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Abstract
The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears
in many applications. Utilizing the pairwise Euclidean distance information of a given point set,
EDG reconstructs the configuration of the point system. When only partial distance information
is available, matrix completion techniques can be incorporated to fill in the missing pairwise dis-
tances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined
RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness
of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various
datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance
information.

1. Introduction
Due to the rapid and continually accelerating proliferation of data collection across domains, data
sizes have exploded dramatically. Oftentimes these data are high dimensional or corrupted, posing
a considerable challenge for analysis. Compounding this challenge, these data are often incomplete.
One example where this manifests is in the Euclidean distance geometry (EDG) problem. Given
partial pairwise distance information of a set of n points in Rk, the EDG completion problem is to
reconstruct the configuration of the point system. The applications of this model are numerous, with
appearances of the EDG problem appearing in sensor localization [1, 4], dimensionality reduction
[20], computational chemistry [6, 7, 13, 22], robot kinematics and position analysis [15, 17], and
more recently in visualization of antibody-virus interactions [5]. In these applications, collecting all
pairwise distances is often infeasible or too costly.

To introduce this problem mathematically, let {pi}ni=1 ⊂ Rk be a given k-dimensional dataset,
and denote P := [p1,p2, · · · ,pn]

T ∈ Rn×k as the matrix where the i-th row is the i-th point
in the dataset. The squared Euclidean distance between the points pi and pj is given by d2i,j :=

∥pi−pj∥22 = ∥pi∥22+∥pj∥22−2pT
i pj . The collection of pairwise distances can be neatly represented

in symmetric matrix form, termed Squared Euclidean Distance Matrix D := [d2i,j ] ∈ Rn×n—
heretofore referred to as Distance Matrix. In addition to the distance matrix, we can also construct
the Gram Matrix X := PPT ∈ Rn×n of the dataset. In this paper we are focusing on the point
configurations centered at the origin, i.e., PT1 = 0, and the corresponding centralized Gram matrix
for computational ease. The centralized Gram matrix and distance matrix store the same point
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configuration information, albeit represented differently, and closed-form relationships between D
and X exist. The distance matrix D can be computed from the Gram matrix by D = 1diag(X)T +
diag(X)1T − 2X where diag(·) is an operator that takes the diagonal elements of a matrix and
represents it as a column vector and 1 ∈ Rn is a vector of ones. On the other hand, the Gram matrix
X and the configuration matrix P are not unique for a given D since a point configuration can shift
and rotate without changing the relative positions. See Figure 1 for an illustration. However, for
all the configurations that are centered at the same location, the Gram matrix is fixed no matter
how the configuration is rotated. Let J = I − 1

n11
T , where I ∈ Rn×n is the identity matrix. The

centralized Gram matrix can be computed from the distance matrix by X = −1
2JDJ. Then, one

of the equivalent point configurations can be computed by P = UΛ1/2 where X = UΛUT is
the eigenvalue decomposition. For more theoretical details about the equivalence of the shifted and
rotated configurations, we refer the interested reader to [8, 21].

Assuming P is full rank, i.e., points {pi}ni=1 are not all embedded in some low-dimensional
subspace of Rk, the rank of X is k and the rank of D is at most k + 2. When only partial distance
information is observed in D, the classical approach is to recover the entire distance matrix D with
some off-the-shelf matrix completion algorithms such as [3, 9, 11, 16, 23], then compute X and
P from the recovered D. However, the classical approach ignores the implicit constraints of the
Euclidean distances, e.g., non-negativity and triangle inequality, and thus has sub-optimal sampling
complexity on the pairwise distances. Some recent works [12, 18, 19] show the convex formulation
that enforces the positive semidefinite constraint on the Gram matrix X using a dual basis approach
will implicitly enforce the constraints of the Euclidean distances and achieve optimal sampling com-
plexity. However, those convex algorithms are computationally and/or memory expensive. Hence,
high-efficient non-convex dual basis algorithms are valuable for the EDG completion problem.
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Figure 1: The set of 5 points {p1, ...,p5},{q1, ...,q5} and {r1, .., r5} have different configurations
but the Euclidean distance matrix is the same for all of them. In other words, these sets
of points are equivalent up to translation and rotation.

