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Abstract
Numerous applications in operations research and computer science require a combination of pre-
diction and optimization – use historical data to predict the parameters of an optimization problem
and solve the optimization problem to output a decision. Addressing these two challenges inde-
pendently results in the predict-then-optimize problem. This approach can result in discrepancies
between the prediction error, minimized during training, and the ultimate objective of minimizing
the decision error. Consequently, recent work has focused on the predict and optimize (PO) frame-
work, which focuses on training an end-to-end model from the data to the decisions. We focus on
linear programs (LPs) within the PO framework, where the main challenge is handling the non-
differentiability of LPs. For a linear prediction model, we present a novel reduction from PO to
a convex feasibility problem. This reduction enables us to use alternating projections onto convex
sets for solving the PO problem, resulting in a computationally efficient and theoretically princi-
pled algorithm. Finally, we validate the effectiveness of our approach on synthetic shortest path and
fractional knapsack problems, demonstrating improved performance compared to the prior work.

1. Introduction

Applications in optimal transport and vehicle routing problem [20], financial modeling [13], power
systems [6] [21], healthcare [3], circuit design [11], robotics [25] require a combination of predic-
tion and optimization. For example, scheduling in hospitals leverages historical data to predict
wait-times [5] that are used by a scheduling algorithm that solves an optimization problem. The
standard pipeline in such applications is predict-then-optimize where the coefficients or inputs of an
optimization problem (wait-times in the above example) are first predicted using a machine learn-
ing model. This is followed by running an appropriate optimization algorithm. However, recent
work [12, 18, 29] has argued that predict-then-optimize can be sub-optimal in settings where the
prediction model is imperfect and prone to errors. This is because the model errors are not aligned
to the decisions (output of the optimization algorithm). In the above example, given a model with
finite capacity, we want to estimate better wait-times that have a larger impact on the scheduling
decisions. Consequently, the prediction or learning part of the pipeline needs to be aware of the
decisions of the optimization algorithm. This has given rise to the predict and optimize (PO) frame-
work, where the learning is fused with optimization.

Consequently, in this work, we are interested in training an end-to-end model from the data
to the decisions (a schedule in the above example) without access to any intermediate prediction
target (wait-times in the above example). Throughout, we will assume that we have access to
a dataset that comprises N tuples of the form {(zi, x∗i )}Ni=1 where z is the input to the prediction
model and x∗ is the ground-truth output of the optimization problem. Since numerous combinatorial
problems, including shortest path, max-flow, and depth-first-search, can be cast as linear programs
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(LPs), we will exclusively focus on cases where the optimization problem is an LP. In this case, the
key challenge of the (PO) framework lies in the non-differentiable nature of LPs. This limitation
precludes the use of auto-differentiation techniques. Several approaches have been proposed to
alleviate this problem. We review these below and contrast them with our proposed method.

Constructing Surrogate Losses: Methods such as SPO+ [18], [22] construct surrogate losses
to incorporate the decision error while training the prediction model. However, creating these sur-
rogate losses requires the knowledge of intermediate prediction targets. In contrast, our work does
not assume access to such ground-truth prediction targets.

Differentiating through LPs: Some methods [30] estimate the gradient “through” the LP by
calculating the change in the decision by perturbing the prediction. However, these methods intro-
duce additional hyper-parameters that are non-trivial to tune. A common technique to differenti-
ate through LPs is to use the straight-through-estimator referred to as the identity method in [26].
Given a set of predictions from the model, the identity method uses the LP to estimate the decisions
but does not consider the LP (treats the corresponding Jacobian as an identity matrix) while back-
propagating the gradient from the decisions to the model parameters. Though successful in practice,
this method is not theoretically principled. It can be shown that both these approaches fail to model
the gradient through the LP accurately. The method in [9] computes expected gradients by perturb-
ing the prediction target in different directions. While this method accurately models the gradient, it
is not practically feasible because of the computational cost of solving LPs multiple times for each
update to the model. One advantage of these techniques is their “black-box” nature, meaning that
they only rely on the outputs from an LP, thus allowing the use of faster problem-specific solvers.
In contrast, our work uses the specific properties of an LP, and this additional structure enables us
to develop a computationally efficient and principled technique.

