper bound on the distance to the solution.

Online lower bound estimate. We might not know a lower bound for some functions. Or some-
times, even though we know f(x) ≥ 0, zero may be a very loose lower bound. The best lower
bound is given by f(x) ≥ f(x∗), but excluding some particular problem instances, it is unlikely we
would know f(x∗). We show in Lemma 4 (appendix) that for convex loss functions, by observing
the iterates of SAG with any step size, we can build an online estimate ft such that f(x∗) ≥ ft.

Convergence without knowing Lmax. In the ideal case where we know f(x∗) and set the lower
bound ft = f(x∗) we give three convergence results, whose results are summarized in Table 1.
We believe these are the first step sizes and convergence results of SAG where the smoothness
constant Lmax is not known. Our first convergence result in Theorem 1 shows that MSAG converges
at a rate of O(1/

√
t) for convex and continuously differentiable functions, and without assuming

the gradients are Lmax–Lipschitz. We believe this is the first O(1/
√
t) convergence result for an

incremental method under only convexity and knowledge of f(x∗). The only comparable result we
are aware of is the O(1/

√
t) convergence of the stochastic Polyak step size [10, 11] which holds for

convex functions, but requires the stronger assumption of having access to fi(x∗) for i = 1, . . . , n.
In Theorem 2 we show that in the smooth setting, having access to f(x∗) but not Lmax, the MSAG

method converges at a rate of O(1/t) and O(ρt) for convex and µ–Polyak-Łojasiewicz functions,
respectively. See Table (1) for details. As a consequence, MSAG can be used on problems where
Lmax is not known, such as conditional random fields [24]. One apparent weakness in our results in
the smooth setting is that the constant factor in the rates is n and n2 worse than the standard rates of
SAG, in the convex and strongly convex case, respectively. For now, we do not know if these worse
constants are a consequence of our analysis, or a consequence of not having access to Lmax.

2. VR and Model Based

First we introduce model-based methods with a focus on truncated models.
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Method / Assumption cvx cvx & Lmax–smooth µ–str. cvx & Lmax–smooth

MSAG nG/
√
t 4n2/t

(
1− µ/8n2Lmax

)t
SAG N/A 32n/t

(
1−min{µ/16Lmax, 1/8n}

)t
Table 1: The convergence rates of our adaptive step size with SAG (MSAG in Algorithm 1) which has access

to f(x∗) compared to SAG which has access to Lmax. Here G := sup
x:∥x−x∗∥≤∥x0−x∗∥

maxi=1,...,n ∥∇fi(x)∥

is a local bound on the gradient norm, which is finite for continuously differentiable functions.

2.1. Model Based Methods

The Model-based methods [1, 5] are based on the proximal point method

xk+1 = argmin
x∈Rd

f(x) + 1
2αk

∥x− xk∥2 . (2)

Because each iteration (2) can be computationally challenging to solve, the model-based method
replace the objective function with an approximate model mk(x) such that mk(x) ≈ f(x) when x
is close to xk. The iterates are then updated according to

xk+1 = argmin
x∈Rd

mk(x) +
1

2αk
∥x− xk∥2 . (3)

Gradient descent results from using the linear model

mk(x) = f(xk) + ⟨∇f(xk), x− xk⟩ .

When f(x) has a known lower bound f ∈ R, such as f(x) ≥ 0, then the model is truncated so that
it also respects this lower bound

mk(x) =
(
f(xk) + ⟨∇f(xk), x− xk⟩ − f

)
+
, (4)

where (a)+ := max{a, 0}.
In the stochastic, or finite sum setting such as ours, the full function f(x) is replaced by fi(x)

where i ∈ {1, . . . , n} is sampled at each iteration [5]. When truncation (4) is used in the stochastic
setting, the resulting method is also known as the SGDwith a stochastic Polyak stepsize [4, 13, 18].

2.2. SAG as a Model Based Method

At the iteration kth, the SAG method uses a stored table of past gradients [gk1 , . . . , g
k
n] ∈ Rd×n

to build an estimate ḡk of the full batch gradient ∇f(xk). The current iterate xk is then updated
according to

xk+1 = xk − ηk
n ḡk, where ḡk :=

1

n

n∑
i=1

gi, (5)

where ηk > 0 is the step size. Before each step (5), an index ik ∈ {1, . . . , n} of a data point is
sampled, and the table of gradients is updated as follows

gki =

{
∇fi(x

k) If i = ik.

gk−1
i if i ̸= ik.

