
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Efficient Learning in Polyhedral Games via Best Response Oracles*

Darshan Chakrabarti DC3595@COLUMBIA.EDU
IEOR Department, Columbia University

Gabriele Farina GFARINA@MIT.EDU
EECS Department, MIT

Christian Kroer CK2945@COLUMBIA.EDU

IEOR Department, Columbia University

Abstract
We study online learning and equilibrium computation in games with polyhedral decision sets with
only first-order oracle and best-response oracle access. Our approach achieves constant regret in
zero-sum games and O(T 1/4) in general-sum games while using only O(log t) best-response queries
at a given iteration t. This convergence occurs at a linear rate, though with a condition-number
dependence. Our algorithm also achieves best-iterate convergence at a rate of O(1/

√
T) without

such a dependence. Our algorithm uses a linearly convergent variant of Frank-Wolfe (FW) whose
linear convergence depends on a condition number of the polytope known as the facial distance. We
show two broad new results, characterizing the facial distance when the polyhedral sets satisfy a
certain structure.

1. Introduction

Learning in games is a well-studied framework in which agents iteratively refine their strategies
through repeated interactions with their environment. Best-responding is a natural way for agents to
refine their strategies iteratively. This leads to the question: what are the best convergence guarantees
that can be obtained for the computation of Nash equilibria in two-player zero-sum games or coarse
correlated equilibria in multiplayer games when learning using a best-response oracle?

In the online learning community, methods based only on best-response oracles are special cases
of methods based on a linear minimization oracle (LMO), which can be queried for points that
minimize a linear objective over the feasible set. Such methods are known as projection-free methods
because they may avoid potentially expensive projections onto the feasible set.

Projection-free online learning algorithms might perform multiple LMO calls per iteration, so
our paper and related literature are concerned with both the number of iterations T of online learning
and the total number of LMO calls, which we denote by N . Since LMOs for polyhedral decision sets
essentially correspond to best-response oracles (BROs), we will use these two terms interchangeably.

The table below compares our algorithm with FTPL [36] and OFTPL [53] which have the best-
known guarantees for the setting we consider. In the table, we also include a non-optimistic version of
our algorithm; despite having worse theoretical guarantees than existing projection-free algorithms,
it outperforms them in our numerical experiments.

The optimization community has also done substantial work on developing projection-free
methods, spurred by the work of Frank and Wolfe [24]. Guarantees for the Frank-Wolfe algorithm

* The full version of this paper can be found at https://arxiv.org/abs/2312.03696.

© D. Chakrabarti, G. Farina & C. Kroer.

https://arxiv.org/abs/2312.03696

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

typically assume the function f being optimized is smooth (has Lipschitz gradient) and convex,
the domain X being optimized over is convex and compact, and that the algorithm has access to a
first-order oracle for the function which returns gradients ∇f(x) at a queried point x and a LMO
which returns solutions to minimization problems of the form argminx∈X ⟨c,x⟩ for any choice of
c ∈ Rn. Given an initial iterate x(0), it produces new iterates given by the following update rule:

x(t+1) =
t

t+ 2
x(t) +

2

t+ 2
argmin
x′∈X

⟨∇f(x(t)),x′⟩

In recent years, there has been work on developing FW-based approaches to saddle-point computa-
tion (e.g., Gidel et al. [28], Lan and Zhou [43]). However, Gidel et al. [28] only has fast convergence
guarantees for strongly convex-concave objectives, and Lan and Zhou [43] are only able to provide
O(1/

√
N) convergence to saddle-points. On the other hand, our method is able to leverage a FW

variant, away-step Frank-Wolfe (AFW), to achieve faster convergence rates.
An extended discussion of related work is given in Appendix A.1.

Contributions We present a projection-free online learning method, Approximate Reflected Online
Mirror Descent, using away-step Frank-Wolfe (AFW-ROMD), for learning over compact and convex
polyhedral decision sets. Using the linear convergence of AFW for polyhedral domains, we implement
approximate steps of reflected online mirror descent (ROMD) using only a logarithmic number of
AFW iterations. While using FW-based methods to approximate proximal steps has been previously
studied, pioneered by work of Lan and Zhou [43], it is a surprising blind spot in the literature that the
connection to regret guarantees for games has not previously been made.

As can be seen in Table 1, in a two-player zero-sum polyhedral game, when both players employ
AFW-ROMD, it is possible to converge to a Nash equilibrium in a two-player zero-sum game at a rate of
O(logN/N). More generally, we show that AFW-ROMD requires only O(log t) best-response queries
at each self-play iteration t while guaranteeing constant social regret, as well as O(T 1/4) regret
for each player after T total iterations of self-play. We go on to study the last-iterate convergence
properties of AFW-ROMD in self-play in zero-sum settings. We show that the last iterate converges
at a condition-number-dependent linear rate (up to error induced by the approximate proximal
computation). To the best of our knowledge, these are both the first last-iterate convergence and the
first linear-rate convergence results for self-play dynamics that purely rely on best-response oracles.
We also show asymptotic last-iterate convergence at a condition-number-free rate of O(1/

√
T).

The linear convergence of AFW depends on the facial distance constant of the polytope in question
(in addition to the strong convexity and smoothness constants). To that end, we show two novel lower
bounds on the facial distance of a polytope. Our first result concerns polytopes that can be described
in the form Ax = b,x ≥ 0 where x ∈ Rn. Let γ be the minimum value of a nonzero coordinate
of a vertex in the polytope. Then, we show that the facial distance is at least γ/

√
n. The fact that

the facial distance is only square-root power small in the dimension of the problem ensures that the
convergence rate of linearly convergent FW variants over these polytopes does not scale poorly as
the ambient dimension of the problem increases. Our second result concerns an integral polytope
P given by Ax = b,Cx ≤ d,x ≥ 0 where x ∈ Rn, with C ≥ 0 a non-zero integral matrix, and
d ≥ 0. In that case, we show that the facial distance is at least 1/(∥C∥∞

√
n).

Finally, we conduct experiments demonstrating competitive practical performance of our al-
gorithm relative to other projection-free algorithms when computing Nash and coarse correlated
equilibria in polyhedral games.

2

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

∇ computations LMO calls Social regret Avg. social regret
Algorithm at iteration t at iteration t

∑
iReg

(T)
i

∑
i
1
T Reg

(T)
i

FTPL [36] O(1) O(1) O(
√
T) O(1/

√
N)

Optimistic FTPL (OFTPL) [53] O(1) O(T) O(1) O(1/
√
N)

AFW-OMD [this paper] O(1) O(log t) O(
√
T) O(

√
logN/N)

AFW-ROMD [this paper] O(1) O(log t) O(1) O(logN/N)

Table 1: Number of gradient (∇) computations, number of LMO calls, cumulative regret (as a
function of the total number of iterations T), and average regret (as a function of total LMO calls N)
of various projection-free algorithms. In two-player zero-sum games, average social regret upper
bounds the duality gap to Nash equilibrium for the averaged iterates.

2. New Results on Polyhedral Facial Distance

Frank-Wolfe (FW) is a projection-free algorithm that converges with rate O(1/T) for smooth convex
functions over convex compact sets. Away-Step Frank Wolfe (AFW) is a variant of Frank-Wolfe
which achieves linear convergence for strongly convex objectives over polyhedral sets [30, 41, 60].
Pseudocode for AFW is provided in Appendix A.

The facial distance δ of a polytope is a relevant quantity when characterizing the convergence
rate of several linearly convergent variants of FW, including AFW. It can be defined concisely using a
theorem from [49]: δ(P) = minF∈faces(P)

∅⊆F⊆P
dist(F ,Conv(Vert(P) \ F)). Theorem 1 demonstrates

the convergence rate dependence of AFW on the facial distance.

Theorem 1 (AFW for strongly convex functions over polyhedral sets [41]) In order to compute an
ϵ-optimal solution to a µ-strongly convex L-smooth function over a convex polytope that has diameter
D and facial distance δ, AFW requires O(LD

2

δ2
log LD

ϵ) LMO calls.

In general, computing the facial distance is considered to be non-trivial for most polytopes besides
hypercubes, unit ℓ1 balls, and simplices [6, 10, 27], since the definition requires evaluating a combina-
torial number of distances. We provide lower bounds on the facial distance in special cases where the
constraints of the polytope can be written in a certain form. The proofs are deferred to Appendix C.
For any 0/1-polytope, X , δ(X) ≥ 1√

n
since Theorem 2 holds with γ = 1 for 0/1 polytopes.

Theorem 2 Let P be a polytope given by Ax = b,x ≥ 0 where x ∈ Rn. Let γ be the minimum
value of a nonzero coordinate of a vertex. Then δ(P) ≥ γ√

n
. Moreover, if the optimal solution lies in

a face F such that k coordinates are zero, then δ(P) ≥ γ√
k

.

Theorem 3 Let P be an integral polytope given by Ax = b,Cx ≤ d,x ≥ 0 where x ∈ Rn, with
C ≥ 0 a nonzero integral matrix, and d ≥ 0. Then δ(P) ≥ 1

∥C∥∞
√
n

.

3. Approximate Reflected Online Mirror Descent using Away-Step Frank-Wolfe

In this section, we propose a framework of algorithms that uses approximate proximal updates instead
of exact proximal updates. We show that this framework still retains several nice properties of ROMD,
up to the error in the approximation oracle. Then, we propose the use of linearly convergent variants
of FW for implementing the approximate proximal step, specifically when the regularizer is smooth
and strongly convex (as is the case with the Euclidean regularizer) and the decision set is a convex
polytope, which is the case in normal-form games (NFGs) and extensive-form games (EFGs).

3

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

We abstract away the concept of computing an approximate proximal update using what we call
an approximate proximal oracle (APO).

Definition 1 (Approximate proximal oracle) An APOX , given a choice of convex and compact
set X , takes as input a function f : X → R, a L-smooth and 1-strongly convex regularizer φ, a prox
center xc, and a desired accuracy ϵ ≥ 0, and returns x′ ∈ X such that

f(x′) +Dφ

(
x′ ∥xc

)
≤ min

x∈X

{
f(x) +Dφ(x ∥xc)

}
+ ϵ. (APO)

While our framework can be adapted to various online learning algorithms, we illustrate the
framework using ROMD.

Given a convex and compact set X ⊆ Rn, a L-smooth, 1-strongly convex regularizer φ : X →
R≥0, step-size η > 0, ϵ(t) the desired accuracy of the prox call at iteration t, and an APO for
X , we consider the following update for the next strategy: x(t) = APOX (−η⟨ℓ(t−1) + m(t) −
m(t−1), ·⟩, φ,x(t−1), ϵ(t)), where ℓ(t) is the loss received at iteration t, and m(t) is the prediction of
the loss to be used at iteration t. Proofs for results in this section are deferred to Appendix D.

When the above framework is instantiated with AFW (Algorithm 1) as the APO, we refer to it as
AFW-ROMD. We are able to show ergodic convergence to equilibrium and characterize average regret
in terms of LMO calls for AFW-ROMD.
Theorem 4 An ϵ′-Nash equilibrium in any two-player zero-sum polyhedral game can be computed
in O(1/ϵ′) iterations of the above framework. This corresponds to O(maxi∈{1,2}

1
ϵ′

LiD
2
i

δ2i
log
[
LiDi
ϵ′

]
)

LMO calls when using AFW-ROMD.

Theorem 5 An ϵ′-CCE in any N -player general-sum polyhedral game can be computed in O(1/ϵ′
4
3)

iterations of the above framework. This corresponds to O(maxi∈[N]
1

ϵ′
4
3

LiD
2
i

δ2i
log
[
LiDi
ϵ′

]
) LMO calls

when using AFW-ROMD.

Last Iterate Convergence We obtain asymptotic last-iterate convergence to an approximate Nash
equilibrium, when

∑N
i=1Reg

(t)
i ≥ 0 for any t ∈ N, adapting a result from Anagnostides et al.

[3]. A wide class of games, including two-player NFGs and EFGs, polymatrix zero-sum games,
constant-sum polymatrix games, strategically zero-sum games, and polymatrix strategically zero-sum
games satisfy this condition on social regret [3]; thus, our result holds for this class of games as well.

Theorem 6 For any N -player general-sum polyhedral game, given ϵ ∈ (0, 1), let Player i em-
ploy the above framework with ϵ

(t)
i = ϵ2 and m

(t)
i = ℓ

(t−1)
i . Let ηmax ≤ 1

2
√
2(N−1)

where ηmax =

maxi∈[N] ηi and suppose
∑N

i=1Reg
(t)
i ≥ 0 for any t ∈ N. Define αi =

(
1
ηi

+ 2Ωi
ηi

(Li +N − 1) + 1
)

.

Then, after T >
⌈
8ηmax

ϵ2
∑N

i=1
(Ωi+2)

ηi

⌉
iterations, there exists x(t) with t ∈ [T] which is an

ϵ
(
maxi∈[N]

√
2ηi(

2LiDi
ηi

+ 3) + αi

)
-approximate Nash equilibrium. AFW-ROMD will yield an iterate

that is an ϵ′-approximate Nash equilibrium in O
(
maxj∈[N]

{
ηmaxα2

j

ϵ′2
∑N

i=1(
Ωi+2
ηi

)
LiD

2
i

δ2i
log
[
LiDiαj

ϵ′

]})
LMO calls when ϵ ≤ mini∈[N]

ϵ′

αi
.

In the two-player zero-sum case, we also obtain last-iterate linear-rate convergence to ϵ′-equilibria
when instantiated with the Euclidean regularizer, φi(xi) =

1
2∥xi∥22 for i ∈ {1, 2}, for any ϵ′.

4

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Theorem 7 In any two-player zero-sum polyhedral game, both players employing the approximate-
proximal-step-based framework presented in Section 3 with m

(t)
i = ℓ

(t−1)
i , ϵ(t)i = ϵ, φi(xi) =

1
2∥xi∥22, and ηi = η ≤ 1

4 yields linear last-iterate convergence to a
(16+C1)ϵ+32maxi∈{1,2}

√
2ηϵ(2LiDi+3η)

C2
-

approximate Nash equilibrium, where ν is a game-dependent constant associated with the SP-MS
condition, C1 = 2(1 + 4η2ν2

25), and C2 = min(12 ,
η2ν2

25):

dist(z(t),Z∗)2 ≤ 2

(
1 +

C2

4

)−t

dist(z(1),Z∗)2+
(16 + C1)ϵ+ 32maxi∈{1,2}

√
2ηϵ(2LiDi + 3η)

C2
.

In the same setting (m(t)
i = ℓ

(t−1)
i , ϵ(t)i = ϵ, and ηi = η ≤ 1

4), if it is assumed that both players are
applying AFW-ROMD, then they can achieve linear last-iterate convergence to a 48+C1

C2
ϵ-approximate

Nash equilibrium, with the same definitions for ν, C1, C2.

dist(z(t),Z∗)2 ≤ 2

(
1 +

C2

4

)−t

dist(z(1),Z∗)2 +
48 + C1

C2
ϵ.

AFW-ROMD requires

O

(
max
i∈{1,2}

log 2C2+48+C1
C2ϵ′

log 4+C2
4

LiD
2
i

δ2i
log

[
(2C2 + 48 + C1)LiDi

C2ϵ′

])
.

LMO calls to compute an ϵ′-NE. Furthermore, the approximate solution it returns will have support
of size O

(
maxi∈{1,2}

LiD
2
i

δ2i
log
[
LiDi(2C2+48+C1)

C2ϵ′

])
.

4. Experimental Results and Discussion

We conduct experiments on standard EFG benchmarks to demonstrate the numerical performance
of our algorithm relative to known algorithms from the literature. Details of games are provided
in Appendix F. In addition to evaluating AFW-ROMD, we also consider its non-optimistic variant,
AFW-OMD, which corresponds to using AFW as an APO for the prox computation in vanilla OMD. We
use the Euclidean regularizer, φi(xi) =

1
2∥xi∥22 for i ∈ [N].

We compare against FTPL and OFTPL, fictitious play (FP) [11] and best-response dynamics (BR),
the latter two being unregularized variants of FTRL/FTPL and OMD, respectively. Finally, we also
compare to optimistic versions of fictitious play (OFP) and best-response dynamics (OBR). We provide
pseudocode for all of these algorithms in Appendix G; the pseudocode for these algorithms explicitly
demonstrates that only one LMO call is required per iteration of these algorithms. Because FP and BR
represent unregularized variants of FTRL/FTPL and OMD, they can be thought of as letting the stepsize
be arbitrarily large for FTRL and OMD respectively (as the stepsize grows arbitrarily large or noise
grows arbitrarily small).

For AFW-OMD, AFW-ROMD, FTPL, and OFTPL, we try η ∈ 0.01 · 2[14], where η is the stepsize for
our algorithms, while η is the noise used for FTPL and OFTPL. Additionally, we try uniform, linear,
and quadratic iterate averaging for all algorithms, as well as last-iterate. Non-uniform averaging
schemes are known to often outperform uniform averaging when solving BSPPs [25, 55]. Note
that we demonstrate theoretical guarantees for last-iterate convergence of AFW-ROMD, whereas the

5

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

101 103

Average num. LMO calls per player

10−6

10−3

100
N

as
h

ga
p

Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−1

101
Two-player Leduc poker

AFW-OMD AFW-ROMD FTPL OFTPL FP OFP BR OBR

101 103

Average num. LMO calls per player

10−4

10−2

100
Two-player Liar’s Dice

101 103

Average num. LMO calls per player

10−3

10−1

M
ax

in
di

vi
du

al
av

er
ag

e
re

gr
et Three-player Kuhn poker

101 103

Average num. LMO calls per player

10−2

100
Three-player Liar’s Dice

AFW-OMD AFW-ROMD FTPL OFTPL FP OFP BR OBR

101 103

Average num. LMO calls per player

10−4

10−2

100
Three-player Goofspiel (3 ranks)

Figure 1: Convergence to equilibrium (Nash eq. and CCE) as a function of average LMO calls per
player for AFW-OMD, AFW-ROMD, FTPL, OFTPL, FP, OFP, BR, and OBR.

other algorithms are not known to have such guarantees. Moreover, in the case of averaging, we
examine the effects of applying adaptive restarting in Appendix H. Adaptive restarts are known to
lead to linear convergence for polyhedral BSPPs for some algorithms, as they satisfy a sharpness
property [5, 23, 29, 56].