Notation. Lowercase and uppercase boldface letters (e.g., v and M) denote column vectors and
matrices, respectively. Blackboard-bold letters (e.g., S) denote spaces. ∥ · ∥2 and || · ||F denote the
ℓ2-norm and Frobenius norm, respectively. ⟨ ·, · ⟩ denotes the trace inner product. The 1 denotes
a vector whose entries are all 1. Given a matrix A, ai denotes its i-th column, σmax(A) and
σmin(A) denote the largest and smallest non-zero singular values of A. {ej} and {Ei,j} represent
the standard basis of vector and matrix spaces, respectively. EVDk(A) denotes the rank-k truncated
eigenvalue decomposition of a symmetric matrix A.

2. Preliminaries
In this section, we provide a brief summary of the dual basis for EDG developed in [18]. More
preliminaries about the Riemannian matrix completion algorithm [23] are provided in the appendix.
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In the EDG problem, we observe some entries of a squared distance matrix D, and wish to recover
the underlying Gram matrix X. The relationship between X and D is Xi,i +Xj,j − 2Xi,j = Di,j .
Given D, X is only unique up to translations and rotations, so it is assumed that X1 = 0. We are
especially interested in the case when X is low rank, which frequently occurs in practice.

To handle this, the authors in [18] formulated the EDG problem as matrix recovery with respect
to the operator basis wα = Eα1,α1 + Eα2,α2 − Eα1,α2 − Eα2,α1 for α = (α1, α2) and α1 < α2,
which spans the dimension L = n(n−1)

2 linear subspace S = {X ∈ Rn×n|X = XT , X · 1 = 0}.
This basis was chosen because it reconstructs the measurements Di,j via inner products ⟨X,wi,j⟩.
Unfortunately, this basis is not orthogonal, so a biorthogonal dual basis was introduced: given
{wα}Lα=1, define the matrix H as Hα, β = ⟨wα ,wβ⟩; the set of matrices vα =

∑
β H

−1
α, βwβ

then forms a dual basis to {wα} satisfying ⟨vα ,wβ⟩ = δα, β . In the dual basis expansion, X =∑
α⟨X ,wα⟩vα, so the EDG problem becomes the recovery of a low-rank matrix X of rank k

given a few of its expansion coefficients. The difficulty with a dual basis approach can be finding
an explicit form for vα. In the case of the EDG problem, the form of vα is known [14].

3. A Non-Convex Approach for EDG Completion
In this section, we propose a new algorithm for the EDG completion problem. The main goal
is fusing non-orthogonal matrix completion [18] for the EDG problem with a Riemannian-based
gradient descent approach [2, 10, 23]. Our algorithm is based on the sampling operator defined as:

RΩ : X ∈ S −→ L

m

∑
α∈Ω

⟨X ,wα⟩vα, (1)

where Ω ⊂ [L], |Ω| = m. In the prior work, the goal was to construct a Riemannian-based non-
convex algorithm for directly observed entries. In the EDG problem, we want to complete the Gram
matrix X through entries of the distance matrix D. By analogy to [23], we can now define the
following objective function using the operator R⋆

ΩRΩ:

minimize
X∈S+

⟨X−M,R⋆
ΩRΩ(X−M)⟩

subject to rank(X) = k,
(2)

where R⋆
ΩRΩ is defined as:

R⋆
ΩRΩ : X ∈ S → L2

m2

∑
α,β∈Ω

⟨X,wα⟩⟨vα,vβ⟩wβ, (3)

and S+ = S ∩ {X ∈ Rn×n | X ⪰ 0} is the set of positive semidefinite matrices centered at the
origin. For the EDG problem, the rank constraint corresponds to the dataset dimension. Note that in
the setting where all the distance measurements are available, the sampling operator is the identity
operator, up to a scaling factor. Consequently, the sampling operator defined in equation (3) can
be viewed as an approximation of the identity operator on set S, given the partial measurements
⟨X,wα⟩α∈Ω and {vα}α∈Ω, up to a scaling factor. It could be surmised that a more natural and
alternative substitute is RΩ. Nevertheless, utilizing RΩ is not feasible since the optimization based
on it would necessitate knowledge of ⟨M,vα⟩α∈Ω-information that is not accessible. This arises
from the fact that, in the EDG problem, the inputs only consist of the scalars {⟨M,wα⟩}wα∈Ω. In
the following theorem, we establish a direct relationship between RΩ and PΩ. This relationship
will be utilized later to construct a computationally tractable representation of R⋆