(6)
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Here we will also need additional notation to keep track of which iterate was each gradient evaluated.
That is, let qki ∈ Rd be such that gki = ∇fi(q

k
i ). These past iterates are updated analogously to the

gradients as follows

qki =

{
xk If i = ik.

qk−1
i if i ̸= ik.

and Qk := [qk1 , . . . , q
k
n] ∈ Rd×n. (7)

We need these iterates to better describe our method, but they are not stored or updated in our
forthcoming method. We refer to the collection Qk of past iterates as the memory. The stored past
gradients gi are used to build an estimate of the full gradient. By keeping a table of past function
values, we can also build an estimate of the loss function itself. Indeed, by approximating each
fi(x) by its linearization around the last point qki the ith data point was sampled we have that

f(x) = 1
n

n∑
i=1

fi(x) ≈ 1
n

n∑
i=1

(
fi(q

k
i ) + ⟨∇fi(q

k
i ), x− qki ⟩

)
. (8)

For convex functions the right-hand side is a lower bound. If we use (8) as a model for the function
in (3), the resulting method is SAG (5). But we can do better if we have access to a lower bound.

Suppose then at iteration k we have access to a lower bound fk of f(x). For positive loss
functions the default will be fk = 0. With a known lower bound we can improve the above estimate
by truncating, resulting in the following estimate of f(x) given by

mk(x) =
(

1
n

n∑
i=1

(
fi(q

k
i ) + ⟨∇fi(q

k
i ), x− qki ⟩ − fk

))
+
. (9)

We can now use this estimate as our model in (3) and derive a closed form update.

Lemma 1 Using the model (9), the closed form solution to (3) is given by the SAG method (5) with
a stepsize of

ηk =
{
αk,

(
1
n
∑n

i=1(fi(q
k
i )+⟨∇fi(q

k
i ),xk−qki ⟩−fk)

)
+

∥ḡk∥2

}
, (10)

where ḡk is the SAG gradient estimate.
We call the SAG with this adaptive step size (10) the MSAG (Model-based step sizes for SAG)

method. The full pseudo-code of MSAG is in Algorithm 1.

The proof follows by some re-arranging and applying Lemma 2. The cost per iteration of MSAG
is essentially the same as that of SAG. We also show how SVRG can also be interpreted through this
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model-based viewpoint in Section B in the appendix.

For general finite sum problems the
iteration complexity of both SAG
and MSAG is O(d), while the mem-
ory footprint is O(n × d). The
only additional O(d) computations
in MSAG are the three inner prod-
ucts between gradients and iterates.
The additional memory of MSAG
is a single n dimensional vector
[f1(q

k
1 ), . . . , fn(q

k
n)] and the two ad-

ditional scalars (see f̄k and γk in Al-
gorithm 1).

3. Convergence Theorems

All of our convergence theorems start with the inequality that results from taking expectation over
monotonicity inequality (28), and then using Jensen’s over a special 2D function.

Proposition 1 Let fi be convex for i ∈ {1, . . . , n}. Consider the iterates of SAG (5) with the
stepsize (34) It follows that

E
[
∥xk+1 − x∗∥2

]
≤ E

[
∥xk − x∗∥2

]
− 1

n2
E[f(xk)−f∗]2

E[∥ḡk∥2]
(11)

Our first convergence proof only assumes that the loss functions are convex and have locally
bounded gradients.

Theorem 1 [Locally bounded gradients] Assume the gradients are bounded over the sub-level set
of the starting point, that is

G = sup
x:∥x−x∗∥≤∥x0−x∗∥

max
i=1,...,n

∥∇fi(x)∥ ≤ ∞.

Note that this is the case for continuously differentiable functions. Let x̄t :=
∑t−1

k=0 xk. If fi(x) is
convex for i ∈ [n] then SAG with step size (34) converges according to

E [f(x̄t)− f(x∗)] ≤ nG√
t
∥x0 − x∗∥ .

Next we consider the case where each fi is convex and Lmax–smooth.