For our algorithms and (O)FTPL, we restrict the number of LMO calls per iteration to be in
{1, 2, 3, 4, 5, 10, 20, 100, 200}. We find that using the number of LMO calls as a termination criterion
generally works best for our algorithms as well. Furthermore, we use warmstarting for our algorithm,
which involves initializing the active set of AFW in the current iteration of our algorithms with the
active set of AFW in the previous iteration. We provide complete pseudocode for adaptive restarting
and various iterate averaging schemes in Appendix G. We conduct ablation on the averaging scheme,
termination criteria, and restarting in Appendix H. For each of the six algorithms, we use the choice
of step size, number of LMO calls, and averaging, which generally leads to the best performance for
each game. We provide additional graphs in Appendix H demonstrating that the performance of our
algorithms relative to the others generally holds irrespective of the choice of the averaging. All of
our experiments are run until the average number of LMO calls for each player is 104.

We show the results of running our algorithms on two-player Kuhn poker, two-player Leduc
poker, two-player Liar’s Dice, three-player Kuhn poker, three-player Liar’s Dice, and three-player
Goofspiel (3 ranks) in Figure 1, seeking to compute Nash equilibria in the former three games
and CCE in the latter three games. In the case of NE computation, AFW-ROMD outperforms existing
algorithms in all three games (while (O)FTPL achieves low Nash gaps, it erratically jumps to high
gaps in following iterations). In the case of CCE computation, we measure the maximum individual
player’s average regret since a bound of ϵ′ on each player’s average regret corresponds to an ϵ′-CCE.
Again, in all of the games, our algorithms are competitive with existing algorithms.

6

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

References

[1] Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. Perturbation techniques in online learning
and optimization. Perturbations, Optimization, and Statistics, 233, 2016.

[2] Ioannis Anagnostides, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and
Tuomas Sandholm. Uncoupled learning dynamics with O(log T) swap regret in multiplayer
games. In Neural Information Processing Systems (NeurIPS), 2022.

[3] Ioannis Anagnostides, Ioannis Panageas, Gabriele Farina, and Tuomas Sandholm. On last-
iterate convergence beyond zero-sum games. In International Conference on Machine Learning
(ICML), 2022.

[4] Ioannis Anagnostides, Gabriele Farina, and Tuomas Sandholm. Near-optimal Φ-regret learning
in extensive-form games. In International Conference on Machine Learning (ICML), 2023.

[5] David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. Faster first-order primal-dual
methods for linear programming using restarts and sharpness. Mathematical Programming,
201(1-2):133–184, 2023.

[6] Mohammad Ali Bashiri and Xinhua Zhang. Decomposition-invariant conditional gradient for
general polytopes with line search. In Neural Information Processing Systems (NIPS), 2017.

[7] Amir Beck and Shimrit Shtern. Linearly convergent away-step conditional gradient for non-
strongly convex functions. Mathematical Programming, 164:1–27, 2017.

[8] Immanuel M. Bomze, Francesco Rinaldi, and Damiano Zeffiro. Frank–Wolfe and friends: a
journey into projection-free first-order optimization methods. 4OR, 19:313–345, 2021.

[9] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015.

[10] Gábor Braun, Alejandro Carderera, Cyrille W. Combettes, Hamed Hassani, Amin Karbasi,
Aryan Mokhtari, and Sebastian Pokutta. Conditional gradient methods. arXiv preprint
arXiv:2211.14103, 2022.

[11] George W. Brown. Iterative solution of games by fictitious play. Activity Analysis of Production
and Allocation, 13(1):374, 1951.

[12] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science, 359(6374):418–424, 2018.

[13] Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted
regret minimization. In AAAI Conference on Artificial Intelligence (AAAI), 2019.

[14] Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365
(6456):885–890, 2019.

[15] Darshan Chakrabarti, Jelena Diakonikolas, and Christian Kroer. Block-coordinate methods and
restarting for solving extensive-form games. arXiv preprint arXiv:2307.16754, 2023.

7

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

[16] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret algo-
rithms for zero-sum games. Games and Economic Behavior, 92:327–348, 2015.

[17] Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. Near-optimal no-regret
learning in general games. In Neural Information Processing Systems (NeurIPS), 2021.

[18] Gabriele Farina, Andrea Celli, Nicola Gatti, and Tuomas Sandholm. Ex ante coordination and
collusion in zero-sum multi-player extensive-form games. In Neural Information Processing
Systems (NeurIPS), 2018.

[19] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Better regularization for sequential
decision spaces: Fast convergence rates for Nash, correlated, and team equilibria. In ACM
Conference on Economics and Computation (EC), 2021.

[20] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive
Blackwell approachability: Connecting regret matching and mirror descent. In AAAI Conference
on Artificial Intelligence (AAAI), 2021.

[21] Gabriele Farina, Ioannis Anagnostides, Haipeng Luo, Chung-Wei Lee, Christian Kroer, and
Tuomas Sandholm. Near-optimal no-regret learning dynamics for general convex games. In
Neural Information Processing Systems (NeurIPS), 2022.

[22] Gabriele Farina, Chung-Wei Lee, Haipeng Luo, and Christian Kroer. Kernelized multiplicative
weights for 0/1-polyhedral games: Bridging the gap between learning in extensive-form and
normal-form games. In International Conference on Machine Learning (ICML), 2022.

[23] Olivier Fercoq. Quadratic error bound of the smoothed gap and the restarted averaged primal-
dual hybrid gradient. arXiv preprint arXiv:2206.03041, 2023.

[24] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

[25] Yuan Gao, Christian Kroer, and Donald Goldfarb. Increasing iterate averaging for solving
saddle-point problems. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

[26] Dan Garber and Elad Hazan. Faster rates for the Frank-Wolfe method over strongly-convex
sets. In International Conference on Machine Learning (ICML), 2015.

[27] Dan Garber and Ofer Meshi. Linear-memory and decomposition-invariant linearly convergent
conditional gradient algorithm for structured polytopes. In Neural Information Processing
Systems (NIPS), 2016.

[28] Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. Frank-Wolfe algorithms for saddle
point problems. In Artificial Intelligence and Statistics (AISTATS), 2017.

[29] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with O(ln(1/ϵ))
convergence for ϵ-equilibrium in two-person zero-sum games. Mathematical Programming,
133(1):279–298, 2012.

[30] Jacques Guélat and Patrice Marcotte. Some comments on Wolfe’s ‘away step’. Mathematical
Programming, 35(1):110–119, 1986.

8

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

[31] Elad Hazan and Satyen Kale. Projection-free online learning. In International Coference on
Machine Learning (ICML), 2012.

[32] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016.

[33] Samid Hoda, Andrew Gilpin, Javier Pena, and Tuomas Sandholm. Smoothing techniques for
computing Nash equilibria of sequential games. Mathematics of Operations Research, 35(2):
494–512, 2010.

[34] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning (ICML), 2013.

[35] Pooria Joulani, András György, and Csaba Szepesvári. A modular analysis of adaptive (non-
)convex optimization: Optimism, composite objectives, and variational bounds. In International
Conference on Algorithmic Learning Theory (ALT), 2017.

[36] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

[37] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-Łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2016.

[38] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria
for extensive two-person games. Games and Economic Behavior, 14(2):247–259, 1996.

[39] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster algo-
rithms for extensive-form game solving via improved smoothing functions. Mathematical
Programming, pages 1–33, 2020.

[40] Harold W. Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:
97–103, 1950.

[41] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-Wolfe
optimization variants. In Neural Information Processing Systems (NIPS), 2015.

[42] Guanghui Lan. Gradient sliding for composite optimization. Mathematical Programming, 159:
201–235, 2016.

[43] Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex optimization. SIAM
Journal on Optimization, 26(2):1379–1409, 2016.

[44] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling
for regret minimization in extensive games. In Neural Information Processing Systems (NIPS),
2009.

[45] Chung-Wei Lee, Christian Kroer, and Haipeng Luo. Last-iterate convergence in extensive-form
games. In Neural Information Processing Systems (NeurIPS), 2021.

9

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

[46] Viliam Lisỳ, Marc Lanctot, and Michael Bowling. Online Monte Carlo counterfactual regret
minimization for search in imperfect information games. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2015.

[47] Yu Malitsky. Projected reflected gradient methods for monotone variational inequalities. SIAM
Journal on Optimization, 25(1):502–520, 2015.

[48] Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

[49] Javier Pena and Daniel Rodriguez. Polytope conditioning and linear convergence of the
Frank–Wolfe algorithm. Mathematics of Operations Research, 44(1):1–18, 2019.

[50] I.V. Romanovskii. Reduction of a game with full memory to a matrix game. Doklady Akademii
Nauk SSSR, 144(1):62–+, 1962.

[51] Sheldon M. Ross. Goofspiel — the game of pure strategy. Journal of Applied Probability, 8(3):
621–625, 1971.

[52] Finnegan Southey, Michael P. Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse
Billings, and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. arXiv preprint
arXiv:1207.1411, 2012.

[53] Arun Suggala and Praneeth Netrapalli. Follow the perturbed leader: Optimism and fast parallel
algorithms for smooth minimax games. In Neural Information Processing Systems (NeurIPS),
2020.

[54] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of
regularized learning in games. In Neural Information Processing Systems (NIPS), 2015.

[55] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up
limit Texas hold’em. In International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[56] Paul Tseng. On linear convergence of iterative methods for the variational inequality problem.
Journal of Computational and Applied Mathematics, 60(1-2):237–252, 1995.

[57] Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic
Behavior, 14(2):220–246, 1996.

[58] Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-iterate con-
vergence in constrained saddle-point optimization. In International Conference on Learning
Representations (ICLR), 2021.

[59] Andre Wibisono, Molei Tao, and Georgios Piliouras. Alternating mirror descent for constrained
min-max games. In Neural Information Processing Systems (NeurIPS), 2022.

[60] Philip Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Program-
ming, pages 1–36, 1970.

[61] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret mini-
mization in games with incomplete information. In Neural Information Processing Systems
(NIPS), 2007.

10

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Appendix A. Away-Step Frank-Wolfe Pseudocode

Algorithm 1: Away-Step Frank-Wolfe (AFW) [30]

Data: P ⊆ Rn: convex polytope
A ⊆ Rn: set of atoms, such that Conv(A) = P
LMOA: linear minimization oracle over A
f : P → R: L-smooth, convex function to be optimized
x(0) ∈ P
ϵ: desired accuracy T : maximum number of LMO calls

1 S(0) = {x(0)}
2 α

(0)

x(0) = 1

3 for t = 0 . . . T − 1 do
4 s(t) = LMOA(∇f(x(t))), d

(t)
FW = s(t) − x(t)

5 v
(t)
A ∈ argmaxv∈S(t)

〈
∇f(x(t)), v

〉
,d

(t)
A = x(t) − v

(t)
A

6 if g(t)
FW =

〈
−∇f(x(t)),d

(t)
FW

〉
≤ ϵ then

7 return x(t)

8 if
〈
−∇f(x(t)),d

(t)
FW

〉
≥
〈
−∇f(x(t)),d

(t)
A

〉
then

9 d(t) = d
(t)
FW, γ

(t)
max = 1

10 else

11 d(t) = d
(t)
A , γ

(t)
max =

α
v
(t)
A

1−α
v
(t)
A

12 γ(t) = min

(〈
−∇f(x(t)),d(t)

〉
L
∥∥d(t)

∥∥2 , γ
(t)
max

)
13 x(t+1) = x(t) + γ(t)d(t)

14 if
〈
−∇f(x(t)),d

(t)
FW

〉
≥
〈
−∇f(x(t)),d

(t)
A

〉
then

15 α
(t+1)
v = (1− γ(t))α

(t)
v for all v ∈ S(t) \ {s(t)}

16 α
(t+1)

s(t)
=

{
γ(t) + (1− γ(t))s(t) ifs(t) ∈ S(t)

γ(t) otherwise

17 S(t+1) =

{
S(t) ∪ {s(t)} ifγ(t) < 1

{s(t)} ifγ(t) = 1

18 else
19 α

(t+1)
v = (1 + γ)α

(t)
v for all v ∈ S(t) \ {v(t)

A }

20 α
(t+1)

s(t)
=

{
γ(t) + (1− γ(t))s(t) ifv

(t)
A ∈ S(t)

γ(t) otherwise

21 S(t+1) =

{
S(t) ifγ(t) < γ

(t)
max

S(t) \ {v(t)
A } ifγ(t) = γ

(t)
max

In Algorithm 1, we present pseudocode for away-step Frank-Wolfe, based on the presentation
by Guélat and Marcotte [30]. We assume that the polytope is expressed as the convex hull of a set of

11

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

atoms and that the LMO for the polytope always returns an atom (since there always exists an atom
that minimizes a given linear objective over the polytope). This is equivalent to assuming that we
have an LMO over the set of atoms themselves.

A.1. Related Work

Frank-Wolfe algorithm. Frank and Wolfe [24] presented the original Frank-Wolfe (FW) algorithm
(also known as conditional gradient descent), a projection-free first-order method for solving smooth
constrained convex minimization problems. Vanilla FW provides a O(1t) rate of convergence for
smooth objectives, but has stronger guarantees for special classes of functions; in particular, for
strongly convex functions, Garber and Hazan [26] showed a O(1

t2
) convergence rate. Many FW

variants have been developed since Frank and Wolfe’s original presentation of the algorithm, including
the away-step variant [60]. Importantly for us, Lacoste-Julien and Jaggi [41] showed that AFW and
several other variants achieve linear convergence for strongly convex and smooth objectives over
polyhedral domains; see also Beck and Shtern [7], Pena and Rodriguez [49]. There are several
excellent overviews of Frank-Wolfe algorithms, e.g., Bomze et al. [8], Braun et al. [10], Jaggi [34].

FW for saddle-point problems. There has been some work on extending FW to saddle-point prob-
lems, prominently by Gidel et al. [28]. However, they only provide fast convergence guarantees for
strongly convex-concave objectives (and moreover, require a significant degree of strong convexity,
thus rendering their results incompatible with smoothing techniques). They provide a convergence
guarantee for the bilinear case when the feasible sets are polytopes, but it is extremely slow. Lan [42]
introduced the idea of “gradient sliding,” which involves computing approximate prox steps to save
on the number of gradient computations required to optimize a composite function with a smooth and
nonsmooth component. In the spirit of this work, Lan and Zhou [43] introduced “conditional gradient
sliding,” which involved using conditional gradient methods to compute these approximate prox
steps. They combine this idea with Nesterov acceleration to achieve O(1/

√
ϵ) gradient computations

and O(1/ϵ) LMO calls for smooth functions. They present a smoothed version of their algorithm
as well that can be applied to saddle-point problems, but the smoothing degrades the guarantee to
O(1/ϵ) gradient computations and O(1/ϵ2) LMO calls.

Projection-free online learning. The first projection-free online learning algorithm was FTPL,
introduced by Kalai and Vempala [36]. The algorithm involves randomly perturbing the sum of the
observed losses (which serves as a form of regularization, see, e.g., Abernethy et al. [1]) before
computing the best response and achieves O(1/

√
T) average regret for linear loss functions. Suggala

and Netrapalli [53] introduced OFTPL, which achieves O(1/T) average regret for players in zero-sum
games but requires doing O(T) LMO calls at every iteration. Hazan and Kale [31] presented OFW
which uses FW to achieve O(1/T 1/4) average regret for Lipschitz convex losses.

Algorithms for game solving. Much work has been done to develop efficient algorithms for
game-solving. We only touch on the major trends related to discrete-time methods and sequential
games. A line of research has focused on constructing no-regret algorithms with ergodic con-
vergence to equilibrium. Out of these, we highlight two categories: methods based on the CFR
regret-decomposition framework [13, 20, 44, 55, 61], and methods based on the OMD framework
and more generally first-order methods [19, 22, 33, 39]. Some of these methods were key in solv-
ing large games, such as poker [9, 12, 14]. A recent trend has focused on establishing learning
algorithms with (poly)logarithmic per-player regret when used in self-play, including Anagnostides

12

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

et al. [2, 3, 4], Daskalakis et al. [16, 17], Farina et al. [21], Wibisono et al. [59]. These methods can
compute equilibria in multiplayer games at the rate of Õ(1/T). Finally, another recent trend in the
literature has focused on establishing learning algorithms [45, 58] and first-order methods [29, 56]
with guarantees for last-iterate convergence.

Appendix B. Notation and Preliminaries

We will use ∥ · ∥p to denote the ℓp-norm and ∥ · ∥ without subscript to denote ∥ · ∥2. Any norm-
dependent quantity (e.g., diameter, facial distance, strong convexity, and smoothness) will be with
respect to the Euclidean norm (which is self-dual) unless otherwise noted. Because we are principally
concerned with using these algorithms for equilibrium computation in games, we will use subscripts
to indicate a set or constant corresponding to a particular agent. We will use [n] to denote the set
{1, . . . , n}, and L-smoothness refers to Lipschitz continuity of the gradient, with modulus L.

B.1. Online Linear Optimization

In online learning, an agent i repeatedly interacts with an environment, aiming to minimize its
regret. At each time t, the agent chooses a strategy x

(t)
i from a given feasible set Xi ⊆ Rni and

then receives a loss vector ℓ(t)i ∈ Xi → R. The loss is allowed to depend adversarially on x
(t)
i . The

agent then pays a cost of ⟨ℓ(t)i ,x
(t)
i ⟩. The (cumulative) regret Reg(T)

i after T iterations is defined as
maxx′∈Xi

∑T
t=1⟨ℓ

(t)
i ,x

(t)
i ⟩− ⟨ℓ(t)i ,x′⟩, and average regret is defined as regret divided by the number

of iterations. We will assume that losses are bounded and normalized: ∥ℓ(t)i ∥ ≤ 1 for all t ∈ [T].
To achieve desired regret guarantees, online learning algorithms typically require some form

of regularization. While FTPL achieves this regularization through randomization, the framework
of algorithms utilizing approximate prox calls that we present will require access to a regularizer
φi : Xi → R, which is 1-strongly convex and Li smooth on Xi. The Bregman divergence between
x,y ∈ X is denoted by Dφi(x ∥y). Furthermore, we define Ωi := supx,y∈Xi

Dφi(x ∥y) and
Di := supx,y∈Xi

∥x− y∥. δ(Xi) will be used for the facial distance of Xi. For a given set X , and a
point x ∈ X , we denote dist(x,X) := infx′∈X ∥x− x′∥ and in the case that X is compact, define
ΠX (x) = argminx′∈X ∥x− x′∥.