ΩRΩ.
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Theorem 3.1 Let P = [p1,p2...,pn]
T ∈ Rn×k denote the given set of points and consider any

subset Ω ∈ [L]. For X = PPT and D = [d2ij ] where d2ij = ∥pi − pj∥22, it follows that

RΩ(X) = − L

m
· 1
2
JPΩ(D)J, (4)

where PΩ(D) =
∑

(i,j)∈Ω (⟨D, Ei,j⟩Ei,j + ⟨D, Ej,i⟩Ej,i).

The proof is deferred to the Appendix. This problem equivalence allows us to instead study com-
pletion using RΩ instead of completion using PΩ, and leads us into the definition of our proposed
algorithm. Following the procedure laid out in Section A, we define the following algorithm to
solve the partial EDG problem.

Algorithm 1: R⋆
ΩRΩ Riemannian Gradient Descent for EDG Completion (RieEDG)

Input: PΩ(D): the observed distance information, k: the dimension of the points and η: the
step size.
X0 = EVDk(R⋆

ΩRΩ(X)) = U0Λ0U
T
0

For i = 0, 1...
Gl = R⋆

ΩRΩ(X−Xl);
Wl = Xl + ηPTl

(Gl);
Xl+1 = EVDk(Wl);

End
Output: Xrev

In what follows, we provide the per-iteration computational complexities of each steps.
Computation of gradient: The gradient term requires computing efficiently R⋆

ΩRΩ(Y). Let T (X)
denote the map from a Gram matrix to a squared distance matrix. Some calculation yields that,

R⋆
ΩRΩ(Y) =

L2

m2
· 1
4
T ∗ (PΩ(JPΩ(T (Y))J)) ,

where T ∗ is the adjoint operator of T . The total complexity of computing R⋆
ΩRΩ is O(|Ω|). The

proof of this form of R⋆
ΩRΩ is deferred to the appendix.

Gradient descent and eigenvalue decomposition: Using the technique introduced in [23], Wl

does not need to be directly computed; rather we only compute quantities relevant to the next step
of truncated eigenvalue decomposition. The main steps are: (a) forming two intermediate matrices
that costs O(|Ω|k), (b) computing QR factorizations of the two n × k matrices that costs O(nk2)
and (c) rank-k truncated eigenvalue decomposition of (2k × 2k) matrix, which costs O(k3).

4. Numerical Results
To test these algorithms, various 2- and 3-dimensional datasets were used and are referred to in
Table 1 with their corresponding number of datapoints. The objective of RieEDG is to recover the
full set of points P up to orthogonal transformation from a subset of entries of D chosen using a
Bernoulli sampling model, where each entry has a probability γ of being selected for γ ∈ [0, 1],
with an expected γL entries chosen. RieEDG outputs the Gram matrix X = PPT , from which P
can be recovered. The comparison referenced in Tables 1 and 2 are the relative error between the
recovered matrix Xrev and the ground truth matrix X in Frobenius norm. Each run was terminated
at either 500 iterations or a relative difference between iterates of 10−7.
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Table 1: Relative recovery error ∥X−Xrev∥F /∥X∥F between the recovered Gram matrix and the
true Gram matrix averaged over 10 trials using RieEDG. The 5% timing is the measured
average time to achieve recovery at a 5% sampling rate.

Dataset
γ

5% 3% 2% 1% 5% Timing (sec)

Sphere (3D, n = 1002) 6.2e-07 1.2e-06 9.52e-03 1.08 4.62
U.S. Cities (2D, n = 2920) 5.90e-07 1.613-03 0.0168 0.0796 135
Cow (3D, n = 2601) 5.58e-07 8.62e-06 1.50e-06 0.0095 67.4
Swiss Roll (3D, n = 2048) 5.04e-07 8.84e-07 1.14e-06 0.0604 30.9

Table 2: Relative recovery error ∥X − Xrev∥F /∥X∥F between the recovered Gram matrix and
the true Gram matrix averaged over 10 trials using [18]. The 5% timing is the measured
average time to achieve recovery at a 5% sampling rate.