Theorem 2 [Smooth functions] Let x̄t :=
∑t−1

k=0 xk. If fi is convex and Lmax–smooth for i =
1, . . . , n, then SAG with step size (34) converges according to

E [f(x̄t)− f∗] ≤ 2Lmaxn(2n−1)
t E

[
∥xk − x∗∥2

]
(12)

If in addition f(x) is µ–Polyak-Łojasiewicz then

E
[
∥xk+1 − x∗∥2

]
≤
(
1− µ

4Lmax

1
n

1
2n−1

)
E
[
∥xk − x∗∥2

]
. (13)
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machine learning problems using stochastic recursive gradient. In International Conference
on Machine Learning, pages 2613–2621. PMLR, 2017.

[22] Zheng Qu, Peter Richtárik, and Tong Zhang. Quartz: Randomized dual coordinate ascent with
arbitrary sampling. In Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 1, NIPS’15, pages 865–873, Cambridge, MA, USA, 2015.
MIT Press.

[23] Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M. Gower.
Momo: Momentum models for adaptive learning rates, 2023.

[24] Mark Schmidt, Reza Babanezhad, Mohamed Osama Ahmed, Aaron Defazio, Ann Clifton,
and Anoop Sarkar. Non-uniform stochastic average gradient method for training conditional
random fields. In AISTATS, volume 38 of JMLR Workshop and Conference Proceedings.
JMLR.org, 2015.

[25] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1):83–112, Mar 2017.

[26] Shai Shalev-Shwartz. Sdca without duality, regularization, and individual convexity. In Inter-
national Conference on Machine Learning, pages 747–754. PMLR, 2016.

[27] Zheng Shi, Abdurakhmon Sadiev, Nicolas Loizou, Peter Richtárik, and Martin Takáč. Ai-
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Appendix A. Auxiliary Lemmas

The following Lemma was taken from [23].

Lemma 2 ([23] Lemma B.1) Let y0, a ∈ Rp with a ̸= 0 and c ∈ R. Let β > 0. The solution to

y+ = argmin
y

(
c+ ⟨a, y − y0⟩

)
+
+

1

2β
∥y − y0∥2 (14)

is given by

y+ = y0 −min
{
β,

(c)+
∥a∥2

}
a.

Appendix B. Model Based SVRG

We can develop an analogous model-based step size for every variance reduced method. So long as
the resulting gradient estimate is such that

ḡk =

n∑
i=1

βi∇fi(q
k
i )

where
∑n

i=1 βi = 1 and βi ∈ N. To give an example, consider the SVRG gradient estimate given
by

ḡk = ∇f(x̃) +∇fi(xk)−∇fi(x̃) =
1

n

∑
j=1

∇fj(x̃) +∇fi(xk)−∇fi(x̃). (15)

Note here the corresponding β coefficients sum to one since

1

n

∑
j=1

1 + 1− 1 = 1.

Mimicking the estimate of the gradient in (15), we can build a model of the loss as follows

1

n

n∑
j=1

fj(x) =
1

n

n∑
j=1

fj(x) + fi(x)− fi(x)

≈ 1

n

n∑
j=1

fj(x̃) + fi(xk)− fi(x̃)

+ ⟨∇f(x̃), x− x̃⟩ − ⟨∇fi(x̃), x− x̃⟩+ ⟨∇f(xk), x− xk⟩ ,

where in the approximation step we linearized the functions around either x̃ or xk in such a way to
mimick the structure of SVRG. When f(x) ≥ 0 this suggests the following model

mk(x) = (f(x̃) + fi(xk)− fi(x̃) + ⟨∇f(x̃)−∇fi(x̃), x− x̃⟩+ ⟨∇fi(xk), x− xk⟩)+ (16)

Using this model in a proximal point method gives the following update.

10
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Lemma 3 Let ḡk be the SVRG gradient estimate given in (15). Using the model (16), the closed
form solution to

argmin
x∈Rd

mk(x) +
1

2αk
∥x− xk∥2 (17)

is given by

xk+1 = xk −min
{
αk, τk

}
ḡk, (18)

where

τk :=

(
f(x̃) + fi(xk)− fi(x̃) + ⟨∇f(x̃)−∇fi(x̃), xk − x̃⟩

)
+

∥ḡk∥2
. (19)

Proof Let v = ∇f(x̃)−∇fi(x̃). Re-arranging (16) gives

mk(x) =
(
f(x̃) + fi(xk)− fi(x̃) + ⟨v, x− x̃⟩+ ⟨∇fi(xk), x− xk⟩

)
+

=
(
f(x̃) + fi(xk)− fi(x̃) + ⟨v, xk − x̃⟩+ ⟨v +∇fi(xk), x− xk⟩

)
+

=
(
c+ ⟨v +∇fi(xk), x− xk⟩

)
+
,

where c = f(x̃)+fi(xk)−fi(x̃)+ ⟨v, xk − x̃⟩ . We can now apply Lemma 2 with a = v+∇f(xk)
and y0 = xk which gives

xk+1 = xk −min

{
αk,

c+

∥v +∇f(xk)∥2

}
(v +∇f(xk)).