Online Mirror Descent (OMD) is an algorithm which performs a single proximal computation at
every iteration of the algorithm, generating iterates as follows:

x
(t+1)
i = argmin

xi∈Xi

{
⟨ℓ(t)i ,xi⟩+

1

η
Dφi

(
xi ∥x(t)

i

)}
.

It enjoys O(1/
√
T) average regret (e.g., Hazan et al. [32], Orabona [48]).

Reflected Online Mirror Descent (ROMD) is an optimistic version of OMD which utilizes a prediction
m

(t+1)
i of the next loss ℓ(t+1)

i to generate the iterate at time t+ 1.

x
(t+1)
i = argmin

xi∈Xi

{
⟨ℓ(t)i +m

(t+1)
i −m

(t)
i ,xi⟩+

1

η
Dφi

(
xi ∥x(t)

i

)}
.

It is common to use the last observed loss as the prediction for the next loss: set m(t+1)
i equal

to ℓ
(t)
i . In this case, ROMD achieves O(1/T) average regret [35, 47] in self-play. Since m

(t+1)
i is

13

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

the prediction of a loss ℓ(t+1)
i which is assumed to have norm bounded by 1, we will assume that

∥m(t)
i ∥ ≤ 1 for all t ∈ [T].
Syrgkanis et al. [54] introduce the notion of Regret bounded by Variation in Utilities (RVU),

recalled next, and demonstrate that algorithms with this property exhibit faster convergence to
equilibria in games.

Definition 2 (RVU [54]) A learning algorithm for Player i is said to satisfy the RVU property if for
some α, β, γ > 0 and all possible ℓ

(1)
i , . . . , ℓ

(T)
i ,

Reg
(T)
i ≤ α+ β

T∑
t=1

∥ℓ(t)i − ℓ
(t−1)
i ∥2 − γ

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥2.

ROMD satisfies this inequality with α = Ω/η, β = η, γ = 1/4η; we are not aware of a reference
for this, but it can be shown very similarly to known results for optimistic OMD. Later, we will show
in Lemma 4 that our approximate ROMD framework still satisfies the RVU property.

B.2. Game-Theoretic Notions

Normal-form games (NFGs) model single-shot simultaneous interactions among a set of agents
denoted by [N]. The agents each have a set of possible actions Ai and a normalized utility function
ui :

∏
i∈[N]Ai → [−1, 1], the latter specifying their payoff for a given choice of actions by each

of the agents. The game is said to be zero-sum if
∑

i∈[n] ui(a) = 0 for all a ∈ ∏
i∈[N]Ai. A

mixed-strategy xi for Player i, is a probability distribution over Ai; xi ∈ ∆(Ai). We can extend the
domain of ui to be over ∆(Ai) by taking the expectation of the utility function over the distribution
over Ai induced by xi ∈ ∆(Ai).

Nash equilibrium is the de facto notion of equilibrium in NFGs, and the problem of computing a
Nash equilibrium (NE) in two-player zero-sum games can be formulated as a bilinear saddle-point
problem (BSPP):

min
x∈X

max
y∈Y

⟨Ax,y⟩. (BSPP)

In this case, X and Y are the space of mixed strategies for Player 1 and Player 2, respectively,
and A encodes the utility of Player 2 for a given choice of strategies for both players. The duality
gap ξ of x̄ and ȳ for (BSPP) can be defined as maxy∈Y⟨Ax̄,y⟩ −minx∈X ⟨Ax, ȳ⟩. This quantity
is typically used to measure the quality of a solution; in the case of two-player zero-sum games, a
duality gap of ϵ′ corresponds to an ϵ′-NE (and thus is also known as Nash gap).

Definition 3 (ϵ′-coarse correlated equilibrium) An ϵ′-coarse correlated equilibrium (ϵ′-CCE) is
defined as x ∈ ∆(

∏
i∈[N]Ai) such that

Ea∼x[ui(a)] ≥ Ea−i∼x[ui(a
′
i,a−i)]− ϵ′

for all players i ∈ [N], for all a′
i ∈ Ai, for ϵ′ ≥ 0; ϵ′ = 0 corresponds to an exact CCE.

Extensive-form games (EFGs) are a generalization of normal-form games, which also allow for
modeling of sequential moves (and also private and/or imperfect information and stochasticity).

14

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Extensive-form games can be represented using a game tree. Each of the internal nodes of the tree
corresponds to points at which one of the players or nature (corresponding to stochastic outcomes
independent of the players’ choices) takes an action. The leaves of the game tree correspond to
termination of the game and are associated with utilities for each player. Information sets correspond
to partitions of the nodes, such that all the nodes in an information set correspond to a single player,
and the actions available at each node of the information set are the same; players cannot distinguish
between different nodes in an information set, so the actions must be the same. The set of information
sets for a Player i is denoted Ii.

We are concerned with the perfect recall setting, in which, when Player i is asked to make a
decision at a given information set I ∈ Ii, he or she remembers the entire history of information sets
visited and actions taken at those information sets; each information set has a sequence of previously
visited information sets and previously taken actions associated with it.

A strategy for a player is defined as a distribution over the choices of actions at each information
set in the tree belonging to the player. Similar to NFGs, a utility function can be defined over the
space of strategies for the players by taking an expectation with respect to the joint distribution over
the leaves induced by the players’ individual strategies.

The sequence-form representation allows for a compact representation of the strategies of a
player in an EFG, and allows for formulation of the utility function as a linear function of the players’
strategies [38, 50, 57]. A sequence for a player is defined as a choice of action and information set
for that player. For a given strategy, the value associated with a given sequence in the corresponding
sequence-form strategy is the probability that the player reaches that information set and plays that
action given that nature, and the other plays play in such a way that allows the player to reach that
sequence. The set of all sequences for a player is denoted Σi.

The space of all sequence-form strategies is a convex polytope: Qi = {y ∈ R|Σi| : Fiy =
fi,y ≥ 0}, where Fi is a sparse |Ii| × |Σi| matrix with entries in {0, 1,−1}, and fi is a vector
with entries in {0, 1}. Each row of the matrix Fi corresponds to a probability flow constraint which
ensures that the sum of the probability of all the sequences associated with an information set sum
up to the probability associated with the parent sequence. Note that the vertices of this polytope
correspond to making deterministic choices at each information set, which means that the vertices
have binary coordinates, and thus, the minimum non-zero entry in a vertex is 1.

Equilibrium computation for two-player zero-sum EFGs can also be formulated as (BSPP) by
letting X and Y be sequence-form polytopes.

When we are analyzing multiplayer games involving N agents, we will let Xi ⊂ Rni denote the
convex and compact set of strategies for the ith player, where i ∈ [N], and let xi ∈ Xi represent
their strategy. For NFGs, Xi is ∆(Ai), the set of mixed strategies for i, while for EFGs, Xi is the
sequence-form polytope for Player i. In the case of two-player zero-sum NFGs or EFGs, in which
case Nash equilibrium computation corresponds to (BSPP), we will let X = X1, Y = X2, and
Z = X × Y . In this case, we will use Z∗ to denote the set of solutions to the BSPP. We denote
dist(z,Z) := infz′∈Z ∥z − z′∥. We define the vector field F (z) = (ATy,−Ax) for z ∈ Z .
Without loss of generality, we assume that F is smooth with constant 1 (the payoff matrix A can be
scaled to ensure this is the case).

15

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

B.3. Saddle-Point Metric-Subregularity

Problems of the form (BSPP) satisfy a condition known as Saddle-Point Metric Subregularity [58] as
long as X and Y are convex polytopes (this is the case for NFGs and EFGs).

Definition 4 (Saddle-Point Metric Subregularity) The SP-MS condition is satisfied if for any z ∈
Z \ Z∗ with z∗ = ΠZ(z) for some β ≥ 0 and ν > 0,

sup
z′∈Z

⟨F (z), z − z′⟩
∥z − z′∥ ≥ ν∥z − z∗∥β+1. (SP-MS)

For any given NFG or EFG, there exists ν ≥ 0 so that Inequality (SP-MS) holds with β = 0;
given a choice of a game, we will use ν to refer to this problem-dependent constant. Wei et al. [58]
use this condition to demonstrate linear last-iterate convergence of certain online learning algorithms.
Earlier works [29, 56] showed linear last-iterate convergence using error bounds, and Wei et al. [58]
note that there is a close correspondence between the SP-MS condition and error bound techniques
for bilinear polyhedral settings.

Appendix C. Facial Distance of Polytopes Proofs

Theorem 2 Let P be a polytope given by Ax = b,x ≥ 0 where x ∈ Rn. Let γ be the minimum
value of a nonzero coordinate of a vertex. Then δ(P) ≥ γ√

n
. Moreover, if the optimal solution lies in

a face F such that k coordinates are zero, then δ(P) ≥ γ√
k

.

Proof Consider a face F of the polytope P . The face is generated by making a subset of the
inequalities that define P tight, that is, setting xi = 0 for a subset S ⊆ [n] of indices. Now consider
the complement polytope

P ′ := Conv(Vert(P) \ F).

Necessarily, the sum of the coordinates corresponding to the indices S of any vertex x′ ∈ Vert(P)\F ,
that is,

∑
i∈S x′

i, must be at least γ since at least one of the k coordinates of a vertex in the complement
polytope must be nonzero (otherwise, it would be in F). Hence, any convex combination of points in
Vert(P) \ F must also put total mass at least γ on coordinates S, implying that

∑
i∈S x′

i ≥ γ for
any x′ ∈ P ′.

On the other hand, by construction, any point on the chosen face F satisfies xi = 0 for all i ∈ S.
Lower bounding distances by focusing only on the coordinates in S means that the distance between
any point on the chosen face F and any point in the complement polytope P ′ is at least

min
x′∈Rn∑
i∈S x′

i≥γ

√∑
i∈S

(x′
i − 0)2 =

√
|S| ·

(
γ

|S|

)2

=
γ√
|S|

,

where the minimum of the objective was obtained by setting all |S| = k coordinates to be equal.

Theorem 3 Let P be an integral polytope given by Ax = b,Cx ≤ d,x ≥ 0 where x ∈ Rn, with
C ≥ 0 a nonzero integral matrix, and d ≥ 0. Then δ(P) ≥ 1

∥C∥∞
√
n

.

16

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Proof Consider a face F of the polytope P . The face is generated by tightening some subset of the
inequalities, that is, setting xi = 0 for a subset S ⊆ [n] of indices, and setting c⊤j x = dj for a subset
T ⊆ [n] of indices. We can call the submatrices obtained from C and d by collecting the rows whose
indices are in T as C′ and d′, respectively.

Consider the complement polytope

P ′ := Conv(Vert(P) \ F)

and let v be a vertex of P ′. Now note that since v does not lie on F , it must be the case that there
exists an index i ∈ S ∪ T such that the corresponding inequality is not tight for v.

Suppose that i ∈ S. Then, by the argument from the proof of Theorem 2, we immediately can
argue that distance between the face and the complement polytope is at least 1√

n
, and thus at least

1
∥C∥∞

√
n

.
Suppose that i ∈ T , and consider any point x ∈ F ; necessarily C′x = d′. Necessarily, we

also have that
∥∥C′v

∥∥
1
<
∥∥d′∥∥

1
, by the nonnegativity of C, d, and the polytope, and the fact that v

doesn’t lie on the face we are considering. Furthermore, by integrality of the polytope of C, we must
have that

∥∥C′v
∥∥
1
≤
∥∥d′∥∥

1
− 1.

It follows that any convex combination of vertices on the complement polytope, y, would also
satisfy this inequality:

∥∥C′y
∥∥
1
≤
∥∥d′∥∥

1
− 1. Noting again that the polytope lies in the nonnegative

orthant, we can subtract the two inequalities and apply the Cauchy-Schwarz inequality to obtain:

1 ≤
∥∥C′(x− y)

∥∥
1
≤
∥∥C′∥∥

∞
∥∥x− y

∥∥
1
≤ √

n
∥∥C′∥∥

∞
∥∥x− y

∥∥
2
.

Thus, this means in either case that the distance between the chosen face and the complement
polytope is at least 1∥∥C∥∥

∞
√
n

.

Since this bound holds for any chosen face, this means the facial distance is bounded below by
1∥∥C∥∥
∞
√
n

as well.

Appendix D. Approximate ROMD Proofs

First, we show the following crucial inequality, which we will repeatedly use to bound regret when
approximate prox calls are used.

Lemma 1 Let x∗ = argminx∈X
〈
g,x

〉
+ 1

ηDφ(x ∥ c) and x̂ be such that
〈
g, x̂

〉
+ 1

ηDφ(x̂ ∥ c) ≤〈
g,x∗〉+ 1

ηDφ(x
∗ ∥ c) + ϵ; x̂ is an ϵ argmin to the prox computation.

Then we have for any d ∈ X :

η
〈
g, x̂− d

〉
≤ Dφ(d ∥ c)−Dφ(d ∥ x̂)−Dφ(x̂ ∥ c) + ϵ.

Furthermore, 1
2η

∥∥x∗ − x̂
∥∥2 ≤ ϵ.

Proof By definition of x̂, we have

η
〈
g, x̂

〉
+ φ(x̂)− φ(c)−

〈
∇φ(c), x̂− c

〉
≤ η

〈
g,d

〉
+ φ(d)− φ(c)−

〈
∇φ(c),d− c

〉
+ ϵ.

17

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Subtracting these inequalities, we have

η
〈
g, x̂− d

〉
≤ φ(d)− φ(x̂)−

〈
∇φ(c),d− x̂

〉
+ ϵ

≤
〈
∇φ(c)−∇φ(x̂), x̂− d

〉
+ ϵ

= Dφ(d ∥ c)−Dφ(d ∥ x̂)−Dφ(x̂ ∥ c) + ϵ.

The second inequality follows from the convexity of φ, and the equality follows from the three-point
lemma.

In the case that φ is 1-strongly convex with respect to the Euclidean norm, we have that

1

2η

∥∥x∗ − x̂
∥∥2 ≤ 〈g, x̂〉+ 1

η
Dφ(x̂ ∥ c)−

〈
g,x∗〉− 1

η
Dφ(x

∗ ∥ c) ≤ ϵ.

where the first inequality follows from strong convexity of a function implying quadratic growth of
the function [37], and the second inequality by assumption on x̂.

Next, we show the following lemma characterizing an approximate first-order condition for
the approximate-proximal-step-based framework presented in Section 3, which will be useful in
analyzing the convergence rates of our algorithms.

Lemma 2 The approximate-proximal-step-based framework presented in Section 3 satisfies the
following inequality:〈

η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x(t))−∇φ(x(t−1)),x(t) − x
〉
≤
√
2ηϵ(t)(2LD + 3η).

In fact, when the approximate-proximal-step-based framework presented in Section 3 is instanti-
ated with a FW variant that uses the Wolfe gap as a termination criterion, as is the case for AFW-ROMD,
we have the following approximate first-order optimality condition:〈

η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x(t))−∇φ(x(t−1)),x(t) − x
〉
≤ ϵ(t).

Proof We define x(t)
∗ to be the result of using an exact ROMD update instead of using the approximate-

proximal-step-based framework presented in Section 3 update at the tth iteration for Player i; this
corresponds to assuming that we have an exact prox oracle instead of an approximate prox oracle.

Using the first-order optimality condition, we have that for any x ∈ X〈
η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x

(t)
∗)−∇φ(x(t−1)),x

(t)
∗ − x

〉
≤ 0 (1)

.

18

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

We now have the following:〈
η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x(t))−∇φ(x(t−1)),x(t) − x

〉
=
〈
η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x

(t)
∗)−∇φ(x(t−1)),x

(t)
∗ − x

〉
+
〈
∇φ(x(t))−∇φ(x

(t)
∗),x

(t)
∗ − x)

〉
+
〈
η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x(t))−∇φ(x(t−1)),x(t) − x

(t)
∗
〉

≤ 0 +
∥∥∇φ(x(t))−∇φ(x

(t)
∗)
∥∥∥∥x(t)

∗ − x
∥∥ (2)

+
∥∥η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x(t))−∇φ(x(t−1))

∥∥∥∥x(t) − x
(t)
∗
∥∥

≤ L
∥∥x(t) − x

(t)
∗
∥∥∥∥x(t)

∗ − x
∥∥ (3)

+
(
η
∥∥2ℓ(t−1) − ℓ(t−2)

∥∥+ ∥∥∇φ(x(t))−∇φ(x(t−1))
∥∥)∥∥x(t) − x

(t)
∗
∥∥

≤
√
2ηϵ(t)LD +

√
2ηϵ(t)

(
η(2
∥∥ℓ(t−1)

∥∥+ ∥∥ℓ(t−2)
∥∥) + L

∥∥x(t) − x(t−1)
∥∥)

(4)

≤
√
2ηϵ(t)(2LD + 3η). (5)

We use Inequality (1) and the Cauchy-Schwarz inequality in Inequality (2), the triangle inequality and
smoothness of φ in Inequality (3), Lemma 1 in Inequality (4), and bounded losses in Inequality (5).

Suppose the Wolfe gap is used as a termination criterion. In that case, the stated approximate
first-order optimality condition immediately follows because the left-hand side of the stated inequality
is precisely the Wolfe gap.