Using KKT conditions: The methods in [1, 2] focuses on (strongly)-convex optimization
problems. It calculates the gradient through such problems by differentiating through its opti-
mality (KKT) conditions. However, since the solutions of LPs are located at the corners of the
feasible polytope, this method will yield zero gradients for LPs. To address this, Wilder et al.
[32] add a quadratic regularization to the LP, thus relaxing the problem to a non-linear strongly-
convex quadratic program (QP) and then use the technique in Amos and Kolter [2]. Similarly, [12]
relax Mixed Integer Programs (MIP) by using a log-barrier regularization followed by the use
of [2]. These approaches suffer from two notable limitations: (i) they introduce additional hyper-
parameters (the regularization strength), and (ii) they are only guaranteed to converge in the vicinity
of the optimal solution (because of the bias introduced by the regularization). While our proposed
framework also uses KKT conditions, it ensures convergence to the optimal solution without intro-
ducing additional hyper-parameters.

Using the reduced cost optimality condition: The method proposed in [28] uses the reduced
cost optimality conditions [23] for LPs. The method constructs a surrogate loss function that en-
courages the prediction to satisfy the reduced cost optimality conditions. The resulting method has
theoretical convergence guarantees, assuming that the LPs are non-degenerate and that the model is
expressive enough to perfectly fit (interpolate) the training data. Both of these are strong assump-
tions and are not necessarily satisfied in practice. In contrast, our proposed framework provides
theoretical guarantees without relying on these assumptions.

Contributions: In Section 3.1, we reduce the PO with a linear model to a convex feasibility
problem. This reduction enables us to use standard algorithms from the projection-onto-convex-
sets (POCS) framework. In Section 3.2, we use alternating projections onto convex sets and in-
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stantiate Algorithm 1 for PO with a linear model. The reduction to POCS guarantees convergence
for Algorithm 1 without additional assumptions such as degeneracy or interpolation. Finally, in Sec-
tion 4, we validate the effectiveness of our approach with experiments on synthetic shortest path
and fractional knapsack problems. Our empirical results demonstrate that Algorithm 1 results in
improved performance compared to the prior work.

2. Problem Formulation

In this section, we outline the problem setup and specify the challenge associated with using auto-
differentiation. In the PO framework, the training dataset is D = {zi, x∗i }Ni=1 where zi ∈ Rd is the
input, Z ∈ Rd×N is the corresponding feature matrix and x∗i ∈ Rm is the corresponding optimal
decision given out by an LP. Without loss of generality, we assume the standard form of LP and
define x̂(c) as the solution to the LP with cost-vector c ∈ Rm,

x̂(c) := argmin
x

⟨c, x⟩ s.t Ax = b, x ≥ 0 , (1)

where A ∈ Rn×m and b ∈ Rm are parameters of the LP. When using the model fθ with parameters
θ to predict the cost-vector, we define x̂(ĉ) as:

x̂(ĉ) = argmin
x

⟨ĉ, x⟩ s.t Ax = b, x ≥ 0, ĉ = fθ(z) . (2)

Given the dataset D, the PO problem is to find the parameters θ such that x̂(fθ(zi)) ≈ x∗i for all
i ∈ [N ]. To gain some intuition as to why auto-differentiation [24] will not work in this setting,
consider the squared loss ℓ(θ) := 1

2

∑N
i=1 ∥x̂i − x∗i ∥2 for a fixed θ, where x̂i := x̂(fθ(zi)). Using

the chain rule to compute the gradient with respect to θ, we get that,

∂l

∂θ
=

∂l

∂x

∂x

∂c

∂c

∂θ
(3)

Here, the first and the last term can be easily calculated. However, since the decision x is piece-wise
constant with respect to c, the corresponding gradient is either 0 or undefined (does not exist). Next,
we will develop an algorithm to solve the PO problem without calculating the gradient ∂x

∂c .