Substituting out c and v = ∇f(x̃)−∇fi(x̃) gives the result.

Appendix C. Estimating f ∗ on the fly

As we will soon show, if fk is the tightest possible lower bound, that is fk = f(x∗) =: f∗, then
MSAG has several favourable convergence properties. But before showing these results, first we how
to build an online lower bound estimate fk ≤ f∗ by simply observing the iterates of SAG.

Lemma 4 Let fi(x) be convex in x for every sample i. Furthermore let x∗ ∈ argmin
x∈Rd

f(x).

Consider the xk are the iterates of SAG (5). Let

hk :=
1

n

n∑
i=1

(fi(q
k
i ) +

〈
∇fi(q

k
i ), xk − qki

〉
.

It follows that

f∗ ≥ fk+1 :=
2
∑k

j=0 ηjhj − ∥x0 − x∗∥2 −
∑k

j=0 η
2
j ∥ḡj∥

2

2
∑k

j=0 ηj
. (20)

Furthermore we have the recurrence

fk+1 = fk +
ηk

(
hk − 1

2ηk ∥ḡk∥
2
)

∑k
j=0 ηj

. (21)

11
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Note that the estimate in (20) depends on the initial distance to the solution ∥x0 − x∗∥2 which
we will not know. Fortunately, because ∥x0 − x∗∥2 is divided by the sum of all step sizes

∑k
j=0 ηj ,

this term has a decreasing effect on our estimate fk+1 as k grows. Furthermore ∥x0 − x∗∥2 can
be absorbed into initial estimate f0. Indeed, in the recurrence (21) the ∥x0 − x∗∥2 term no longer
appears. Since we will always initialize f0 = 0, we do not need to know ∥x0 − x∗∥2 to use this
lower bound estimate.
Proof Consider the update (5) , and switching the index k → j, which is

xj+1 = xj − ηj ḡj ,

where ηj is the step size. Subtracting x∗ from both sides, taking norms and expanding the squares
we have that

∥xj+1 − x∗∥2 = ∥xj − x∗∥2 − 2ηj ⟨ḡj , xj − x∗⟩+ η2j ∥ḡj∥
2 . (22)

For shorthand let ∇fi := ∇fi(q
k
i ) and fi = fi(q

k
i ). Now using that

⟨ḡj , xj − x∗⟩ =
n∑

i=1

1

n

〈
∇fi(q

k
i ), xj − x∗

〉
=

n∑
i=1

1

n

(〈
∇fi(q

j
i ), xj − qji

〉
+
〈
∇fi(q

j
i ), q

j
i − x∗

〉)
≥

n∑
i=1

1

n

(〈
∇fi(q

j
i ), xk − qji

〉
+ fi(q

j
i )− fi(x∗)

)
(by convexity of fi)

= hj − f∗, (23)

Using (23) in (22) gives

∥xj+1 − x∗∥2 ≤ ∥xj − x∗∥2 − 2ηj(hj − f∗) + η2j ∥ḡj∥
2 . (24)

Summing up from j = 0, . . . , k and telescoping we have that

0 ≤ ∥xk+1 − x∗∥2

≤ ∥x0 − x∗∥2 − 2
k∑

j=0

ηj(hj − f∗) +

k∑
j=0

η2j ∥ḡj∥
2 . (25)

From step (25) and re-arranging we have that

2f∗( k∑
j=0

ηj
)
≥ 2

k∑
j=0

ηjhj − ∥x0 − x∗∥2 −
k∑

j=0

η2j ∥ḡj∥
2 .

Dividing through by
(∑k

j=0 ηj
)

gives the estimate

f∗ ≥ fk+1 :=
2
∑k

j=0 ηjhj − ∥x0 − x∗∥2 −
∑k

j=0 η
2
j ∥ḡj∥

2

2
∑k

j=0 ηj
.