Lemma 3 Let x∗ = argmaxx′∈X
∑T

t=1⟨ℓ(t),x(t)⟩ − ⟨ℓ(t),x′⟩. the approximate-proximal-step-
based framework presented in Section 3 yields

Reg(T) ≤
T∑
t=1

∥ℓ(t) −m(t)∥ · ∥x(t+1) − x(t)∥ − 1

2η

T∑
t=1

∥x(t+1) − x(t)∥2

+
1

η
Dφ

(
x∗ ∥x(0)

)
+
〈
m(1),x(2) − x∗〉+ T∑

t=1

ϵ(t)

η

Proof Let x′ ∈ X . If we apply Lemma 1, then we obtain:

η
〈
ℓ(t) +m(t+1) −m(t),x(t+1) − x′〉 ≤ Dφi

(
x′ ∥x(t)

)
−Dφi

(
x′ ∥x(t+1)

)
−Dφi

(
x(t+1) ∥x(t)

)
+ ϵ(t).

(6)

19

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Summing the left side over t = 1, . . . , T , and noting that we can let m(T+1) = 0 without
affecting losses at timesteps before T + 1, we have:

T∑
t=1

〈
ℓ(t) +m(t+1) −m(t),x(t+1) − x′〉
=

T∑
t=1

[〈
ℓ(t),x(t+1) − x′〉+ 〈m(t+1) −m(t),x(t+1) − x′〉]

=

T∑
t=1

[〈
ℓ(t),x(t+1) − x′〉+ 〈m(t+1) −m(t),x(t+1)

〉]
+
〈
m

(1)
i −m(T+1),x′〉

=

T∑
t=1

[〈
ℓ(t),x(t) − x′〉+ 〈ℓ(t),x(t+1) − x(t)

〉
+
〈
m(t+1) −m(t),x(t+1)

〉]
+
〈
m(1),x′〉

=

T∑
t=1

[〈
ℓ(t),x(t) − x′〉+ 〈ℓ(t) −m(t),x(t+1) − x(t)

〉]
+
〈
m(1),x′〉− 〈m(1),x(2)

〉
+
〈
m(T+1),x(T+1)

〉
=

T∑
t=1

[〈
ℓ(t),x(t) − x′〉+ 〈ℓ(t) −m(t),x(t+1) − x(t)

〉]
+
〈
m(1),x′ − x(2)

〉
. (7)

This allows us to decompose the regret into two terms and apply Inequality (6) to one of these
terms:

Reg(T) = max
x′∈X

T∑
t=1

〈
ℓ(t),x(t) − x′〉

=

T∑
t=1

[〈
ℓ(t) −m(t),x(t) − x(t+1)

〉
+
〈
ℓ(t) +m(t+1) −m(t),x(t+1) − x∗〉]

+
〈
m(1),x(2) − x∗〉 (8)

≤
T∑
t=1

[〈
ℓ(t) −m(t),x(t) − x(t+1)

〉]
+
〈
m(1),x(2) − x∗〉+ T∑

t=1

ϵ(t)

η

+

T∑
t=1

1

η

(
Dφi

(
x∗ ∥x(t)

)
−Dφi

(
x∗ ∥x(t+1)

)
−Dφi

(
x(t+1) ∥x(t)

))
(9)

≤
T∑
t=1

[〈
ℓ(t) −m(t),x(t) − x(t+1)

〉
− 1

η
Dφi

(
x(t+1) ∥x(t)

)]
+

1

η
Dφi

(
x∗ ∥x(0)

)
+
〈
m(1),x(2) − x∗〉+ T∑

t=1

ϵ(t)

η
(10)

≤
T∑
t=1

[〈
ℓ(t) −m(t),x(t) − x(t+1)

〉
− 1

2η

∥∥x(t+1) − x(t)
∥∥2]+ 1

η
Dφi

(
x∗ ∥x(0)

)
20

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

+
〈
m(1),x(2) − x∗〉+ T∑

t=1

ϵ(t)

η
(11)

≤
T∑
t=1

∥∥ℓ(t) −m(t)
∥∥∥∥x(t+1) − x(t)

∥∥− 1

2η

T∑
t=1

∥∥x(t+1) − x(t)
∥∥2 + 1

η
Dφi

(
x∗ ∥x(0)

)
+
〈
m(1),x(2) − x∗〉+ T∑

t=1

ϵ(t)

η
. (12)

We apply Equation (7) to obtain Equation (8), Inequality (6) to obtain Inequality (9), drop a
negative term to obtain Inequality (10), apply strong convexity of φ to obtain Inequality (11), and
finally apply the Cauchy-Schwarz inequality to obtain Inequality (12).

Lemma 4 The approximate proximal step based framework presented in Section 3 with ϵ(t) = 1
t2

-
optimal prox computations at each time step and using m(t) = ℓ(t−1) yields

Reg(T) ≤ Ω+ 2

η
+ η

T∑
t=1

∥ℓ(t) − ℓ(t−1)∥2 − 1

4η

T∑
t=1

∥x(t+1) − x(t)∥2

In particular, this satisfies the RVU property with α = Ω+2
η , β = η, γ = 1

4η .

Proof Instantiating Lemma 3 with m(t) = ℓ(t−1), noting that ℓ(0) = 0 and using the definition of Ω:

Reg(T) ≤
T∑
t=1

∥∥ℓ(t) − ℓ(t−1)
∥∥∥∥x(t+1) − x(t)

∥∥− 1

2η

T∑
t=1

∥∥x(t+1) − x(t)
∥∥2 + Ω

η
+

T∑
t=1

ϵ(t)

η
.

Applying Young’s inequality:∥∥ℓ(t) − ℓ(t−1)
∥∥∥∥x(t+1) − x(t)

∥∥ ≤ 1

2

(
2η
∥∥ℓ(t) − ℓ(t−1)

∥∥2 + 1

2η

∥∥x(t+1) − x(t)
∥∥2).

Furthermore, instantiating ϵ(t) = 1
t2

, we also have that:

T∑
t=1

ϵ(t)

η
=

1

η

T∑
t=1

1

t2
≤ 2

η
.

Combining the above, we have:

Reg(T) ≤
T∑
t=1

1

2
(2η
∥∥ℓ(t) − ℓ(t−1)

∥∥2 + 1

2η

∥∥x(t+1) − x(t)
∥∥2)− 1

2η

T∑
t=1

∥∥x(t+1) − x(t)
∥∥2 + Ω

η
+

T∑
t=1

ϵ(t)

η

= η
T∑
t=1

∥∥ℓ(t) − ℓ(t−1)
∥∥2 − 1

4η

T∑
t=1

∥∥x(t+1) − x(t)
∥∥2 + Ω

η
+

T∑
t=1

ϵ(t)

η

≤ Ω+ 2

η
+ η

T∑
t=1

∥∥ℓ(t) − ℓ(t−1)
∥∥2 − 1

4η

T∑
t=1

∥∥x(t+1) − x(t)
∥∥2.

21

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

D.0.1. SELF-PLAY IN GAMES

In order to compute equilibria in games, we will assume that Player i receives as its loss ℓ
(t)
i =

−∇xiui(x
(t)
1 , . . . ,x

(t)
n).

Assumption 1 We assume that our games satisfy a smoothness condition:∥∥ℓ(t)i − ℓ
(t−1)
i

∥∥ ≤
∑
j ̸=i

∥∥x(t)
j − x

(t−1)
j

∥∥.
This can always be satisfied by rescaling the utility function for any game where the utility

function is multilinear in the players’ strategies (as is the case in NFGs and EFGs).

Next, we restate Theorem 4 from Syrgkanis et al. [54], which characterizes the stepsize required
to achieve constant regret.

Theorem 8 [54] If each player employs an algorithm satisfying the RVU property with parameters
α, β, and γ, such that β ≤ γ/(N − 1)2, then

∑
i∈[N]Reg

(T)
i ≤ αN .

Proof By Assumption 1 and Jensen’s inequality we have:

∥∥ℓ(t)i − ℓ
(t−1)
i

∥∥2 ≤ (∑
j ̸=i

∥∥x(t)
j − x

(t−1)
j

∥∥)2

≤ (N − 1)
∑
j ̸=i

∥∥x(t)
j − x

(t−1)
j

∥∥2.
Summing up the terms for all the players, we have that∑

i∈[N]

∥∥ℓ(t)i − ℓ
(t−1)
i

∥∥2 ≤ (N − 1)2
∑
i∈[N]

∥∥x(t)
j − x

(t−1)
j

∥∥2.
The theorem immediately follows by noting that the assumption on β and γ ensures that the latter
two terms in the RVU bound can be dropped and the inequality will still hold.

Lemma 5 When running T iterations of AFW-ROMD using m(t) = ℓ(t−1):

1. ϵ(t) = 1
t2

-optimal prox computations at each time step requires O(TLD2

δ2
log [LDT]) LMO

calls.

2. ϵ(t) = ϵ-optimal prox computations at each time step requires O(TLD2

δ2
log
[
LD
ϵ

]
) LMO calls.

Proof In the first case, note that AFW can achieve a ϵ(t) optimal solution with O
(
LD2

δ2
log
[
LD
ϵ(t)

])
LMO

calls, which means that AFW-ROMD requires O
(
TLD2

δ2
log [LDT]

)
LMO calls in order to achieve

constant cumulative regret, since we can lower bound ϵ(t) by 1
T 2 .

In the second case, note that AFW can achieve an ϵ optimal solution with O
(
LD2

δ2
log
[
LD
ϵ(t)

])
LMO calls, which means that AFW-ROMD requires O

(
TLD2

δ2
log
[
LD
ϵ

])
LMO calls in order to achieve

constant cumulative regret.

22

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Additionally, note that at least 1 LMO call is required by AFW at each iteration to check whether
AFW has reached an ϵ(t)-optimal solution. It follows that N is also O(T logN), since T is O(N). It
follows then that 1

T is in O(logNN), and thus with N LMO calls we can achieve O(logNN) average
regret.

Theorem 4 An ϵ′-Nash equilibrium in any two-player zero-sum polyhedral game can be computed
in O(1/ϵ′) iterations of the above framework. This corresponds to O(maxi∈{1,2}

1
ϵ′

LiD
2
i

δ2i
log
[
LiDi
ϵ′

]
)

LMO calls when using AFW-ROMD.

Proof For AFW-ROMD, we know that the RVU property is satisfied with αi =
Ωi+2
ηi

, βi = ηi, γi = 1
4ηi

for Player i. By Theorem 8, if we take ηi ≤ 1
2(N−1) , then we have that

∑
i∈[N]Reg

(T)
i ≤ α(N − 1),

where α = maxi∈[N] αi.
It follows that we if we take ξ as the Nash gap corresponding to the average strategies of the two

players x̄1 =
1
T

∑T
t=1 x

(T)
1 and x̄2 =

1
T

∑T
t=1 x

(T)
2 , then we have:

ξ = max
x2∈X2

〈
Ax̄1,x2

〉
− min

x1∈X1

〈
Ax1, x̄2

〉
=

1

T

(
Reg

(T)
2 +Reg

(T)
1

)
≤ α

T

since for any given x2 ∈ X2 we have
〈
Ax̄1,x2

〉
=
∑T

t=1

〈
Ax

(t)
1 ,x2

〉
and for any given x1 ∈ X1

we have
〈
Ax1, x̄2

〉
=
∑T

t=1

〈
Ax1,x

(t)
2

〉
.

This demonstrates that we can achieve an ϵ′-NE in a two-player zero-sum game in O(1/ϵ′) itera-
tions. By Lemma 5, if we use ϵ(t)i = 1

t2
, since T = O(1/ϵ′), we require O(maxi∈[N]

1
ϵ′

LiD
2
i

δ2i
log
[
LiDi
ϵ′

]
)

LMO calls to achieve a ϵ′-NE.

Theorem 5 An ϵ′-CCE in any N -player general-sum polyhedral game can be computed in O(1/ϵ′
4
3)

iterations of the above framework. This corresponds to O(maxi∈[N]
1

ϵ′
4
3

LiD
2
i

δ2i
log
[
LiDi
ϵ′

]
) LMO calls

when using AFW-ROMD.

Proof We claim that letting ηi =
1

T 1/4 allows for this result to hold.
To prove this statement, we first prove a lemma about the stability of our iterates.

Lemma 6 The approximate proximal step based framework presented in Section 3 with m(t) =
ℓ(t−1) has the following property:

∥∥x(t+1) − x(t)
∥∥ ≤ 3η +

√
2ηϵ(t).

Proof As in the proof of Lemma 2, we define x(t)
∗ as the result of using an exact ROMD update instead

of using the approximate proximal step based updated presented in Section 3 at the tth iteration for
Player i; this corresponds to assuming that we have an exact prox oracle instead of an approximate
prox oracle.

23

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Using first-order optimality, we have that for any x ∈ X〈
η(2ℓ(t−1) − ℓ(t−2)) +∇φ(x

(t)
∗)−∇φ(x),x

(t)
∗ − x

〉
≤ 0. (13)

Using this inequality, we have:

∥∥x(t)
∗ − x

∥∥2 ≤ 〈∇φ(x
(t)
∗)−∇φ(x),x

(t)
∗ − x

〉
(14)

≤ −
〈
η(2ℓ(t−1) − ℓ(t−2)),x

(t)
∗ − x

〉
(15)

≤ η
∥∥2ℓ(t−1) − ℓ(t−2)

∥∥∥∥x(t)
∗ − x

∥∥ (16)

≤ η
(
2
∥∥ℓ(t−1)

∥∥+ ∥∥ℓ(t−2)
∥∥)∥∥x(t)

∗ − x
∥∥ (17)

≤ 3η
∥∥x(t)

∗ − x
∥∥. (18)

In Inequality (14), we apply the strong convexity of φ, in Inequality (15) we apply Inequality (13),
in Inequality (16) we apply the Cauchy-Schwarz inequality, in Inequality (17) we apply the triangle
inequality, and finally in Inequality (18) we apply the assumption on the norms of the losses. Dividing
by
∥∥x(t)

∗ − x(t−1)
∥∥ (assuming it is non-zero; otherwise, the below inequality trivially holds), we

have that: ∥∥x(t)
∗ − x(t−1)

∥∥ ≤ 3η.

Now using the triangle inequality and Lemma 1, we have that∥∥x(t) − x(t−1)
∥∥ ≤ 3η +

√
2ηϵ(t).

By Assumption 1, Jensen’s inequality, and the above, we have:

∥∥ℓ(t)i − ℓ
(t−1)
i

∥∥2 ≤ (N − 1)
∑
j ̸=i

∥∥x(t)
j − x

(t−1)
j

∥∥2 ≤ (N − 1)2 max
j∈[N]

(
18η2j + 4ηjϵ

(t)
j

)
. (19)

Now we can use the refined RVU bound from Lemma 4:

Reg
(T)
i ≤ Ωi + 2

ηi
+ ηi(N − 1)2 max

j∈[N]

T∑
t=1

(
18η2j + 4ηjϵ

(t)
j

)
− 1

4ηi

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2 (20)

≤ Ωi + 2

ηi
+ ηi(N − 1)2 max

j∈[N]

T∑
t=1

(
18η2j + 4ηjϵ

(t)
j

)

=
Ωi + 2

ηi
+ ηi(N − 1)2 max

j∈[N]

(
18Tη2j + 8ηj

)
. (21)

24

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

To obtain Inequality (20), we plug Inequality (19) into Lemma 4, and for Equation (21), we use
the fact that ϵ(t)i = 1

t2
so
∑T

i=1 ϵ
(t)
i ≤ 2.

Now if we let ηi = 1
T 1/4 , we get that Reg(T)

i is in O(T 1/4), showing that the average joint
strategy of the players converges to a CCE, at a rate O(T−3/4). Equivalently, to reach a ϵ′-CCE,
we require O(ϵ′−4/3) iterations of the approximate-proximal-step-based framework presented in
Section 3. By Lemma 5, when using AFW-ROMD, if we use ϵ

(t)
i = 1

t2
, since T = O(1/ϵ′4/3), we

require O(maxi∈[N]
1

ϵ′4/3
LiD

2
i

δ2i
log
[
LiDi
ϵ′

]
) LMO calls to achieve a ϵ′-CCE.

Appendix E. Last-Iterate Results

Theorem 6 For any N -player general-sum polyhedral game, given ϵ ∈ (0, 1), let Player i em-
ploy the above framework with ϵ

(t)
i = ϵ2 and m

(t)
i = ℓ

(t−1)
i . Let ηmax ≤ 1

2
√
2(N−1)

where ηmax =

maxi∈[N] ηi and suppose
∑N

i=1Reg
(t)
i ≥ 0 for any t ∈ N. Define αi =

(
1
ηi

+ 2Ωi
ηi

(Li +N − 1) + 1
)

.

Then, after T >
⌈
8ηmax

ϵ2
∑N

i=1
(Ωi+2)

ηi

⌉
iterations, there exists x(t) with t ∈ [T] which is an

ϵ
(
maxi∈[N]

√
2ηi(

2LiDi
ηi

+ 3) + αi

)
-approximate Nash equilibrium. AFW-ROMD will yield an iterate

that is an ϵ′-approximate Nash equilibrium in O
(
maxj∈[N]

{
ηmaxα2

j

ϵ′2
∑N

i=1(
Ωi+2
ηi

)
LiD

2
i

δ2i
log
[
LiDiαj

ϵ′

]})
LMO calls when ϵ ≤ mini∈[N]

ϵ′

αi
.