3. Methodology

We present the reduction of the PO problem to the convex set feasibility problem and instantiate the
resulting algorithm.

3.1. Reduction to Convex Feasibility Problem

For an input (z, x∗) ∈ D, we aim to find a c such that x̂(c) = x∗. However, due to the non-
uniqueness of the mapping from x to c, there are potentially infinitely many c values that can yield
x∗. We define C to represent the set encompassing all such values of c. The set C can be repre-
sented by exploiting the optimality conditions for the LP. KKT conditions [19] gives necessary and
sufficient conditions for the optimality of the LP. If x∗ is the solution to the standard LP form, then
the KKT conditions can be written as follows:

ν∗TA+ λ∗ − c = 0, x∗ · λ∗ = 0, Ax∗ = b, λ∗ ≥ 0 (4)
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where λ∗ ∈ Rm, ν∗ ∈ Rn×1 are the optimal dual variables and x∗iλ
∗
i = 0 (for all i) represents

the complementary slackness condition, the equation Ax∗ = b arises from the definition of LP. At
optimality, the tuple (x∗, λ∗, ν∗) must satisfy the Equation 4.

Since the KKT optimality conditions are both necessary and sufficient, given an optimal solution
x∗, we can identify the set of cost vectors c that satisfy these conditions. This enables us to express
C as a convex cone succinctly as,

C = {c, λ, ν |νTA+ λ− c = 0, x∗ · λ = 0, λ ≥ 0} (5)

Note that we omit the condition Ax∗ = b as it is inherently satisfied for a feasible solution x∗.
We define F as the set of cost vectors that are realizable by the linear model parameterized by

θ ∈ Rd×m. Formally, F can be written as:

F = {c |∃θ s.t. c = θT z}. (6)

Our aim is to find a c ∈ C which is also realizable by the model, i.e. it lies in set F . Hence, we aim
to find a c that lies in the intersection (F ∩C). For a linear model, F is a convex set in c; hence, PO
is equivalent to a convex feasibility problem in this setting.

3.2. Algorithm

The commonly employed method for solving convex feasibility problems is the alternating projec-
tions (POCS) algorithm [8] [31]. The POCS algorithm alternatively projects the point from one set
to the other. The algorithm is guaranteed to converge to a point in the intersection if the intersection
is non-empty; otherwise, it converges to the closest point between the two sets [14] [7]. For the
POCS algorithm, we require the projection of an arbitrary point q onto the set C. This corresponds
to solving the quadratic program (QP) as follows:

PC(q), ν
∗, λ∗ = argmin

c,ν,λ
||c− q||22 + 0λ+ 0ν

subject to νTA− c+ λ = 0, λ · x∗ = 0, λ ≥ 0 (7)

Equation (7) returns a point PC(q), the Euclidean projection of q onto C. For the projection of a
point q onto the set F , we require solving the following regression problem,

θ̂ := argmin
θ

1

2
||q − θT z||2 ; PF (q) = θ̂T z (8)

Hence, POCS consists of alternatively solving the optimization problems in Equations (7) and (8).
In order to extend the above idea to N training points, we will define sets Ci := {ci|νTi A − ci +
λi = 0, λi ≥ 0, λi · x∗i = 0} for each i ∈ [N ], and define C = {(c1, c2.., cN )|∀i ∈ [N ] , ci ∈
Ci} = C1 ×C2 . . .×CN , where (c1, c2.., cN ) ∈ RNm is a concatenated vector of the cost-vectors.
Similarly, we define F := {(c1, c2.., cN )|∃θ s.t. ∀i ∈ [N ] , ci = θT zi}. Hence, the projection onto
C corresponds to solving a QP for every point i ∈ [N ]. Projecting an arbitrary point q̃ ∈ RNm onto
F involves solving the regression problem, θ̂ := argminθ

1
2 ||q̃ − vec(θTZ)||2, where vec(B) ∈

RNm denotes the row-wise rasterization of a matrix B ∈ RN×m. We note that both C and F are
convex; hence, our theoretical guarantees hold for the resulting algorithm. Finally, we note that our
algorithmic framework can handle a generic model fθ, though our theoretical results only hold for
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Algorithm 1: End-to-end learning for LP problem