12
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Finally the recurrence follows since

fk+1 =
2
∑k

j=0 ηjhj − ∥x0 − x∗∥2 −
∑k

j=0 η
2
j ∥ḡj∥

2

2
∑k

j=0 ηj

=

∑k
j=0 ηj∑k
j=0 ηj

2
∑k

j=0 ηjhj − ∥x0 − x∗∥2 −
∑k

j=0 η
2
j ∥ḡj∥

2

2
∑k

j=0 ηj

+
2ηkhk − η2k ∥ḡk∥

2

2
∑k

j=0 ηj

= fk +
ηk

(
hk − 1

2ηk ∥ḡk∥
2
)

∑k
j=0 ηj

.

Appendix D. Steps with Maximal Progress

Here we show that the step size of MSAG in (10) can be seen as the step size of SAG that maximize
progress towards the solution. For this viewpoint to hold, we need that fk be the tightest possible
lower bound, that is fk = f(x∗) =: f∗. Consequently for this section we use MSAG step size (10)
with αk = ∞ and fk = f∗, that is

ηk :=

(
1
n

∑n
i=1(fi(q

k
i ) +

〈
∇fi(q

k
i ), xk − qki

〉
− f∗)

)
+

∥ḡk∥2
=

(hk − f∗)+
∥ḡk∥2

(26)

Thus through this section an iterate xk refers to an iterate of Algorithm 1 where fk = f∗ and
αk = ∞. Next we show how (26) is also the step size that minimizes an upper bound on the
distance to x∗. This interpretation is based on the recent Polyak momentum methods [23, 28].

D.1. Monotonicity

Now let the step size ηk > 0 be a free parameter. We can now view the next iterate xk+1 of SAG
in (5) as a function of ηk, that is xk+1(ηk). We would like to choose ηk so that xk+1 is as close
as possible to the optimum solution x∗, that is to minimize ∥xk+1(ηk)− x∗∥2 in ηk. This is not
possible because we do not know x∗. But we can minimize an upper bound of ∥xk+1(ηk)− x∗∥2 if
we assume that fi(x) is a convex function.

Lemma 5 Let fi be convex for i ∈ {1, . . . , n}. Consider the iterates of SAG (5). It follows that
minimizing in the ηk the upper bound

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2ηk(hk − f∗) + η2k ∥ḡk∥
2 , (27)

gives the step size (26). Thus these optimal stepsizes are equivalent to MSAG with fk = f∗ and
αk = ∞. Plugging the stepsize (26) or MSAG (10) with fk = f∗ into (27) gives

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ηk(hk − f∗)+. (28)

13
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D.2. Proof of Lemma 5

Proof . Subtracting x∗ from both sides, taking norms and expanding the squares we have that

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk ⟨ḡk, xk − x∗⟩+ η2k ∥ḡk∥
2 . (29)

For shorthand let ∇fi := ∇fi(q
k
i ) and fi = fi(q

k
i ). Now using that (23) in (29) gives

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk ⟨ḡk, xk − x∗⟩+ η2k ∥ḡk∥
2

≤ ∥xk − x∗∥2 − 2ηk(hk − f∗) + η2k ∥ḡk∥
2 . (30)

If we now minimize the right-had side of the above in ηk, but restricted to ηk ≥ 0 we arrive at (26).
Inserting (26) back in we have that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
(hk − f∗)2+

∥ḡk∥2
= ∥xk − x∗∥2 − ηk(hk − f∗)+. (31)

Alternatively using the stepsize given in (10) and noting that

ηk ≤ (hk − f∗)+

∥ḡk∥2

we have again that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2ηk(hk − f∗) + η2k ∥ḡk∥
2

≤ ∥xk − x∗∥2 − 2ηk(hk − f∗) + ηk(hk − f∗)+

= ∥xk − x∗∥2 − ηk(hk − f∗)+.

Appendix E. Missing Proofs from Convergence Theorems

For our forthcoming theory, it will prove convenient to first re-write the numerator of our adaptive
stepsize in (26) as follows.