Dataset
γ

5% 3% 2% 1% 5% Timing (sec)

Sphere (3D, n = 1002) 4.3e-04 0.0013 0.0026 0.62 5.41
U.S. Cities (2D, n = 2920) 4.4e-04 6.7e-04 7.6e-04 0.0016 41.0
Cow (3D, n = 2601) 2.9e-04 3.5e-04 4.7e-04 0.0010 26.6
Swiss Roll (3D, n = 2048) 5.3e-04 6.4e-04 7.6e-04 0.0041 21.1

The strong reconstruction properties of RieEDG indicate its viability for use as a tool for the
EDG problem. The transition from effective reconstruction to poor reconstruction at around 2% is
indicative of the probabilistic nature of reconstruction, as some trials were successful and others
performed very poorly, but with increasing dataset size this problem is mitigated. This indicates
effective scaling of RieEDG for large datasets in the small sampling rate regime. When compared
to the algorithm developed in [18], RieEDG largely provides a higher degree of accuracy while
giving speedups for smaller datasets, particularly in the high sampling regime. It is noticeably
slower for larger datasets and is outperformed in the small sample regime, indicating better scaling
and transition properties for [18]. Work is currently being done to better understand how to initialize
RieEDG to improve low-sampling recovery.

5. Conclusion and Future Directions
In this project we constructed an efficient non-convex algorithm for the Euclidean distance geom-
etry problem via fusing a Riemannian gradient descent-based approach with a dual basis approach
to provide a more natural constraint set for the optimization routine. RieEDG demonstrates strong
reconstruction properties on par with existing methods, and is based on strong theoretical foun-
dations. Future work is predominately dedicated towards fully proving theoretical guarantees for
convergence, as well as considering optimal ways to initialize the algorithm.
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Appendix A. Riemannian Matrix Completion
In [23], the authors propose the following non-convex objective function for matrix completion:

minimize
X∈Rn×n

⟨X−M,PΩ(X−M)⟩

subject to rank(X) = k,
(5)

for some fixed rank k and where

PΩ : X ∈ Rn×n −→
∑

(i,j)∈Ω

⟨X, Ei,j⟩Ei,j . (6)

The work in [23] employs a Riemannian-based gradient descent scheme to solve this problem, with
strong guarantees that the true matrix M is recovered with high probability given a good initializa-
tion. More specifically, the algorithm in [23] is a projected gradient descent algorithm, where the
estimates are updated in the Riemannian gradient descent direction of the objective described in (5)
followed by a retraction mapping onto the manifold of rank-k matrices via rank-k truncated singular
value decomposition (SVD).

More mathematically, let Xl = UlΣlV
T
l be the estimate at the l-th iteration of the algorithm

and let Tl be the tangent space of the rank k manifold centered at Xl. Explicitly, Tl has the form
Tl = {UlY + ZVT

l : Y ∈ Rk×n,Z ∈ Rn×k}. To update to Xl+1, the gradient descent step is
taken on the tangent space with the step size αl followed by SVD truncation step. The updates have
the following form

Xl+1 = SVDk(Xl + ηlPTl
PΩ(X−Xl)), (7)

where SVDk denotes the rank-k truncated SVD. The step size ηl is optimally determined using exact
line search.

Appendix B. Proof of Theorem 3.1
Proof Given a sample Ω of indices i < j ∈ [n] × [n], assume we have the following sampling
operators on the Gram matrix X and the distance matrix D:

PΩ(D)a,b = Da,b if (a, b) or (b, a) ∈ Ω, 0 otherwise

RΩ(X) =
∑
α∈Ω

⟨X,wα⟩vα.

We aim to show that RΩ(X) = −1
2JPΩ(D)J. We will start by expanding the sum for RΩ(X) at a

particular entry (a, b) using the form of the dual basis vi,j from [14]. We have that

RΩ(X) =
∑
α∈Ω

⟨X,wα⟩vα

=
∑

i<j∈Ω
Di,jvi,j

= −1

2

∑
i<j∈Ω

Di,j

(
J(:, i)J(j, :) + J(:, j)J(i, :)

)
.
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Taking the (a, b)-th entry, we get that[
RΩ(X)

]
a,b

=

[
− 1

2

∑
i<j∈Ω

Di,j

(
(J(:, i)J(j, :) + J(:, j)J(i, :)

)]
a,b

= −1

2

∑
i<j∈Ω

Di,j

(
Ja,iJj,b + Ja,jJi,b

)
.