Proof We follow the proof of Theorem A.12 from Anagnostides et al. [3].
We rewrite the regret bound given by Lemma 4 for Player i:

Reg
(T)
i ≤ Ωi + 2

ηi
+ ηi

T∑
t=1

∥∥ℓ(t)i − ℓ
(t−1)
i

∥∥2 − 1

8ηi

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2 − 1

8ηi

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2.
Applying Assumption 1 and Jensen’s inequality, we have:

Reg
(T)
i ≤ Ωi + 2

ηi
+ (N − 1)ηi

∑
j ̸=i

T∑
t=1

∥∥x(t)
j − x

(t−1)
j

∥∥2 − 1

8ηi

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2
− 1

8ηi

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2.
Using the fact that ηmax = maxi∈[N] ηi, we can rewrite the above as:

Reg
(T)
i ≤ Ωi + 2

ηi
+ (N − 1)ηmax

∑
j ̸=i

T∑
t=1

∥∥x(t)
j − x

(t−1)
j

∥∥2 − 1

8ηmax

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2
− 1

8ηmax

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2.
25

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Summing these terms over all the players yields:

N∑
i=1

Reg
(T)
i ≤

N∑
i=1

Ωi + 2

ηi
+
(
(N − 1)2ηmax −

1

8ηmax

) N∑
i=1

T∑
t=1

∥∥x(t)
i − x

(t−1)
i

∥∥2
− 1

8ηmax

N∑
i=1

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2.
Using the assumptions ηmax ≤ 1

2
√
2(N−1)

and
∑N

i=1Reg
(T)
i ≥ 0, we can write

0 ≤
N∑
i=1

Reg
(T)
i ≤

N∑
i=1

[
Ωi + 2

ηi
− 1

8ηmax

T∑
t=1

∥∥x(t+1)
i − x

(t)
i

∥∥2].
Hence,

T∑
t=1

N∑
i=1

∥∥x(t+1)
i − x

(t)
i

∥∥2 ≤ 8ηmax

N∑
i=1

Ωi + 2

ηi
.

Assuming for all t ∈ [T] that
∑N

i=1

∥∥x(t+1)
i −x

(t)
i

∥∥2 ≥ ϵ2, we must have that T ≤ 8ηmax

ϵ2
∑N

i=1
Ωi+2
ηi

.

Thus, as long as T >
⌈
8ηmax

ϵ2
∑N

i=1
Ωi+2
ηi

⌉
, there must exist t ∈ [T] such that

1

2

(
N∑
i=1

∥∥x(t+1)
i − x

(t)
i

∥∥2 + N∑
i=1

∥∥x(t)
i − x

(t−1)
i

∥∥2) ≤ ϵ2.

Next, we show that 1
2

(∑N
i=1

∥∥x(t+1)
i − x

(t)
i

∥∥2 +∑N
i=1

∥∥x(t)
i − x

(t−1)
i

∥∥2) ≤ ϵ2 implies that we
are at an approximate Nash equilibrium.

Using Lemma 2, we have for any xi ∈ Xi:

〈
ηi(2ℓ

(t)
i − ℓ

(t−1)
i) +∇φi(x

(t+1)
i)−∇φi(x

(t)
i),x

(t+1)
i − xi

〉
≤
√
2ηiϵ

(t+1)
i (2LiDi + 3ηi).

Rearranging, we have:

ηi
〈
ℓti,x

(t+1)
i − xi

〉
≤
√
2ηiϵ

(t+1)
i (2LiDi + 3ηi)

+
〈
ηi(−ℓ

(t)
i + ℓ

(t−1)
i)−∇φi(x

(t+1)
i) +∇φi(x

(t)
i),x

(t+1)
i − xi

〉
≤
√

2ηiϵ
(t+1)
i (2LiDi + 3ηi)

+
(∥∥ℓ(t−1)

i − ℓ
(t)
i

∥∥+ ∥∥∇φi(x
(t)
i)−∇φi(x

(t+1)
i)

∥∥)(∥∥x(t+1)
i − xi

∥∥)
(22)

≤
√
2ηiϵ

(t+1)
i (2LiDi + 3ηi) +

∑
j ̸=i

∥∥x(t−1)
j − x

(t)
j

∥∥+ Li

∥∥x(t)
i − x

(t+1)
i

∥∥Ωi

(23)

≤
√
2ηiϵ

(t+1)
i (2LiDi + 3ηi) + 2Ωiϵ(Li +N − 1). (24)

26

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

We applied the Cauchy-Schwarz inequality in Inequality (22), Assumption 1 and smoothness of
φi in Inequality (23), and the bound on the second-order path lengths in Inequality (24).

Furthermore, note that
〈
ℓ
(t)
i ,x

(t)
i −x

(t+1)
i

〉
≤
∥∥ℓ(t)i

∥∥∥∥x(t+1)
i −x

(t)
i

∥∥ ≤ ϵ due to the assumptions
on the boundedness of the losses and the second-order path lengths. Thus, we have that:〈

ℓti,x
(t)
i − xi

〉
=
〈
ℓti,x

(t+1)
i − xi

〉
+
〈
ℓti,x

(t)
i − x

(t+1)
i

〉
≤
√

2ηiϵ
(t+1)
i

(2LiDi

ηi
+ 3
)
+

2Ωi

ηi
ϵ(Li +N − 1) + ϵ

=
√
2ηiϵ2

(2LiDi

ηi
+ 3
)
+

2Ωi

ηi
ϵ(Li +N − 1) + ϵ

≤ ϵ

(√
2ηi

(2LiDi

ηi
+ 3
)
+ αi

)
.

The result follows by noting the definition of approximate Nash equilibrium. In the case that the
players are employing AFW-ROMD, by Lemma 2, we have instead that for any xi ∈ Xi:〈

ηi(2ℓ
(t)
i − ℓ

(t−1)
i) +∇φi(x

(t+1)
i)−∇φi(x

(t)
i),x

(t+1)
i − xi

〉
≤ ϵ

(t+1)
i .

Using the same analysis as above and noting that ϵ2 < ϵ we have that

〈
ℓti,x

(t)
i − xi

〉
=
〈
ℓti,x

(t+1)
i − xi

〉
+
〈
ℓti,x

(t)
i − x

(t+1)
i

〉
≤ ϵ2

ηi
+

2Ωi

ηi
ϵ(Li +N − 1) + ϵ

≤ ϵ

(
1

ηi
+

2Ωi

ηi
(Li +N − 1) + 1

)
= αiϵ.

Thus, it is sufficient to let ϵ ≤ mini∈[N]
ϵ′

αi
to ensure that the iterate corresponds to a ϵ′-NE. The

number of required LMO calls follows immediately from Lemma 5.

Theorem 7 In any two-player zero-sum polyhedral game, both players employing the approximate-
proximal-step-based framework presented in Section 3 with m

(t)
i = ℓ

(t−1)
i , ϵ(t)i = ϵ, φi(xi) =

1
2∥xi∥22, and ηi = η ≤ 1

4 yields linear last-iterate convergence to a
(16+C1)ϵ+32maxi∈{1,2}

√
2ηϵ(2LiDi+3η)

C2
-

approximate Nash equilibrium, where ν is a game-dependent constant associated with the SP-MS
condition, C1 = 2(1 + 4η2ν2

25), and C2 = min(12 ,
η2ν2

25):

dist(z(t),Z∗)2 ≤ 2

(
1 +

C2

4

)−t

dist(z(1),Z∗)2+
(16 + C1)ϵ+ 32maxi∈{1,2}

√
2ηϵ(2LiDi + 3η)

C2
.

In the same setting (m(t)
i = ℓ

(t−1)
i , ϵ(t)i = ϵ, and ηi = η ≤ 1

4), if it is assumed that both players are
applying AFW-ROMD, then they can achieve linear last-iterate convergence to a 48+C1

C2
ϵ-approximate

Nash equilibrium, with the same definitions for ν, C1, C2.

dist(z(t),Z∗)2 ≤ 2

(
1 +

C2

4

)−t

dist(z(1),Z∗)2 +
48 + C1

C2
ϵ.

27

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

AFW-ROMD requires

O

(
max
i∈{1,2}

log 2C2+48+C1
C2ϵ′

log 4+C2
4

LiD
2
i

δ2i
log

[
(2C2 + 48 + C1)LiDi

C2ϵ′

])
.

LMO calls to compute an ϵ′-NE. Furthermore, the approximate solution it returns will have support
of size O

(
maxi∈{1,2}

LiD
2
i

δ2i
log
[
LiDi(2C2+48+C1)

C2ϵ′

])
.

We adapt arguments from Wei et al. [58] and Malitsky [47].
Proof In this proof, for convenience, we define the following ℓ(t) := (ℓ

(t)
x , ℓ

(t)
y), m(t) := (m

(t)
x ,m

(t)
y),

φ(z) := φx(x) + φy(y). We take ϵ
(t)
x := ϵ

(t)
y := ϵ, and ϵ

(t)
z := ϵ

(t)
x + ϵ

(t)
y := 2ϵ. Additionally, we

let w(t) := 2z(t) − z(t−1).
The calls to their respective APOs for x and y in a single iteration of the approximate-proximal-

step-based framework presented in Section 3 can be written as

x(t+1) = APOX
(
−η
〈
ℓ
(t)
x +m

(t)
x −m

(t−1)
x , ·

〉
, φ,x(t), ϵ

)
,

y(t+1) = APOY
(
−η
〈
ℓ
(t)
y +m

(t)
y −m

(t−1)
y , ·

〉
, φ,y(t), ϵ

)
. (25)

This can be written as a single prox call for z as follows.

z(t+1) = APOZ
(
−η
〈
ℓ(t) +m(t) −m(t−1), ·

〉
, φ,z(t), 2ϵ

)
. (26)

We define z
(t+1)
∗ as true solution to the prox call in Equation (26).

First, we prove a version of Lemma 1 from Wei et al. [58] and Lemma 3.1 from Malitsky [47];
this inequality will allow us to characterize the bound the current distance to optimality in terms of
the distance to optimality at the previous iterate. We define g(ϵ) = maxi∈{1,2}

√
2ηiϵ(2LiDi + 3ηi)

when the players are assumed to be employing the approximate-proximal-step-based framework
presented in Section 3, and g(ϵ) = ϵ when the players are assumed to be employing AFW-ROMD; the
reason we make this definition is because Lemma 2 yields a simpler bound when the Wolfe gap is
used as a stopping criterion for the approximate proximal computation.

Lemma 7 Under the same assumptions as Theorem 7,

dist(z(t+1),Z∗)2 +
1

2

∥∥w(t) − z(t+1)
∥∥2 ≤ dist(z(t),Z∗)2 +

1

2

∥∥w(t−1) − z(t)
∥∥2 − 1

4

∥∥w(t) − z(t)
∥∥2

− 1

4

∥∥w(t) − z(t+1)
∥∥2 + 4ϵ+ 8g(ϵ).

Corollary 1 Let Θ(t) := dist(z(t),Z∗)2+ 1
2

∥∥w(t−1)−z(t)
∥∥2. and ζ(t) :=

∥∥w(t)−z(t)
∥∥2+∥∥w(t)−

z(t+1)
∥∥2.

Under the same assumptions as Theorem 7,

Θ(t+1) ≤ Θ(t) − 1

4
ζ(t) + 4ϵ+ 8g(ϵ).

28

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Proof We use Lemma 1 to first note the following for any z ∈ Z:

η
〈
ℓ(t) +m(t) −m(t+1), z(t+1) − z

〉
≤ Dφ

(
z(t) ∥ z

)
−Dφ

(
z(t+1) ∥ z

)
−Dφ

(
z(t+1) ∥ z(t)

)
+ 2ϵ.

Note that by definition, ℓ(t) = F (z(t)), and additionally by assumption m(t) = ℓ(t−1) =
F (z(t−1)), so we can rewrite Equation (26):

η
〈
F (w(t)), z(t+1) − z

〉
≤ Dφ

(
z(t) ∥ z

)
−Dφ

(
z(t+1) ∥ z

)
−Dφ

(
z(t+1) ∥ z(t)

)
+ 2ϵ. (27)

Now note that since
〈
Ax,y

〉
is convex with respect to x and concave with respect to y, we have

that η
〈
F (w(t))− F (z),w(t) − z

〉
≥ 0 so this term can be added to the right side of Inequality (27)

to yield the following:

Dφ

(
z(t+1) ∥ z

)
≤ Dφ

(
z(t) ∥ z

)
−Dφ

(
z(t+1) ∥ z(t)

)
− η
〈
F (w(t)), z(t+1) − z

〉
+ η
〈
F (w(t))− F (z),w(t) − z

〉
+ 2ϵ

= Dφ

(
z(t) ∥ z

)
−Dφ

(
z(t+1) ∥ z(t)

)
+ η
〈
F (w(t)),w(t) − z(t+1)

〉
− η
〈
F (z),w(t) − z

〉
+ 2ϵ

= Dφ

(
z(t) ∥ z

)
−Dφ

(
z(t+1) ∥ z(t)

)
+ η
〈
F (w(t))− F (w(t−1)),w(t) − z(t+1)

〉
+ η
〈
F (w(t−1)),w(t) − z(t+1)

〉
− η
〈
F (z),w(t) − z

〉
+ 2ϵ.

(28)
First, we attempt to bound the first inner product that appears on the right-hand side of Inequal-

ity (28).

η
〈
F (w(t))− F (w(t−1)),w(t) − z(t+1)

〉
≤ η

∥∥F (w(t))− F (w(t−1))
∥∥∥∥w(t) − z(t+1)

∥∥ (29)

≤ η
∥∥w(t) −w(t−1)

∥∥∥∥w(t) − z(t+1)
∥∥ (30)

≤ 1

2
η
(∥∥w(t) −w(t−1)

∥∥2 + ∥∥w(t) − z(t+1)
∥∥2) (31)

≤ 1

2
η
(
2
∥∥w(t) − z(t)

∥∥2 + 2
∥∥z(t) −w(t−1)

∥∥2 + ∥∥w(t) − z(t+1)
∥∥2).

(32)

Here we have used the Cauchy-Schwarz inequality in (29), smoothness of F with modulus
1 in (30), Young’s inequality in (31), and the triangle inequality and again Young’s inequality in
Inequality (32).

Next, we try to bound the second inner product that appears on the right-hand side of Inequal-
ity (28).

We apply Lemma 2 to note that we have:〈
z(t) − z(t−1) + ηF (w(t−1)), z(t) − z(t+1)

〉
≤ 2g(ϵ),〈

z(t) − z(t−1) + ηF (w(t−1)), z(t) − z(t−1)
〉
≤ 2g(ϵ).

29

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Adding these two inequalities together we have:

〈
z(t) − z(t−1) + ηF (w(t−1)),w(t) − z(t+1)

〉
≤ 4g(ϵ).

It follows that

η
〈
F (w(t−1)),w(t) − z(t+1)

〉
≤
〈
z(t) − z(t−1), z(t+1) −w(t)

〉
+ 4g(ϵ)

=
〈
w(t) − z(t), z(t+1) −w(t)

〉
+ 4g(ϵ)

=
1

2

(∥∥z(t) − z(t+1)
∥∥2 − ∥∥w(t) − z(t)

∥∥2 − ∥∥w(t) − z(t+1)
∥∥2)+ 4g(ϵ).

(33)
Combining Inequality (32) and Inequality (33) with Inequality (28), and noting that φ(z) =

1
2

∥∥z∥∥2. we have

Dφ

(
z(t+1) ∥ z

)
≤ Dφ

(
z(t) ∥ z

)
−Dφ

(
z(t+1) ∥ z(t)

)
− η
〈
F (z),w(t) − z

〉
+ 2ϵ

+
1

2

(∥∥z(t) − z(t+1)
∥∥2 − ∥∥w(t) − z(t)

∥∥2 − ∥∥w(t) − z(t+1)
∥∥2)+ 4g(ϵ)

+
1

2
η
(
2
∥∥w(t) − z(t)

∥∥2 + 2
∥∥z(t) −w(t−1)

∥∥2 + ∥∥w(t) − z(t+1)
∥∥2)

≤ Dφ

(
z(t) ∥ z

)
−
(
1

2
− η

)∥∥w(t) − z(t)
∥∥2 − (1

2
− 1

2
η

)∥∥w(t) − z(t+1)
∥∥2

+ η
∥∥z(t) −w(t−1)

∥∥2 − η
〈
F (z),w(t) − z

〉
+ 2ϵ+ g(4ϵ)

≤ 1

2

∥∥z(t) − z
∥∥2 − 1

4

∥∥w(t) − z(t)
∥∥2 − 3

8

∥∥w(t) − z(t+1)
∥∥2 + 1

4

∥∥z(t) −w(t−1)
∥∥2

− η
〈
F (z),w(t) − z

〉
+ 2ϵ+ 4g(ϵ).

Now if we set z = ΠZ∗(z(t)) above note that −η
〈
F (z),w(t) − z

〉
≤ 0 by convexity-concavity

of
〈
Ax,y

〉
with respect to x and y, and optimality of z (z ∈ Z∗). Additionally, we have that

dist(z(t+1),Z∗)2 ≤ dist(z(t+1),ΠZ∗(z(t)))2. Using these observations as well as multiplying both
sides by 2 and adding 1

2

∥∥w(t) − z(t+1)
∥∥2 to both sides:

dist(z(t+1),Z∗)2 +
1

2

∥∥w(t) − z(t+1)
∥∥2 ≤ ∥∥z(t) −ΠZ∗(z)

∥∥2 − 1

2

∥∥w(t) − z(t)
∥∥2 − 1

4

∥∥w(t) − z(t+1)
∥∥2

+
1

2

∥∥z(t) −w(t−1)
∥∥2 + 4ϵ+ 8g(ϵ)

= dist(z(t),Z∗)2 +
1

2

∥∥w(t−1) − z(t)
∥∥2 − 1

2

∥∥w(t) − z(t)
∥∥2

− 1

4

∥∥w(t) − z(t+1)
∥∥2 + 4ϵ+ 8g(ϵ)

≤ dist(z(t),Z∗)2 +
1

2

∥∥w(t−1) − z(t)
∥∥2 − 1

4

∥∥w(t) − z(t)
∥∥2

− 1

4

∥∥w(t) − z(t+1)
∥∥2 + 4ϵ+ 8g(ϵ)

30

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Next, we define Θ(t) := dist(z(t),Z∗)2 + 1
2

∥∥w(t−1) − z(t)
∥∥2. and ζ(t) :=

∥∥w(t) − z(t)
∥∥2 +∥∥w(t) − z(t+1)

∥∥2. This allows us to write the above as

Θ(t+1) ≤ Θ(t) − 1

4
ζ(t) + 4ϵ+ 8g(ϵ) (34)

as desired.