Lemma 6 (Memory and stepsize) We have that

hk :=
1

n

n∑
i=1

(fi(q
k
i ) +

〈
∇fi(q

k
i ), xk − qki

〉
) = f(xk)− D̄(xk,Qk) (32)

where

D̄(x,Qk) :=
1

n

n∑
i=1

Dfi(x, qi) :=
1

n

n∑
i=1

fi(xk)− fi(q
k
i )−

〈
∇fi(q

k
i ), xk − qki

〉
. (33)

Consequently our adaptive stepsize (26) is equivalent to

ηk :=

(
f(xk)− f∗ − D̄(xk,Qk)

)
+

∥ḡk∥2
(34)

14
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Proof The proof follows by just re-arranging

1

n

n∑
i=1

(
fi(q

k
i ) +

〈
∇fi(q

k
i ), xk − qki

〉)
=

1

n

n∑
i=1

(
fi(q

k
i ) +

〈
∇fi(q

k
i ), xk − qki

〉
− fi(xk) + fi(xk)

)
,

= f(xk)−
1

n

n∑
i=1

(
fi(xk)− fi(q

k
i )−

〈
∇fi(q

k
i ), xk − qki

〉)
= f(xk)− D̄(xk,Qk). ■

Note that (34) is not a practical way of computing the MSAG step size ηk since it apparently
requires computing f(xk) at each iteration. The practical way of computing ηk is given in (10) and
in Algorithm 1. We use this equivalent form in (34) only for our forthcoming convergence theory.

E.1. Change in the memory

As a reminder of the order in which the iterates are produced, we start from x0, form the memory
Q0, move to x1, and then update the memory to Q1. That is, we go from (xk,Qk) to (xk+1,Qk) to
(xk+1,Qk+1). When updating the memory from (xk+1,Qk) to (xk+1,Qk+1) we have the follow-
ing contraction.

Proposition 2

D̄(xk+1,Qk+1) ≤ D̄(xk+1,Qk) (35)

E
[
D̄(xk+1,Qk+1) | Qk

]
=

(
1− 1

n

)
D̄(xk+1,Qk) (36)

Proof The proof of both items follows because D̄(xk+1,Qk+1) is equal to D̄(xk+1,Qk) except
one of the terms in the average is now zero. Specifically the ik+1 term. Because ik+1 is chosen
uniformly from {1, . . . , n} taking expectation with respect to ik+1 gives a contraction of (1−1/n).
That is the essence of the proof, which we now explicate. Note that

D̄(xk+1,Qk+1) =
1

n

n∑
i=1

Dfi(xk+1, q
k+1
i )

=
1

n
Dfik+1

(xk+1, q
k+1
ik+1

) +
1

n

n∑
i ̸=ik+1

Dfi(xk+1, q
k
i ).

Since qk+1
ik+1

= xk+1 we have that Dfik+1
(xk+1, q

k+1
ik+1

) = 0. Taking expectation conditioned on Qk

1

n

n∑
i=1

E
[
Dfi(xk+1, q

k+1
i ) | Qk

]
=

1

n
E

 n∑
i ̸=ik+1

Dfi(xk+1, q
k
i ) | Qk


=

1

n

1

n

n∑
j=1

n∑
i ̸=j

Dfi(xk+1, q
k
i )

=
1

n

n− 1

n

n∑
i=1

Dfi(xk+1, q
k
i ) =

(
1− 1

n

)
D̄(xk+1,Qk),

15
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where in the last but one equality we use a double counting argument to exchange the order of the
summation in i and the summation in j.

Proposition 3 [Non-negative stepsize] The numerator of the step size (34) is positive with

f(xk)− f∗ − D̄(xk,Qk) ≥ 0. (37)

Thus we can drop the positive part function ()+ in (34). Furthermore we have that

D̄(xk+1,Qk) = f(xk+1)− f∗. (38)

Proof Since D̄ is an average of divergences,

D̄(xk,Qk) :=
1

n

n∑
i=1

Dfi(xk, q
k
i ),

where each term satisfies three-point lemma

Dfi(xk+1, q
k
i ) = Dfi(xk, q

k
i ) +

〈
∇fi(xk)−∇fi(q

k
i ), xk+1 − xk

〉
+Dfi(xk+1, xk),

we have that the average satisfies

D̄(xk+1,Qk) = D̄(xk,Qk) + ⟨∇f(xk)− ḡk, xk+1 − xk⟩+Df (xk+1, xk)

Expanding the divergence Df (xk+1, xk) = f(xk+1)− f(xk)− ⟨∇f(xk), xk+1 − xk⟩, parts of the
inner product cancel, giving the simplification

D̄(xk+1,Qk) = D̄(xk,Qk) + f(xk+1)− f(xk)− ⟨ḡk, xk+1 − xk⟩
= D̄(xk,Qk) + f(xk+1)− f(xk) + ηk∥ḡk∥2. (39)

The remainder of the proof now follows by induction. Our induction hypothesis is that

f(xk)− f(x∗)− D̄(xk,Qk) ≥ 0. (40)

The base case follows since in Algorithm 1 we initialize q0i = x0 for i = 1, . . . , n we have that
D̄(x0,Q0) = 0. Consequently

f(x0)− f(x∗)− D̄(x0,Q0) = f(x0)− f(x∗) ≥ 0.