We proceed to examine the J-derived terms. We have that J = I − 1
n11

⊤, and so, for any a, i, we
see that Ja,i = Ia,i − 1

n = δia − 1
n . Therefore, we have

[
RΩ(X)

]
a,b

= −1

2

∑
i<j∈Ω

Di,j

(
Ja,iJj,b + Ja,jJi,b

)

= −1

2

∑
i<j∈Ω

Di,j

(
(δia −

1

n
)(δjb −

1

n
) + (δja −

1

n
)(δib −

1

n
)

)

= −1

2

∑
i<j∈Ω

Di,j

(
δiaδ

j
b −

1

n
δia −

1

n
δjb +

1

n2
+ δjaδ

i
b −

1

n
δja −

1

n
δib +

1

n2

)

= −1

2

∑
i<j∈Ω

Di,j

(
δiaδ

j
b + δjaδ

i
b

)
+

1

2

∑
i<j∈Ω

Di,j
1

n

(
δia + δja

)

+
1

2

∑
i<j∈Ω

Di,j
1

n

(
δib + δjb

)
− 1

2

∑
i<j∈Ω

Di,j(
2

n2
)

= −1

2

(
PΩ(D)a,b − µ

(
PΩ(D)(:, a)

)
− µ

(
PΩ(D)(:, b)

)
+ µ

(
PΩ(D)

))
=

[
− 1

2
JPΩ(D)J

]
a,b

,

which is as desired. In the above, we had to recognize that our sampling operator only picks (i < j),
but either (a < b) or (b < a) can occur, so we need to check both permutations to compute the
column averages correctly.

Lemma B.1 Let T be the map that takes Gram matrices to distance matrices, explicitly defined
as T (X) = 1 · diag(X)T + diag(X) · 1T − 2X. Let mtxdiag(·) denote the function that maps
a column vector in Rn into an n × n diagonal matrix, where the diagonal elements correspond
to the entries of the column vector. Then T ⋆(X) = mtxdiag(X1)) + mtxdiag(XT1) − 2X and
R⋆

ΩRΩ(X) = PΩ(JPΩ(D)J)− mtxdiag(PΩ(JPΩ(D)J1) where D = T (X).

Proof To compute the adjoint, note that

⟨T (X),Y⟩ = ⟨1diag(X)T ,Y⟩+ ⟨diag(X)1T , Y ⟩+ ⟨X,−2Y⟩.

Next, we consider the first two terms on the right hand side of the above equation.

⟨1diag(X)T ,Y⟩ =
∑
i,j

Xi,iYj,i =
〈
X,mtxdiag(YT1)

〉
.

⟨diag(X)1T ,Y⟩ =
∑
i,j

Xi,iYi,j = ⟨X,mtxdiag(Y1)⟩ .
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Using this, we can see that

T ⋆(Y) = mtxdiag(Y1) + mtxdiag(YT1)− 2Y. (8)

If Y is symmetric, the first two terms are equal. We can use this to derive an explicit form of R⋆
Ω(X)

for a symmetric matrix X in terms of T . Notice that

⟨RΩ(X),Y⟩ = −L

2m
⟨JPΩ(T (X))J ,Y⟩ = ⟨−L

2m
T ⋆[PΩ(JYJ)] ,X⟩.

It follows that R⋆
Ω(Y) = −L

2mT ⋆[PΩ(JYJ)]. These results can be combined to better understand the
explicit relationship between R⋆

ΩRΩ(X) and PΩ(D), which enables an efficient implementation.
In particular, we have

R⋆
ΩRΩ(X) =

L2

2m2
R⋆

Ω

[
−1

2
JPΩ(D)J

]
=

L2

2m2
T ⋆

(
PΩ

(
J

[
−1

2
JPΩ(D)J

]
J

))
.

Using the fact that J2 = J, we obtain

R⋆
ΩRΩ(X) =

L2

2m2
T ⋆

(
PΩ

(
−1

2
JPΩ(D)J

))
=

L2

2m2
(PΩ (JPΩ(D)J))− L2

2m2
mtxdiag (PΩ (JPΩ(D)J)1) .

This concludes the proof.
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