Next, we prove a version of Lemma 4 of Wei et al. [58]:

Lemma 8 Under the same assumptions as Theorem 7, for any z′ ∈ Z such that z′ ̸= z
(t+1)
∗

8

25
η2

[〈
F
(
z
(t+1)
∗

)
, z

(t+1)
∗ − z′

〉]2
+∥∥∥z′ − z

(t+1)
∗

∥∥∥2 ≤
∥∥∥w(t) − z(t)

∥∥∥2 + 2
∥∥∥w(t) − z(t+1)

∥∥∥2 + 8ϵ.

Proof By first-order optimality of z(t+1)
∗ we have:

〈
z
(t+1)
∗ − z(t) + ηF (w(t)), z′ − z

(t+1)
∗

〉
≥ 0. (35)

Rearranging Inequality (35), we have:

〈
z
(t+1)
∗ − z(t), z′ − z

(t+1)
∗

〉
≥
〈
ηF (w(t)), z

(t+1)
∗ − z′〉

= η
〈
F
(
z
(t+1)
∗

)
, z

(t+1)
∗ − z′〉− η

〈
F
(
z
(t+1)
∗

)
− F (w(t)), z

(t+1)
∗ − z′

〉
≥ η

〈
F
(
z
(t+1)
∗

)
, z

(t+1)
∗ − z′〉− η

∥∥∥F (w(t))− F
(
z
(t+1)
∗

)∥∥∥∥∥∥z(t+1)
∗ − z′

∥∥∥
(36)

≥ η
〈
F
(
z
(t+1)
∗

)
, z

(t+1)
∗ − z′〉− η

∥∥∥w(t) − z
(t+1)
∗

∥∥∥∥∥∥z(t+1)
∗ − z′

∥∥∥
(37)

≥ η
〈
F
(
z
(t+1)
∗

)
, z

(t+1)
∗ − z′〉− 1

4

∥∥∥w(t) − z
(t+1)
∗

∥∥∥∥∥∥z(t+1)
∗ − z′

∥∥∥.
(38)

Here we have applied Cauchy-Schwarz in Inequality (36), smoothness of F with modulus 1 in
Inequality (37), and the condition on η in Inequality (38).

Next, we apply Cauchy-Schwarz to upper bound the left-hand side and rearrange to obtain the
following:

∥∥∥z(t+1)
∗ − z′

∥∥∥(∥∥∥z(t+1)
∗ − z(t)

∥∥∥+ 1

4

∥∥∥w(t) − z
(t+1)
∗

∥∥∥) ≥ η
〈
F
(
z
(t+1)
∗

)
, z

(t+1)
∗ − z′

〉
.

31

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Then squaring (and taking care in case the right-hand side is negative), we have:

(∥∥∥z(t+1)
∗ − z(t)

∥∥∥+ 1

4

∥∥∥w(t) − z
(t+1)
∗

∥∥∥)2

≥ η2

[〈
F
(
z
(t+1)
∗

)
, z

(t+1)
∗ − z′

〉]2
+∥∥∥z′ − z

(t+1)
∗

∥∥∥2 .

Now, note that(∥∥∥z(t+1)
∗ − z(t)

∥∥∥+ 1

4

∥∥∥w(t) − z
(t+1)
∗

∥∥∥)2

≤
(∥∥∥w(t) − z(t)

∥∥∥+ 5

4

∥∥∥w(t) − z
(t+1)
∗

∥∥∥)2

(39)

≤
(
5

4

∥∥∥w(t) − z(t)
∥∥∥+ 5

4

∥∥∥w(t) − z
(t+1)
∗

∥∥∥)2

≤ 25

8

(∥∥∥w(t) − z(t)
∥∥∥2 + ∥∥∥w(t) − z

(t+1)
∗

∥∥∥2) (40)

and so combining with the above, we have

8

25
η2

[
F
(
z
(t+1)
∗

)⊤ (
z
(t+1)
∗ − z′

)]2
+∥∥∥z′ − z

(t+1)
∗

∥∥∥2 ≤
∥∥∥w(t) − z(t)

∥∥∥2 + ∥∥∥w(t) − z
(t+1)
∗

∥∥∥2
≤
∥∥w(t) − z(t)

∥∥2 + 2
∥∥w(t) − z(t+1)

∥∥2 + 2
∥∥z(t+1)

∗ − z(t+1)
∥∥2

(41)

≤
∥∥w(t) − z(t)

∥∥2 + 2
∥∥w(t) − z(t+1)

∥∥2 + 8ϵ. (42)

In Inequality (39), we use the triangle inequality, in Inequality (40), we use Young’s inequality,
in Inequality (41), we use the triangle inequality and Young’s inequality, and in Inequality (42) we
use Lemma 1.

Finally, we follow the Proof of Theorem 8 of Wei et al. [58] to prove our main result.

32

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

ζ(t) ≥ 1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + 1

4

(
2
∥∥∥z(t+1) −w(t)

∥∥∥2 + ∥∥∥w(t) − z(t)
∥∥∥2)

≥ 1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + 1

4

 sup
z′∈Z

8

25
η2

[
F
(
z
(t+1)
∗

)⊤ (
z
(t+1)
∗ − z′

)]2
+∥∥∥z′ − z

(t+1)
∗

∥∥∥2 − 8ϵ

 (43)

=
1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + sup

z′∈Z

2

25
η2

[
F
(
z
(t+1)
∗

)⊤ (
z
(t+1)
∗ − z′

)]2
+∥∥∥z′ − z

(t+1)
∗

∥∥∥2 − 2ϵ

≥ 1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + 2η2ν2

25

∥∥∥z(t+1)
∗ −ΠZ∗

(
z
(t+1)
∗

)∥∥∥2 − 2ϵ (44)

≥ 1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + 2η2ν2

25

(∥∥∥z(t+1) −ΠZ∗

(
z
(t+1)
∗

)∥∥∥− ∥∥∥z(t+1)
∗ − z(t+1)

∥∥∥)2 − 2ϵ

(45)

≥ 1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + 2η2ν2

25

(∥∥∥z(t+1) −ΠZ∗

(
z(t+1)

)∥∥∥− ∥∥∥z(t+1)
∗ − z(t+1)

∥∥∥)2 − 2ϵ

(46)

≥ 1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + η2ν2

25

(∥∥∥z(t+1) −ΠZ∗

(
z(t+1)

)∥∥∥2 − 2
∥∥∥z(t+1)

∗ − z(t+1)
∥∥∥2)− 2ϵ

(47)

≥ 1

2

∥∥∥z(t+1) −w(t)
∥∥∥2 + η2ν2

25

(∥∥∥z(t+1) −ΠZ∗

(
z(t+1)

)∥∥∥2 − 8ϵ

)
− 2ϵ

≥ C2Θ
(t+1) − C1ϵ.

where C2 = min(12 ,
η2ν2

25) and C1 = 2
(
1 + 4η2ν2

25

)
.

We use Lemma 8 in Inequality (43), the SP-MS condition in Inequality (44), the triangle inequality
in Inequality (45), the definition of the projection operator in Inequality (46), and Young’s inequality
in Inequality (47).

By Corollary 1:

Θ(t+1) ≤ Θ(t) − 1

4
ζ(t) + 4ϵ+ 8g(ϵ)

≤ Θ(t) − 1

4
C2Θ

(t+1) +

(
1

4
C1 + 4

)
ϵ+ 8g(ϵ).

Rearranging, we have that

Θ(t+1)

(
1 +

1

4
C2

)
≤ Θ(t) +

(
1

4
C1 + 4

)
ϵ+ 8g(ϵ).

Then define Ξ(t) = Θ(t) − (16+C1)ϵ+32g(ϵ)
C2

. We can then write the above as

33

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

(
Ξ(t+1) +

(16 + C1)ϵ+ 32g(ϵ)

C2

)(
1 +

1

4
C2

)
≤ Ξ(t)+

(16 + C1)ϵ+ 32g(ϵ)

C2
+

(
1

4
C1 + 4

)
ϵ+8g(ϵ).

Rearranging we have (
1 +

C2

4

)
Ξ(t+1) ≤ Ξ(t).

Thus we have

Ξ(t) ≤
(
1 +

C2

4

)−t+1

Ξ(1) ≤ 2(1 +
C2

4
)−tΞ(1).

Note by construction Ξ(1) ≤ Θ(1) = dist(z(1),Z∗)2 and Ξ(t) ≥ dist(z(1),Z∗)2− (16+C1)ϵ+32g(ϵ)
C2

so from the above we have that

dist(z(t),Z∗)2 − (16 + C1)ϵ+ 32g(ϵ)

C2
≤ Ξ(t)

≤ 2

(
1 +

C2

4

)−t

Ξ(1)

≤ 2

(
1 +

C2

4

)−t

Θ(1)

= 2

(
1 +

C2

4

)−t

dist(z(1),Z)2

so that

dist(z(t),Z∗) ≤ 2

(
1 +

C2

4

)−t

dist(z(1),Z∗)2 +
(16 + C1)ϵ+ 32g(ϵ)

C2

as desired (using the appropriate g based on whether the players are assumed to be employing the
approximate-proximal-step-based framework presented in Section 3 or AFW-ROMD).

Next, we argue why the runtime is as stated when using AFW-ROMD. Note, that AFW for Player
i can achieve a ϵ optimal solution with O

(
Li

D2
i

δ2i
log LiDi

ϵ

)
LMO calls. Given the convergence

rate bound, note that we can achieve a 2C2+48+C1
C2

ϵ solution we need at most log 1
ϵ

log
4+C2

4

iterations of

the approximate-proximal-step-based framework presented in Section 3. It follows that we need

O

(
log 1

ϵ

log
4+C2

4

Li
D2

i

δ2i
log LiDi

ϵ

)
calls for Player i. If we let ϵ′ = 2C2+48+C1

C2
ϵ, then ϵ = C2

2C2+48+C1
ϵ′ so

we can compute a ϵ′-NE in O

(
maxi∈{1,2}

log
2C2+48+C1

C2ϵ
′

log
4+C2

4

LiD
2
i

δ2i
log (2C2+48+C1)LiDi

C2ϵ′

)
calls.

Finally, the size of the support follows from the fact that AFW adds at most one pure strategy
at every iteration, which means that at every iteration of our approximate method, AFW will return
a strategy with O

(
maxi∈{1,2} Li

D2
i

δ2i
log LiDi

ϵ

)
= O

(
maxi∈{1,2}

LiD
2
i

δ2i
log LiDi(2C2+48+C1)

C2ϵ′

)
in the

support, and in particular this is yes for the last strategy returned by AFW-ROMD.

34

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Appendix F. Game Descriptions

Two- and Three-Player Kuhn Poker Two-player Kuhn poker was originally proposed by Kuhn
[40]. We employ the three-player variation described in Farina et al. [18]. In a three-player Kuhn
poker game with rank r there are r possible cards. At the beginning of the game, each player pays
one chip to the pot, and each player is dealt a single private card. The first player can check or bet, i.e.,
putting an additional chip in the pot. Then, the second player can check or bet after a first player’s
check or fold/call the first player’s bet. If no bet was previously made, the third player can either
check or bet. Otherwise, the player has to fold or call. After a bet from the second player (resp., third
player), the first player (resp., the first and the second players) still has to decide whether to fold or
call the bet. At the showdown, the player with the highest card who has not folded wins all the chips
in the pot.

Two- and Three-Player Liar’s Dice Liar’s dice is another standard benchmark introduced by Lisỳ
et al. [46]. At the beginning of the game, each of the players privately rolls an unbiased k-face die.
Then, the players alternate in making (potentially no) claims about their toss. The first player begins
bidding, announcing any face value up to k and the minimum number of dice that the player believes
are showing that value among the dice of all the players. Then, each player has two choices during
their turn: to make a higher bid or to challenge the previous bid by declaring the previous bidder
a “liar”. A bid is higher than the previous one if the face value is higher, or the number of dice is
higher. If the current player challenges the previous bid, all dice are revealed. If the bid is valid, the
last bidder wins and obtains a reward of +1 while the challenger obtains a negative payoff of −1.
Otherwise, the challenger wins and gets reward +1, and the last bidder obtains reward of −1. All the
other players obtain reward 0. We use parameter k = 6 in the two-player version (this is a standard
value used in several papers) and k = 3 in the three-player version.

Two-Player Leduc Poker Leduc poker is another classic two-player benchmark game introduced
by Southey et al. [52]. We employ game instances of rank three, in which the deck consists of three
suits with three cards each. The maximum number of raises per betting round can be 1 or 2. As the
game starts, players pay one chip to the pot. There are two betting rounds. In the first one, a single
private card is dealt to each player, while in the second round, a single board card is revealed. The
raise amount is set to 2 and 4 in the first and second rounds, respectively.

Three-Player Goofspiel This bidding game was originally introduced by Ross [51]. We use a
3-rank variant; that is, each player has a hand of cards with values −1, 0, 1. A third stack of cards
with values −1, 0, 1 is shuffled and placed on the table. At each turn, a prize card is revealed, and
each player privately chooses one of his or her cards to bid, with the highest card winning the current
prize. In case of a tie, the prize is split evenly among the winners. After three turns, all the prizes have
been dealt out, and the payoff of each player is computed as follows: each prize card’s value is equal
to its face value, and the players’ scores are computed as the sum of the values of the prize cards they
have won. For our experiments, we used the limited information variant [44]. In this variant, instead
of the players revealing the cards they have chosen to play, the bid cards are submitted to a referee
(who is fair and trusted by all the players), who simulates the gameplay as before (the highest card
wins the prize, and in the case of a tie the prize is split evenly among the winners).

35

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Appendix G. Pseudocode of Algorithms used in Experiments

In this section, we describe AFW-OMD and the algorithms we compare against in our experiments. In
all our experiments, optimistic variants use the previous loss as the prediction: m(t) = ℓ(t−1). We
drop the subscript i throughout most of this section because we take the point of view of a generic
agent applying the algorithm, except for the description of averaging and restarting in Appendix G.5.

G.1. AFW-OMD

In Algorithm 2, we present a non-optimistic version of the approximate-proximal-step-based frame-
work presented in Section 3. AFW-OMD is Algorithm 2 instantiated with AFW (Algorithm 1) as the
APO.

Algorithm 2: OMD with Approximate Proximal Computations

Data: X ⊆ Rn: convex and compact set
φ : X → R≥0: L-smooth, 1-strongly convex
η > 0: step-size parameter
ϵ(t): desired accuracy of prox call at each t
APOX : an APO for X
x(0) ∈ X
ℓ(0) = 0

1 function NEXTSTRATEGY()
2 return APOX (−η

〈
ℓ(t−1), ·

〉
, φ,x(t−1), ϵ)

G.2. (O)FTPL

In Algorithms 3 and 4, we present FTPL and OFTPL, as we implemented for our experiments. We
used the Gumbel distribution to generate noise, with location 0, and scale η, since this corresponds to
multiplicative weights using a stepsize of 1

η [1, 53].

Algorithm 3: FTPL [36]

Data: X ⊆ Rn: convex and compact set
LMOX : LMO for X
η > 0: noise parameter
m: number of samples
x(0) ∈ X
ℓ(0) = 0

1 function NEXTSTRATEGY()
2 return LMOX (

∑t−1
i=0 ℓ

(i) −Gumbel(0, η))

36

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Algorithm 4: Optimistic FTPL (OFTPL) [53]

Data: X ⊆ Rn: convex and compact set
LMOX : LMO for X
η > 0: noise parameter
m: number of samples
x(0) ∈ X
ℓ(0) = m(0) = 0

1 function NEXTSTRATEGY(m(t))
2 return LMOX (

∑t−1
i=0 ℓ

(i) +m(t) −Gumbel(0, η))

G.3. (O)FP

Next, in Algorithms 5 and 6, we present FP and OFP, as we implemented for our experiments. OFP,
is an optimistic generalization of FP, based on the same idea used to generalize FTPL and FTRL to
OFTPL and OFTRL. FP can be thought of as letting the regularization/perburbation term go to 0 in
FTRL and FTPL (letting the stepsize go to infinity and the noise go to 0, respectively), and similarly
with OFP and OFTRL/OFTPL.

Algorithm 5: Fictitious Play (FP) [11]

Data: X ⊆ Rn: convex and compact set
LMOX : LMO for X
ℓ(0) = 0

1 function NEXTSTRATEGY()
2 return LMOX (

∑t−1
i=0 ℓ

(i))

Algorithm 6: Optimistic Fictitious Play (OFP)

Data: X ⊆ Rn: convex and compact set
LMOX : LMO for X
ℓ(0) = m(0) = 0

1 function NEXTSTRATEGY(m(t))
2 return LMOX (

∑t−1
i=0 ℓ

(i) +m(t))

G.4. O(BR)

Finally, in Algorithms 7 and 8, we present BR and OBR, as we implemented for our experiments. OBR,
is an optimistic generalization of BR, based on the same idea used to generalize FTPL and FTRL to
OFTPL and OFTRL. BR and OBR can be thought of as letting the regularization term go to 0 in OMD and
ROMD respectively (letting the stepsize go to infinity).

37

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Algorithm 7: Best Response (BR)

Data: X ⊆ Rn: convex and compact set
LMOX : LMO for X
ℓ(0) = 0

1 function NEXTSTRATEGY()
2 return LMOX (ℓ

(t−1))

Algorithm 8: Optimistic Best Response (OBR)

Data: X ⊆ Rn: convex and compact set
LMOX : LMO for X
ℓ(0) = m(0) = 0

1 function NEXTSTRATEGY(m(t))
2 return LMOX (ℓ

(t−1) +m(t) −m(t−1))

G.5. Averaging and Restarting Pseudocode

When using different averaging schemes, the duality gap is computed with respect to the average
iterate (as defined by that averaging scheme).

When using uniform averaging, the weight placed on the new iterate is f(t) = 1
t+1 .

When using linear averaging, the weight placed on the new iterate is f(t) = 2
t+2 .

When using quadratic averaging, the weight placed on the new iterate is f(t) = 6t+6
(t+2)(2t+3) .

When using last iterate, the weight placed on the new iterate is f(t) = 1.
The “average” iterate is then set as follows: x̄(t+1)

i = x̄
(t)
i + f(t)(x

(t+1)
i − x̄

(t)
i).