Now suppose that (40) holds at iteration k. Plugging in the stepsize ηk (34) into (39) gives

D̄(xk+1,Qk) = D̄(xk,Qk) + f(xk+1)− f(xk) + f(xk)− f∗ − D̄(xk,Qk)

= f(xk+1)− f(x∗).

Consequently from (35) we have that

f(xk+1)− f(x∗)− D̄(xk+1,Qk+1) ≥ f(xk+1)− f(x∗)− D̄(xk+1,Qk) = 0,

which concludes the induction hypothesis.

Finally, we can show that in expectation, the memory is directly related to the suboptimality.
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Lemma 7 If follows that

E
[
D̄(xk,Qk)

]
=

n− 1

n
E [f(xk)− fmin] (41)

Proof The proof follows from (36) in Proposition 2 and (38) in Proposition 3 since for all k we have
that

E
[
D̄(xk+1,Qk+1)

]
=

n− 1

n
E
[
D̄(xk+1,Qk)

]
=

n− 1

n
E [f(xk+1)− f∗] .

E.2. Proof of Proposition 1

Proposition 1 Let fi be convex for i ∈ {1, . . . , n}. Consider the iterates of SAG (5) with the
stepsize (34) It follows that

E
[
∥xk+1 − x∗∥2

]
≤ E

[
∥xk − x∗∥2

]
− 1

n2
E[f(xk)−f∗]2

E[∥ḡk∥2]
(11)

Proof From (28) in Lemma 5 we have that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
(f(xk)− f∗ − D̄(xk,Qk))

2

∥ḡk∥2
, (42)

where we have dropped the positive part due to Proposition 3. Using that the mapping m(x, y) 7→ x2/y
is convex over (x, y) ∈ R× R+ and Jensen’s we have that

E [m(X,Y )] ≥ E [X]2

E [Y ]
, for all random variables X and Y.

Using this observation we have that

E
[
(f(xk)− f∗ − D̄(xk,Qk))

2

∥ḡk∥2

]
≥

E
[
f(xk)− f∗ − D̄(xk,Qk)

]2
E
[
∥ḡk∥2

]
=

E
[
f(xk)− f∗ − n−1

n (f(xk)− f∗)
]2

E
[
∥ḡk∥2

] Using (41)

=
1

n2

E [f(xk)− f∗]2

E
[
∥ḡk∥2

] . (43)

Taking expectation in (42) together with the above gives the result.
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E.3. Proof of Theorem 1

Theorem 1 [Locally bounded gradients] Assume the gradients are bounded over the sub-level set
of the starting point, that is

G = sup
x:∥x−x∗∥≤∥x0−x∗∥

max
i=1,...,n

∥∇fi(x)∥ ≤ ∞.

Note that this is the case for continuously differentiable functions. Let x̄t :=
∑t−1

k=0 xk. If fi(x) is
convex for i ∈ [n] then SAG with step size (34) converges according to

E [f(x̄t)− f(x∗)] ≤ nG√
t
∥x0 − x∗∥ .

Proof Since Lemma (5) shows the iterates are bounded, that is

∥xk − x∗∥ ≤ ∥x0 − x∗∥ =: D0,

we have, by Jensen’s over x 7→ ∥x∥2 that

∥ḡk∥2 ≤
1

n

n∑
i=1

∥∥∥∇fi(q
k
i )
∥∥∥2 ≤ 1

n

n∑
i=1

max
∥x−x∗∥≤D0

∥∇fi(x)∥2 ≤ G2.

Using the above bound in (11) from Proposition 1 gives

E
[
∥xk+1 − x∗∥2

]
≤ E

[
∥xk − x∗∥2

]
− 1

n2

E [f(xk)− f∗]2

E
[
∥ḡk∥2

]
≤ E

[
∥xk − x∗∥2

]
− 1

n2

E [f(xk)− f∗]2

G2
.