Input: A, b, Training dataset D ≡ (zi, x
∗
i )

N
i=1 ;

Initialize θ1;
for t = 1, 2, .., T do

ĉi = fθt(zi), ∀i ∈ [N ] ;
for i = 1, 2, .., N do

qi = PCi(ĉi) by solving the optimization problem in Equation (7)
end
θt+1 = argminθ

1
2

∑N
i=1 ||qi − θT zi||2

end
Output: θT+1

a linear model. The complete algorithm for a generic model fθ is described in Algorithm 1 and is
referred to as revgrad. In addition to having convergence guarantees, our algorithmic framework
offers a notable computational advantage: it permits multiple updates to θ for each call to the QP
solver in Equation (7). This feature is especially important when solving the QP is computationally
expensive.

3.3. Practical Considerations

To enhance the practical performance of our algorithm, we redefine the set C = {νTA − c + λ =
0, λi I{x∗i ̸= 0} = 0, λi I{x∗i = 0} ≥ ϵ} to include a margin ϵ. There are three key motivations
for adding the margin in the set C. Firstly, without margin, the algorithm can converge to a triv-
ial solution ĉ = 0. Secondly, the algorithm will converge to the boundary of C, and the margin
forces the solution to be in the interior of C. Finally, adding a margin improves the generaliza-
tion performance [17]. Recently, Sun et al. [28] have also noted the benefits of adding a margin
to enhance performance. In our approach, we adopt a similar margin formulation as [28] and in-
troduce corresponding modifications to the KKT conditions, resulting in the modified set C above.
In Appendix A, we prove that our margin formulation generalizes that in Sun et al. [28] to handle
degenerate LPs. Throughout our experiments, we set ϵ = 1.

4. Experiments

We conduct numerical experiments for two LP problems – the shortest path (SP) problem and the
fractional Knapsack problems in [28]. These synthetic datasets consist of (zi, c∗i , x

∗
i ) pairs where

x∗i = x̂(c∗i ). We compare our proposed method (revgrad) against several existing methods,
including identity [26], redcost [28], blackbox [30], optnet [2], SPO+ [10] on both tasks. For all
the methods, we implement the LPs and QPs using the CVXPY library [15]. For LPs, we use the
ECOS solver [16], and for QPs, we use the OSQP solver [27]. For further details regarding the
datasets and hyperparameter settings for each method, refer to Appendix B. We note that SPO+
requires access to ground-truth cost-vector c∗; while other methods, including revgrad, do not
assume access to these vectors. For each method, we plot the estimate-loss on both the train and
test set, Estimate-Loss(θ) =

∑N
i=1⟨c∗i , x̂(fθ(zi))⟩ − ⟨c∗i , x∗i ⟩. Figure 1 demonstrates that revgrad
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Figure 1: Training and Test plot for the Shortest Path and Fractional Knapsack tasks. For both prob-
lems, revgrad significantly outperforms the other methods (identity, optnet, blackbox,
redcost) and is comparable to SPO+, that uses the knowledge of c∗.

significantly outperforms the other methods (identity, optnet, blackbox, redcost) and is comparable
to SPO+ that uses the knowledge of c∗.

5. Discussion

We presented a reduction of the PO problem to convex feasibility, which guarantees theoretical
convergence for linear models. We empirically compared the resulting algorithm on the Shortest
Path and Fractional Knapsack tasks, demonstrating superior performance compared to the baselines.
Future directions include (a) benchmarking our algorithm for non-convex real-world problems and
(b) extending the algorithm to handle the stochastic setting.
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Supplementary Material

Organization of the Appendix

A Equivalence between the KKT formulation and [28]

B Dataset and Experimental Setup Details

Appendix A. Equivalence between the KKT formulation and [28]

In this section, we derive the equivalent margin for the KKT formulation as in Sun et al. [28].
From KKT conditions, we have νTA − c + λ = 0. Consider B as the set of indices in basis,

and N represents otherwise. Now, separating the above equation in terms of these two sets, we get:

νTAB − cB + λB = 0 (9)

νTAN − cN + λN = 0 (10)

where AB, AN are the the corresponding columns of matrix A defined by set B and N respectively.
Moreover, matrix AB is an invertible square matrix.