Algorithm 9: Adaptive Restarting of Algorithm

Data: T : number of iterations to run algorithm

x̄
(0)
1 = x

(0)
1 ∈ X1, x̄

(0)
2 = x

(0)
2 ∈ X2

Algi for i ∈ {1, 2}: algorithm which generates iterates for each of the players
1 r = 0

2 ξ = maxx2∈X2

〈
Ax̄

(0)
1 ,x2

〉
−minx1∈X1

〈
Ax1, x̄

(0)
2

〉
3 for t = 0, . . . , T − 1 do
4 x

(t+1)
1 = Alg1()

5 x
(t+1)
2 = Alg2()

6 x̄
(t+1)
1 = x̄

(t)
1 + f(r)(x

(t+1)
1 − x̄

(t)
1)

7 x̄
(t+1)
2 = x̄

(t)
2 + f(r)(x

(t+1)
2 − x̄

(t)
2)

8 if maxx2∈X2

〈
Ax̄

(t+1)
1 ,x2

〉
−minx1∈X1

〈
Ax1, x̄

(t+1)
2

〉
≤ ξ

2 then
9 ξ = maxx2∈X2

〈
Ax̄

(t+1)
1 ,x2

〉
−minx1∈X1

〈
Ax1, x̄

(t+1)
2

〉
10 r = 0

38

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

101 103

Average num. LMO calls per player

10−3

10−1

N
as

h
ga

p
Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−1

101
Two-player Leduc poker

AFW-OMD AFW-ROMD FTPL OFTPL FP OFP BR OBR

101 103

Average num. LMO calls per player

10−2

10−1

100

Two-player Liar’s Dice

1

101 103

Average num. LMO calls per player

10−5

10−3

10−1

N
as

h
ga

p

Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−1

101
Two-player Leduc poker

AFW-OMD AFW-ROMD FTPL OFTPL FP OFP BR OBR

101 103

Average num. LMO calls per player

10−2

10−1

100

Two-player Liar’s Dice

1

101 103

Average num. LMO calls per player

10−6

10−3

100

N
as

h
ga

p

Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−2

100

Two-player Leduc poker

rAFW-OMD rAFW-ROMD rFTPL rOFTPL rFP rOFP rBR rOBR

101 103

Average num. LMO calls per player

10−3

10−1

Two-player Liar’s Dice

1

101 103

Average num. LMO calls per player

10−5

10−3

10−1

N
as

h
ga

p

Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−1

101
Two-player Leduc poker

AFW-OMD AFW-ROMD FTPL OFTPL FP OFP BR OBR

101 103

Average num. LMO calls per player

10−4

10−2

100
Two-player Liar’s Dice

1
Figure 2: Convergence to NE as a function of average LMO calls per player for AFW-OMD, AFW-ROMD,
FTPL, OFTPL, FP, OFP, BR, and OBR, for, from top to bottom, uniform, linear, quadratic, and last
averaging, without using restarting.

39

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

101 103

Average num. LMO calls per player

10−13

10−8

10−3

N
as

h
ga

p
Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−1

101
Two-player Leduc poker

rAFW-OMD rAFW-ROMD rFTPL rOFTPL rFP rOFP rBR rOBR

101 103

Average num. LMO calls per player

10−4

10−2

100
Two-player Liar’s Dice

1

101 103

Average num. LMO calls per player

10−5

10−2

N
as

h
ga

p

Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−2

100

Two-player Leduc poker

rAFW-OMD rAFW-ROMD rFTPL rOFTPL rFP rOFP rBR rOBR

101 103

Average num. LMO calls per player

10−4

10−2

100
Two-player Liar’s Dice

1

101 103

Average num. LMO calls per player

10−6

10−3

100

N
as

h
ga

p

Two-player Kuhn poker

101 103

Average num. LMO calls per player

10−2

100

Two-player Leduc poker

rAFW-OMD rAFW-ROMD rFTPL rOFTPL rFP rOFP rBR rOBR

101 103

Average num. LMO calls per player

10−3

10−1

Two-player Liar’s Dice

1
Figure 3: Convergence to NE as a function of average LMO calls per player for AFW-OMD, AFW-ROMD,
FTPL, OFTPL, FP, OFP, BR, and OBR, for, from top to bottom, uniform, linear, and quadratic averaging,
when using restarting.

Appendix H. Additional Experimental Details

H.1. Comparisons of Algorithms across Averaging and Restarting Schemes

In this section, we present plots of all the algorithms that we evaluate for different choices of
averaging and restarting. This is only relevant for two-player games since our performance measure
in the other settings is the maximum (uniform) average of an individual player’s regret (so iterate
averaging is irrelevant).

We implement adaptive restarting by resetting the averaging process every time the duality gap
halves. Adaptive restarting was recently shown effective in practice for EFGs [15]. Since adaptive
restarting is applied as a heuristic in our experiments that has not previously applied to the algorithms
we present as well as the ones we compare against, we label restarted variants of algorithms with
a prepended “r” (e.g., the adaptive restarting heuristic applied to OFTPL is labeled as rOFTPL) to
distinguish them from the original presentation of the algorithm.

40

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

102 104

Average num. LMO calls per player

10−6

10−3

100
N

as
h

ga
p

Two-player Kuhn poker

102 104

Average num. LMO calls per player

10−2

100

Two-player Leduc poker

AFW-ROMD constant
rAFW-ROMD constant
AFW-ROMD linear

rAFW-ROMD linear
AFW-ROMD quadratic

rAFW-ROMD quadratic
AFW-ROMD last

102 104

Average num. LMO calls per player

10−4

10−2

100
Two-player Liar’s Dice

1
Figure 4: Convergence to NE as a function of average LMO calls per player for AFW-OMD for all
combinations of averaging schemes and restarting.

102 104

Average num. LMO calls per player

10−6

10−3

100

N
as

h
ga

p

Two-player Kuhn poker

102 104

Average num. LMO calls per player

10−2

100

Two-player Leduc poker

AFW-ROMD constant
rAFW-ROMD constant
AFW-ROMD linear

rAFW-ROMD linear
AFW-ROMD quadratic

rAFW-ROMD quadratic
AFW-ROMD last

102 104

Average num. LMO calls per player

10−4

10−2

100
Two-player Liar’s Dice

1
Figure 5: Convergence to NE as a function of average LMO calls per player for AFW-ROMD for all
combinations of averaging schemes and restarting.

In Figure 2, we compare the algorithm on different choices of averaging for all algorithms when
restarting is not used. In Figure 3, we compare the algorithm on different choices of averaging for all
algorithms when restarting is used.

It can be seen that our algorithms are generally much more stable when averaging or restarting
is applied relative to the other algorithms. This is to be expected because while our algorithm has
last-iterate convergence guarantees, the other algorithms do not. Thus, even though (O)FTPL and
(O)FP seem to perform well in the last-iterate case or with restarting on Kuhn and Liar’s Dice, their
behavior is extremely erratic. Observe that our algorithms generally outperform the other algorithms
across different averaging and restarting schemes on Leduc and Liar’s Dice. As mentioned before,
(O)FTPL and (O)FP appear to be very unstable, and in Kuhn, while they are often able to find low
duality gap solutions, they oscillate quite a bit.

H.2. Comparison of Averaging Schemes for AFW-OMD and AFW-ROMD

In Figures 4 and 5, we evaluate AFW-OMD and AFW-ROMD on two-player games on all combinations of
averaging and restarting. As above, we label restarted variants of algorithms with a prepended “r” to
distinguish them from the original presentation of the algorithm.

41

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

102 104

Average num. LMO calls per player

10−5

10−2

N
as

h
ga

p
Two-player Kuhn poker

102 104

Average num. LMO calls per player

10−2

100

Two-player Leduc poker

AFW-ROMD warmstart ε =
1

t2

AFW-ROMD warmstart ε = 10−6

AFW-ROMD warmstart fixed LMO calls

AFW-ROMD ε =
1

t2

AFW-ROMD ε = 10−6

AFW-ROMD fixed LMO calls

102 104

Average num. LMO calls per player

10−4

10−2

100
Two-player Liar’s Dice

1

101 103

Average num. LMO calls per player

10−2

10−1

100

N
as

h
ga

p

Two-player Kuhn poker

102 104

Average num. LMO calls per player

10−1

101
Two-player Leduc poker

AFW-OMD warmstart ε =
1

t2

AFW-OMD warmstart ε = 10−6

AFW-OMD warmstart fixed LMO calls

AFW-OMD ε =
1

t2

AFW-OMD ε = 10−6

AFW-OMD fixed LMO calls

102 104

Average num. LMO calls per player

10−2

10−1

100

Two-player Liar’s Dice

1
Figure 6: Convergence to NE as a function of average LMO calls per player for AFW-ROMD (top row)
and AFW-OMD (bottom row) for different choices of warmstarting and termination criteria.

We observe here that for AFW-OMD, the restarted schemes (using uniform averaging, linear
averaging, or quadratic averaging) are all very similar and generally perform best.

For AFW-ROMD, we observe that the restarted schemes and the last iterate perform quite similarly
and generally better than the non-restarted schemes.

H.3. Comparison of Warmstart and APO Termination Criteria

We also test the performance of our algorithm when using different choices of termination criteria for
the approximate prox call, and whether to warmstart. It can be seen in Figure 6, that in two-player
Leduc poker and two-player Liar’s Dice, using warm starting and a fixed number of LMO calls per
iteration leads to the best performance. In the multiplayer setting, in Figure 7, it can be observed
again that using warmstarting and a fixed number of LMO calls leads to the best performance of our
algorithm in three-player Liar’s Dice and three-player Goofspiel (3 ranks). For both two-player and
three-player Kuhn, the choice of using warm starting and a fixed number of LMO calls is competitive.

H.4. Parameter Choices

In Tables 2 to 11, for each figure presented on experimental results, we provide the specific parameter
choices used for each algorithm. The columns, in order, correspond to the game, the algorithm, the
averaging scheme, whether restarting was used or not, the max number of LMO calls allowed during
each iteration of the algorithm, the stepsize or noise (the latter in the case of FTPL and OFTPL, and

42

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

102 104

Average num. LMO calls per player

10−2

100
M

ax
in

di
vi

du
al

av
er

ag
e

re
gr

et Three-player Kuhn poker

102 103 104

Average num. LMO calls per player

10−2

100
Three-player Liar’s Dice

AFW-ROMD warmstart ϵ =
1

t2

AFW-ROMD warmstart ϵ = 10−6

AFW-ROMD warmstart fixed LMO calls

AFW-ROMD ϵ =
1

t2

AFW-ROMD ϵ = 10−6

AFW-ROMD fixed LMO calls

102 104

Average num. LMO calls per player

10−2

100
Three-player Goofspiel (3 ranks)

101 103

Average num. LMO calls per player

10−3

10−1

M
ax

in
di

vi
du

al
av

er
ag

e
re

gr
et Three-player Kuhn poker

102 103 104

Average num. LMO calls per player

10−2

100
Three-player Liar’s Dice

AFW-OMD warmstart ϵ =
1

t2

AFW-OMD warmstart ϵ = 10−6

AFW-OMD warmstart fixed LMO calls

AFW-OMD ϵ =
1

t2

AFW-OMD ϵ = 10−6

AFW-OMD fixed LMO calls

101 103

Average num. LMO calls per player

10−4

10−2

100
Three-player Goofspiel (3 ranks)

Figure 7: Convergence to CCE as a function of average LMO calls per player for AFW-ROMD (top row)
and AFW-OMD (bottom row) for different choices of warm starting and termination criteria.

the former in all other cases), whether warmstarting was used (for our algorithms), and the APO
termination criterion (for our algorithms).

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Two-player
Kuhn poker

AFW-OMD quadratic no 1 0.08 yes fixed LMO calls
AFW-ROMD quadratic no 5 1.28 yes fixed LMO calls
FTPL last no 3 20.48 N/A N/A
OFTPL last no 3 20.48 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP linear no 1 1.28 N/A N/A
BR quadratic no 1 1.28 N/A N/A
OBR quadratic no 1 1.28 N/A N/A

Two-player
Leduc poker

AFW-OMD quadratic no 3 1.28 yes fixed LMO calls
AFW-ROMD last no 2 1.28 yes fixed LMO calls
FTPL constant no 1 0.32 N/A N/A
OFTPL constant no 1 0.01 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP constant no 1 1.28 N/A N/A
BR quadratic no 1 1.28 N/A N/A

43

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

OBR linear no 1 1.28 N/A N/A

Two-player
Liar’s Dice

AFW-OMD last no 3 10.24 yes fixed LMO calls
AFW-ROMD last no 3 10.24 yes fixed LMO calls
FTPL last no 1 0.32 N/A N/A
OFTPL last no 1 0.08 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP linear no 1 1.28 N/A N/A
BR last no 1 1.28 N/A N/A
OBR last no 1 1.28 N/A N/A

Table 2: The parameters for all algorithms shown in Figure 1 for two-player games. The final two
columns are irrelevant for algorithms that are not ours and thus are marked as N/A. Additionally, if
the number of LMO calls is not fixed, then N/A is used in the maximum number of LMO calls per
iteration (m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Three-player
Kuhn poker

AFW-OMD constant no 4 40.96 yes fixed LMO calls
AFW-ROMD constant no 5 1.28 yes fixed LMO calls
FTPL constant no 2 0.02 N/A N/A
OFTPL constant no 2 0.01 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP constant no 1 1.28 N/A N/A
BR constant no 1 1.28 N/A N/A
OBR constant no 1 1.28 N/A N/A

Three-player
Liar’s Dice

AFW-OMD constant no 20 40.96 yes fixed LMO calls
AFW-ROMD constant no 4 20.48 yes fixed LMO calls
FTPL constant no 1 0.01 N/A N/A
OFTPL constant no 1 0.01 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP constant no 1 1.28 N/A N/A
BR constant no 1 1.28 N/A N/A
OBR constant no 1 1.28 N/A N/A

Three-player
Goofspiel (3
ranks)

AFW-OMD constant no 1 81.92 yes fixed LMO calls
AFW-ROMD constant no 2 40.96 yes fixed LMO calls
FTPL constant no 1 0.04 N/A N/A
OFTPL constant no 2 0.04 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP constant no 1 1.28 N/A N/A
BR constant no 1 1.28 N/A N/A
OBR constant no 1 1.28 N/A N/A

44

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Table 3: The parameters for all algorithms shown in Figure 1 for multiplayer games. The final two
columns are irrelevant for algorithms that are not ours and thus are marked as N/A. Additionally, if
the number of LMO calls is not fixed, then N/A is used in the maximum number of LMO calls per
iteration (m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Two-player
Kuhn poker

AFW-OMD constant no 3 0.32 yes fixed LMO calls
AFW-ROMD constant no 4 1.28 yes fixed LMO calls
FTPL constant no 1 0.04 N/A N/A
OFTPL constant no 1 0.08 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP constant no 1 1.28 N/A N/A
BR constant no 1 1.28 N/A N/A
OBR constant no 1 1.28 N/A N/A

Two-player
Leduc poker

AFW-OMD constant no 3 2.56 yes fixed LMO calls
AFW-ROMD constant no 3 1.28 yes fixed LMO calls
FTPL constant no 1 0.32 N/A N/A
OFTPL constant no 1 0.01 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP constant no 1 1.28 N/A N/A
BR constant no 1 1.28 N/A N/A
OBR constant no 1 1.28 N/A N/A

Two-player
Liar’s Dice

AFW-OMD constant no 3 10.24 yes fixed LMO calls
AFW-ROMD constant no 2 5.12 yes fixed LMO calls
FTPL constant no 1 0.02 N/A N/A
OFTPL constant no 1 0.01 N/A N/A
FP constant no 1 1.28 N/A N/A
OFP constant no 1 1.28 N/A N/A
BR constant no 1 1.28 N/A N/A
OBR constant no 1 1.28 N/A N/A

Two-player
Kuhn poker

AFW-OMD linear no 1 0.32 yes fixed LMO calls
AFW-ROMD linear no 2 2.56 yes fixed LMO calls
FTPL linear no 1 0.64 N/A N/A
OFTPL linear no 1 0.04 N/A N/A
FP linear no 1 1.28 N/A N/A
OFP linear no 1 1.28 N/A N/A
BR linear no 1 1.28 N/A N/A
OBR linear no 1 1.28 N/A N/A

Two-player
Leduc poker

AFW-OMD linear no 3 1.28 yes fixed LMO calls
AFW-ROMD linear no 5 1.28 yes fixed LMO calls
FTPL linear no 1 0.32 N/A N/A

45

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

OFTPL linear no 1 0.08 N/A N/A
FP linear no 1 1.28 N/A N/A
OFP linear no 1 1.28 N/A N/A
BR linear no 1 1.28 N/A N/A
OBR linear no 1 1.28 N/A N/A

Two-player
Liar’s Dice

AFW-OMD linear no 3 10.24 yes fixed LMO calls
AFW-ROMD linear no 2 10.24 yes fixed LMO calls
FTPL linear no 1 0.02 N/A N/A
OFTPL linear no 2 0.08 N/A N/A
FP linear no 1 1.28 N/A N/A
OFP linear no 1 1.28 N/A N/A
BR linear no 1 1.28 N/A N/A
OBR linear no 1 1.28 N/A N/A

Two-player
Kuhn poker

AFW-OMD quadratic no 1 0.08 yes fixed LMO calls
AFW-ROMD quadratic no 5 1.28 yes fixed LMO calls
FTPL quadratic no 1 0.32 N/A N/A
OFTPL quadratic no 1 0.04 N/A N/A
FP quadratic no 1 1.28 N/A N/A
OFP quadratic no 1 1.28 N/A N/A
BR quadratic no 1 1.28 N/A N/A
OBR quadratic no 1 1.28 N/A N/A

Two-player
Leduc poker

AFW-OMD quadratic no 3 1.28 yes fixed LMO calls
AFW-ROMD quadratic no 3 1.28 yes fixed LMO calls
FTPL quadratic no 1 0.32 N/A N/A
OFTPL quadratic no 1 0.16 N/A N/A
FP quadratic no 1 1.28 N/A N/A
OFP quadratic no 1 1.28 N/A N/A
BR quadratic no 1 1.28 N/A N/A
OBR quadratic no 1 1.28 N/A N/A