Re-arranging, summing both sides over k = 0, . . . , t− 1 and using telescopic cancellation gives

1

n2

t−1∑
k=0

E [f(xk)− f∗]2

G2
≤ ∥x0 − x∗∥2 − E

[
∥xt+1 − x∗∥2

]
≤ ∥x0 − x∗∥2 .

Dividing though by t, and using Jensen’s twice, once with respect to f(x), then once with respect
to x 7→ x2 which is convex and monotone, gives

E [f(x̄t)− f(x∗)]
2 ≤

(
1

t

t−1∑
k=0

E [f(xk)− f(xt)]

)2

≤ 1

t

t−1∑
k=0

E [f(xk)− f∗]2 ≤ n2G2

t
∥x0 − x∗∥2 .

Taking square root on both now gives the result.
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E.4. Proof of Theorem 2

Here we consider the case where each fi is convex and Lmax–smooth. But first we need a bound on
the expected norm gradients.

Proposition 4

E
[
∥ḡk∥2

]
≤ 4Lmax

2n− 1

n
E [f(xk)− f∗] . (44)

Proof Since fi is convex and Lmax smooth we have that the co-coercive bound holds, namely

∥∇fi(x)−∇fi(y)∥2 ≤ 2LmaxDfi(x, y), ∀x, y. (45)

Using this co-coercive bound we have that

∥ḡk∥2 = ∥ḡk −∇f(xk) +∇f(xk)∥2

≤ 2 ∥ḡk −∇f(xk)∥2 + 2 ∥∇f(xk)∥2

≤ 2
1

n

∑
i

∥∥∥∇fi(q
k
i )−∇fi(xk)

∥∥∥2 + 2 ∥∇f(xk)∥2

≤ 4Lmax

(
1

n

n∑
i=1

Dfi(xk, q
k
i ) + f(xk)− f∗

)
= 4Lmax

(
D̄(xk,Qk) + f(xk)− f∗)

Taking expectation and using Lemma 7 gives

E
[
∥ḡk∥2

]
≤ 4LmaxE

[
D̄(xk,Qk) + f(xk)− f∗] = 4Lmax

2n− 1

n
E [f(xk)− f∗] .

Theorem 2 [Smooth functions] Let x̄t :=
∑t−1

k=0 xk. If fi is convex and Lmax–smooth for i =
1, . . . , n, then SAG with step size (34) converges according to

E [f(x̄t)− f∗] ≤ 2Lmaxn(2n−1)
t E

[
∥xk − x∗∥2

]
(12)

If in addition f(x) is µ–Polyak-Łojasiewicz then

E
[
∥xk+1 − x∗∥2

]
≤
(
1− µ

4Lmax

1
n

1
2n−1

)
E
[
∥xk − x∗∥2

]
. (13)

Proof Using (11) from Proposition 1 together with (44) gives

E
[
∥xk+1 − x∗∥2

]
≤ E

[
∥xk − x∗∥2

]
− 1

n2

E [f(xk)− f∗]2

E
[
∥ḡk∥2

]
≤ E

[
∥xk − x∗∥2

]
− 1

2Lmax

(
1
nE [f(xk)− f∗]

)2
2n−1
n E [f(xk)− f∗]

= E
[
∥xk − x∗∥2

]
− 1

2Lmax

1

n

1

2n− 1
E [f(xk)− f∗] (46)
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Summing up from k = 0, . . . , t− 1, and using telescopic cancellation gives

E
[
f(x̄k)− f∗

]
≤ 1

t

t−1∑
k=0

E [f(xk)− f∗]

≤ 2Lmaxn(2n− 1)

t

t−1∑
k=0

[
E
[
∥xk − x∗∥2

]
− E

[
∥xk+1 − x∗∥2

]]
≤ 2Lmaxn(2n− 1)

t
E
[
∥xk − x∗∥2

]
.

From Theorem 2 in [17] we have that the PL condition implies the quadratic growth condition,
namely

f(x)− f(x∗) ≥
µ

2
∥x− x∗∥2 .

Using the above with x = xk in (46) gives

E
[
∥xk+1 − x∗∥2

]
≤ E

[
∥xk − x∗∥2

]
− µ

4Lmax

1

n

1

2n− 1
E
[
∥xk − x∗∥2

]
(47)

which gives the result.
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