Now, from the complementary slackness conditions, we have λ · x∗ = 0. Considering non-
degenerate case for equivalence with [28], we have xi > 0( ∀i ∈ B). This implies that λB = 0.
Substituting this value in Equation (9), we get:

νT = cB(AB)
−1 (11)

λN = cN − νTAN (12)

λN = cN − cB(AB)
−1AN (13)

Furthermore, the condition λN ≥ 0 implies that cN − cB(AB)
−1AN ≥ 0. Thus, we retrieve

the reduced cost optimality condition using the KKT conditions. Therefore, the equivalent of cN −
cB(AB)

−1AN ≥ ϵ to the KKT formulation would be to impose the same constraint on λN , i.e.
λN ≥ ϵ.

To see the extension to the degenerate case, we can apply similar steps to derive the margin
conditions. Consider a degenerate case in which ∃i ∈ B such that xi = 0. In this case, λi(∀i ∈
{B}) is not necessarily 0. To solve this issue, consider a new set of basis Bd, Nd such that xiI{i ∈
Bd} > 0, xiI{i ∈ Nd} = 0. Substituting these values into Equation (11), we obtain:

νT = cBd
(A†

Bd
) (14)

λNd
= cNd

− νTANd
(15)

λNd
= cN − cB(A

†
Bd

)ANd
(16)

Here, A†
Bd

is the pseudo-inverse of the matrix ABd
as matrix ABd

is not a invertible.
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To retrieve margin, we can impose the same constraints λNd
≥ ϵ. This approach also resolves

the challenge of computing suitable B and N for the degenerate case, as there are exponentially
many realizations of B and N , and the performance varies based on a particular choice.

We incorporate this modification in Equation (7) to introduce a margin in the set C. Notably,
this formulation eliminates the requirement for special treatment for degenerate/non-degenerate
cases.

Appendix B. Dataset and Experimental Setup Details

B.1. Dataset Details

We generated N = 100 samples for each task’s training and test sets. We used the codebase
provided by the [28] to generate the dataset.

The Shortest Path problem is defined on a 5 × 5 grid with m = 40 directed edges associated
with the ground truth cost-vector c∗ ∈ Rm. Input z ∈ Rd with d = 6. Thus, θ ∈ Rd×m. To make
the problem harder, we use the degree = 4 in the data-generation process. We experimented with
varying degrees and found the trend to be similar in all the cases.

The Fractional Knapsack problem is defined with input z ∈ Rd with d = 5. We have 10
items with associated cost-vectors, and slack variables are added to convert the problem to standard
form, making the dimension m = 21. Thus, θ ∈ Rd×m. To make the problem harder, we use the
degree = 2 in the data-generation process with the attacking noise of attack − power = 3.0.

Refer to the Appendix in [28] for more details regarding the data-generation process.

B.2. Hyper-parameters for methods

In the revgrad, we solve the regression problem using closed-form solutions obtained through
matrix inversion. For the redcost method, we employ the Armijo line search algorithm [4] with
Gradient Descent. The identity method utilizes the Armijo line search for the Shortest Path task
and a grid search for the Knapsack task. In the blackbox, optnet and SPO+ method, grid search
is used to find the best learning rate for both tasks. For grid-search, we choose constant lr ∈
{10, 1, 0.1, 0.01, 0.001}, which gives the best performance.

Notably, we did not conduct a grid search for hyper-parameters, such as the regularizer in optnet
and the perturbation weight λ in blackbox.

It’s important to highlight that redcost for the Shortest Path task is trained with knowledge of c∗

since it employs B∗, N∗ derived from c∗. Note that the LP in the Shortest Path task is degenerate,
and the optimal B∗ is not unique. Utilizing other values of B∗, N∗ led to suboptimal performance
in our experiments.
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