Two-player
Liar’s Dice

AFW-OMD quadratic no 2 10.24 yes fixed LMO calls
AFW-ROMD quadratic no 2 10.24 yes fixed LMO calls
FTPL quadratic no 1 0.32 N/A N/A
OFTPL quadratic no 1 0.08 N/A N/A
FP quadratic no 1 1.28 N/A N/A
OFP quadratic no 1 1.28 N/A N/A
BR quadratic no 1 1.28 N/A N/A
OBR quadratic no 1 1.28 N/A N/A

Two-player
Kuhn poker

AFW-OMD last no 1 0.32 yes fixed LMO calls
AFW-ROMD last no 2 2.56 yes fixed LMO calls
FTPL last no 3 20.48 N/A N/A
OFTPL last no 20 0.32 N/A N/A
FP last no 1 1.28 N/A N/A
OFP last no 1 1.28 N/A N/A

46

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

BR last no 1 1.28 N/A N/A
OBR last no 1 1.28 N/A N/A

Two-player
Leduc poker

AFW-OMD last no 1 1.28 yes fixed LMO calls
AFW-ROMD last no 2 1.28 yes fixed LMO calls
FTPL last no 10 2.56 N/A N/A
OFTPL last no 200 0.16 N/A N/A
FP last no 1 1.28 N/A N/A
OFP last no 1 1.28 N/A N/A
BR last no 1 1.28 N/A N/A
OBR last no 1 1.28 N/A N/A

Two-player
Liar’s Dice

AFW-OMD last no 4 5.12 yes fixed LMO calls
AFW-ROMD last no 3 10.24 yes fixed LMO calls
FTPL last no 1 0.32 N/A N/A
OFTPL last no 2 0.02 N/A N/A
FP last no 1 1.28 N/A N/A
OFP last no 1 1.28 N/A N/A
BR last no 1 1.28 N/A N/A
OBR last no 1 1.28 N/A N/A

Table 4: The parameters for all algorithms shown in Figure 2. The final two columns are irrelevant
for algorithms that are not ours and thus are marked as N/A. Additionally, if the number of LMO
calls is not fixed for our algorithms, then N/A is used in the maximum number of LMO calls per
iteration (m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Two-player
Kuhn poker

rAFW-OMD constant yes 4 0.32 yes fixed LMO calls
rAFW-ROMD constant yes 5 1.28 yes fixed LMO calls
rFTPL constant yes 1 5.12 N/A N/A
rOFTPL constant yes 1 0.01 N/A N/A
rFP constant yes 1 1.28 N/A N/A
rOFP constant yes 1 1.28 N/A N/A
rBR constant yes 1 1.28 N/A N/A
rOBR constant yes 1 1.28 N/A N/A

Two-player
Leduc poker

rAFW-OMD constant yes 3 1.28 yes fixed LMO calls
rAFW-ROMD constant yes 4 1.28 yes fixed LMO calls
rFTPL constant yes 1 0.64 N/A N/A
rOFTPL constant yes 2 0.16 N/A N/A
rFP constant yes 1 1.28 N/A N/A
rOFP constant yes 1 1.28 N/A N/A
rBR constant yes 1 1.28 N/A N/A
rOBR constant yes 1 1.28 N/A N/A

Two-player
Liar’s Dice

rAFW-OMD constant yes 2 10.24 yes fixed LMO calls

47

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

rAFW-ROMD constant yes 3 10.24 yes fixed LMO calls
rFTPL constant yes 1 0.08 N/A N/A
rOFTPL constant yes 2 0.02 N/A N/A
rFP constant yes 1 1.28 N/A N/A
rOFP constant yes 1 1.28 N/A N/A
rBR constant yes 1 1.28 N/A N/A
rOBR constant yes 1 1.28 N/A N/A

Two-player
Kuhn poker

rAFW-OMD linear yes 4 0.32 yes fixed LMO calls
rAFW-ROMD linear yes 2 2.56 yes fixed LMO calls
rFTPL linear yes 1 0.08 N/A N/A
rOFTPL linear yes 2 0.04 N/A N/A
rFP linear yes 1 1.28 N/A N/A
rOFP linear yes 1 1.28 N/A N/A
rBR linear yes 1 1.28 N/A N/A
rOBR linear yes 1 1.28 N/A N/A

Two-player
Leduc poker

rAFW-OMD linear yes 3 1.28 yes fixed LMO calls
rAFW-ROMD linear yes 3 1.28 yes fixed LMO calls
rFTPL linear yes 1 0.32 N/A N/A
rOFTPL linear yes 1 0.01 N/A N/A
rFP linear yes 1 1.28 N/A N/A
rOFP linear yes 1 1.28 N/A N/A
rBR linear yes 1 1.28 N/A N/A
rOBR linear yes 1 1.28 N/A N/A

Two-player
Liar’s Dice

rAFW-OMD linear yes 2 10.24 yes fixed LMO calls
rAFW-ROMD linear yes 3 10.24 yes fixed LMO calls
rFTPL linear yes 2 0.16 N/A N/A
rOFTPL linear yes 1 0.16 N/A N/A
rFP linear yes 1 1.28 N/A N/A
rOFP linear yes 1 1.28 N/A N/A
rBR linear yes 1 1.28 N/A N/A
rOBR linear yes 1 1.28 N/A N/A

Two-player
Kuhn poker

rAFW-OMD quadratic yes 3 0.64 yes fixed LMO calls
rAFW-ROMD quadratic yes 5 1.28 yes fixed LMO calls
rFTPL quadratic yes 1 0.08 N/A N/A
rOFTPL quadratic yes 3 0.04 N/A N/A
rFP quadratic yes 1 1.28 N/A N/A
rOFP quadratic yes 1 1.28 N/A N/A
rBR quadratic yes 1 1.28 N/A N/A
rOBR quadratic yes 1 1.28 N/A N/A

Two-player
Leduc poker

rAFW-OMD quadratic yes 2 1.28 yes fixed LMO calls
rAFW-ROMD quadratic yes 3 1.28 yes fixed LMO calls
rFTPL quadratic yes 1 0.32 N/A N/A
rOFTPL quadratic yes 1 0.32 N/A N/A

48

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

rFP quadratic yes 1 1.28 N/A N/A
rOFP quadratic yes 1 1.28 N/A N/A
rBR quadratic yes 1 1.28 N/A N/A
rOBR quadratic yes 1 1.28 N/A N/A

Two-player
Liar’s Dice

rAFW-OMD quadratic yes 2 10.24 yes fixed LMO calls
rAFW-ROMD quadratic yes 2 10.24 yes fixed LMO calls
rFTPL quadratic yes 1 0.32 N/A N/A
rOFTPL quadratic yes 1 0.16 N/A N/A
rFP quadratic yes 1 1.28 N/A N/A
rOFP quadratic yes 1 1.28 N/A N/A
rBR quadratic yes 1 1.28 N/A N/A
rOBR quadratic yes 1 1.28 N/A N/A

Table 5: The parameters for all algorithms shown in Figure 3. The final two columns are irrelevant
for algorithms that are not ours and thus are marked as N/A. Additionally, if the number of LMO
calls is not fixed for our algorithms, then N/A is used in the maximum number of LMO calls per
iteration (m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Two-player
Kuhn poker

AFW-OMD constant no 1 0.32 yes fixed LMO calls
rAFW-OMD constant yes 1 0.32 yes fixed LMO calls
AFW-OMD linear no 1 0.08 yes fixed LMO calls
rAFW-OMD linear yes 1 0.32 yes fixed LMO calls
AFW-OMD quadratic no 5 0.32 yes fixed LMO calls
rAFW-OMD quadratic yes 1 0.32 yes fixed LMO calls
AFW-OMD last no 1 0.32 yes fixed LMO calls

Two-player
Leduc poker

AFW-OMD constant no 3 1.28 yes fixed LMO calls
rAFW-OMD constant yes 3 0.64 yes fixed LMO calls
AFW-OMD linear no 3 1.28 yes fixed LMO calls
rAFW-OMD linear yes 3 0.64 yes fixed LMO calls
AFW-OMD quadratic no 3 1.28 yes fixed LMO calls
rAFW-OMD quadratic yes 3 0.64 yes fixed LMO calls
AFW-OMD last no 4 0.64 yes fixed LMO calls

Two-player
Liar’s Dice

AFW-OMD constant no 3 10.24 yes fixed LMO calls
rAFW-OMD constant yes 3 10.24 yes fixed LMO calls
AFW-OMD linear no 2 10.24 yes fixed LMO calls
rAFW-OMD linear yes 2 10.24 yes fixed LMO calls
AFW-OMD quadratic no 2 10.24 yes fixed LMO calls
rAFW-OMD quadratic yes 2 10.24 yes fixed LMO calls
AFW-OMD last no 3 10.24 yes fixed LMO calls

49

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Table 6: The parameters for all algorithms shown in Figure 4. The final two columns are irrelevant
for algorithms that are not ours and thus are marked as N/A. Additionally, if the number of LMO
calls is not fixed for our algorithms, then N/A is used in the maximum number of LMO calls per
iteration (m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Two-player
Kuhn poker

AFW-ROMD constant no 4 1.28 yes fixed LMO calls
rAFW-ROMD constant yes N/A 1.28 yes ϵ = 1

t2

AFW-ROMD linear no 2 2.56 yes fixed LMO calls
rAFW-ROMD linear yes N/A 1.28 yes ϵ = 1

t2

AFW-ROMD quadratic no N/A 1.28 yes ϵ = 1
t2

rAFW-ROMD quadratic yes N/A 1.28 yes ϵ = 1
t2

AFW-ROMD last no N/A 1.28 yes ϵ = 1
t2

Two-player
Leduc poker

AFW-ROMD constant no 3 1.28 yes fixed LMO calls
rAFW-ROMD constant yes 3 1.28 yes fixed LMO calls
AFW-ROMD linear no 3 1.28 yes fixed LMO calls
rAFW-ROMD linear yes 3 1.28 yes fixed LMO calls
AFW-ROMD quadratic no 5 1.28 yes fixed LMO calls
rAFW-ROMD quadratic yes 3 1.28 yes fixed LMO calls
AFW-ROMD last no 3 1.28 yes fixed LMO calls

Two-player
Liar’s Dice

AFW-ROMD constant no 2 5.12 yes fixed LMO calls
rAFW-ROMD constant yes 3 10.24 yes fixed LMO calls
AFW-ROMD linear no 2 10.24 yes fixed LMO calls
rAFW-ROMD linear yes 3 10.24 yes fixed LMO calls
AFW-ROMD quadratic no 2 10.24 yes fixed LMO calls
rAFW-ROMD quadratic yes 3 10.24 yes fixed LMO calls
AFW-ROMD last no 3 10.24 yes fixed LMO calls

Table 7: The parameters for all algorithms shown in Figure 5. The final two columns are irrelevant
for algorithms that are not ours and thus are marked as N/A. Additionally, if the number of LMO
calls is not fixed for our algorithms, then N/A is used in the maximum number of LMO calls per
iteration (m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Two-player
Kuhn poker

AFW-ROMD quadratic no N/A 1.28 yes ϵ = 1
t2

AFW-ROMD quadratic no N/A 1.28 yes ϵ = 10−6

AFW-ROMD quadratic no 5 1.28 yes fixed LMO calls
AFW-ROMD last no N/A 1.28 no ϵ = 1

t2

AFW-ROMD last no N/A 1.28 no ϵ = 10−6

AFW-ROMD last no 20 1.28 no fixed LMO calls

50

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Two-player
Leduc poker

AFW-ROMD last no N/A 0.64 yes ϵ = 1
t2

AFW-ROMD last no N/A 2.56 yes ϵ = 10−6

AFW-ROMD last no 3 1.28 yes fixed LMO calls
AFW-ROMD last no N/A 0.64 no ϵ = 1

t2

AFW-ROMD last no N/A 2.56 no ϵ = 10−6

AFW-ROMD quadratic no 100 0.64 no fixed LMO calls

Two-player
Liar’s Dice

AFW-ROMD last no N/A 5.12 yes ϵ = 1
t2

AFW-ROMD quadratic no N/A 5.12 yes ϵ = 10−6

AFW-ROMD last no 3 10.24 yes fixed LMO calls
AFW-ROMD last no N/A 5.12 no ϵ = 1

t2

AFW-ROMD quadratic no N/A 0.04 no ϵ = 10−6

AFW-ROMD last no 200 5.12 no fixed LMO calls

Table 8: The parameters for AFW-ROMD in Figure 6. The final two columns are irrelevant for algorithms
that are not ours and thus are marked as N/A. Additionally, if the number of LMO calls is not fixed
for our algorithms, then N/A is used in the maximum number of LMO calls per iteration (m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Two-player
Kuhn poker

AFW-OMD linear no N/A 0.64 yes ϵ = 1
t2

AFW-OMD linear no N/A 0.64 yes ϵ = 10−6

AFW-OMD linear no 1 0.08 yes fixed LMO calls
AFW-OMD linear no N/A 0.64 no ϵ = 1

t2

AFW-OMD linear no N/A 0.64 no ϵ = 10−6

AFW-OMD linear no 10 0.64 no fixed LMO calls

Two-player
Leduc poker

AFW-OMD quadratic no N/A 2.56 yes ϵ = 1
t2

AFW-OMD last no N/A 10.24 yes ϵ = 10−6

AFW-OMD quadratic no 3 1.28 yes fixed LMO calls
AFW-OMD quadratic no N/A 2.56 no ϵ = 1

t2

AFW-OMD last no N/A 5.12 no ϵ = 10−6

AFW-OMD quadratic no 100 2.56 no fixed LMO calls

Two-player
Liar’s Dice

AFW-OMD linear no N/A 20.48 yes ϵ = 1
t2

AFW-OMD last no N/A 0.64 yes ϵ = 10−6

AFW-OMD last no 3 10.24 yes fixed LMO calls
AFW-OMD linear no N/A 20.48 no ϵ = 1

t2

AFW-OMD linear no N/A 0.02 no ϵ = 10−6

AFW-OMD quadratic no 200 10.24 no fixed LMO calls

Table 9: The parameters for AFW-OMD in Figure 6. The final two columns are irrelevant for algorithms
that are not ours and thus are marked as N/A. Additionally, if the number of LMO calls is not fixed
for our algorithms, then N/A is used in the maximum number of LMO calls per iteration (m) column.

51

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Three-player
Kuhn poker

AFW-ROMD constant no N/A 1.28 yes ϵ = 1
t2

AFW-ROMD constant no N/A 1.28 yes ϵ = 10−6

AFW-ROMD constant no 5 1.28 yes fixed LMO calls
AFW-ROMD constant no N/A 1.28 no ϵ = 1

t2

AFW-ROMD constant no N/A 1.28 no ϵ = 10−6

AFW-ROMD constant no 4 1.28 no fixed LMO calls

Three-player
Liar’s Dice

AFW-ROMD constant no N/A 5.12 yes ϵ = 1
t2

AFW-ROMD constant no N/A 0.02 yes ϵ = 10−6

AFW-ROMD constant no 20 10.24 yes fixed LMO calls
AFW-ROMD constant no N/A 10.24 no ϵ = 1

t2

AFW-ROMD constant no N/A 20.48 no ϵ = 10−6

AFW-ROMD constant no 100 5.12 no fixed LMO calls

Three-player
Goofspiel (3
ranks)

AFW-ROMD constant no N/A 20.48 yes ϵ = 1
t2

AFW-ROMD constant no N/A 40.96 yes ϵ = 10−6

AFW-ROMD constant no 2 40.96 yes fixed LMO calls
AFW-ROMD constant no N/A 20.48 no ϵ = 1

t2

AFW-ROMD constant no N/A 40.96 no ϵ = 10−6

AFW-ROMD constant no 100 20.48 no fixed LMO calls

Table 10: The parameters for AFW-ROMD in Figure 7. The final two columns are irrelevant for
algorithms that are not ours and thus are marked as N/A. Additionally, if the number of LMO calls is
not fixed for our algorithms, then N/A is used in the maximum number of LMO calls per iteration
(m) column.

Game Algorithm Averaging Restarts m η Warmstart APO term. crit.

Three-player
Kuhn poker

AFW-OMD constant no N/A 40.96 yes ϵ = 1
t2

AFW-OMD constant no N/A 40.96 yes ϵ = 10−6

AFW-OMD constant no 4 40.96 yes fixed LMO calls
AFW-OMD constant no N/A 81.92 no ϵ = 1

t2

AFW-OMD constant no N/A 40.96 no ϵ = 10−6

AFW-OMD constant no 1 40.96 no fixed LMO calls

Three-player
Liar’s Dice

AFW-OMD constant no N/A 40.96 yes ϵ = 1
t2

AFW-OMD constant no N/A 0.04 yes ϵ = 10−6

AFW-OMD constant no 20 40.96 yes fixed LMO calls
AFW-OMD constant no N/A 40.96 no ϵ = 1

t2

AFW-OMD constant no N/A 0.02 no ϵ = 10−6

AFW-OMD constant no 100 40.96 no fixed LMO calls

Three-player
Goofspiel (3
ranks)

AFW-OMD constant no N/A 40.96 yes ϵ = 1
t2

AFW-OMD constant no N/A 81.92 yes ϵ = 10−6

AFW-OMD constant no 1 81.92 yes fixed LMO calls

52

EFFICIENT LEARNING IN POLYHEDRAL GAMES VIA BEST RESPONSE ORACLES

AFW-OMD constant no N/A 81.92 no ϵ = 1
t2

AFW-OMD constant no N/A 81.92 no ϵ = 10−6

AFW-OMD constant no 20 40.96 no fixed LMO calls

Table 11: The parameters for AFW-OMD in Figure 7. The final two columns are irrelevant for algorithms
that are not ours and thus are marked as N/A. Additionally, if the number of LMO calls is not fixed
for our algorithms, then N/A is used in the maximum number of LMO calls per iteration (m) column.

53

