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Abstract

We develop new sub-optimality bounds for gradient descent that depend on the conditioning of
the objective along the path of optimization, rather than on global, worst-case constants. Key to
our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-
bounds on the objective. Minimizing these upper-bounds requires solving an implicit equation
to obtain an adapted step-size; we show that this equation is straightforward to solve for convex
quadratics and leads to new guarantees for a classical step-size sequence. For general functions, we
prove that exponential search can be used to obtain a path-dependent convergence guarantee with
only a log-log dependency on the global smoothness constant. Experiments on quadratic functions
showcase the utility of our theory and connections to the edge-of-stability phenominon.

1. Introduction

Gradient methods for differentiable functions are typically analyzed under the assumption that f is
L-smooth, meaning∇f is L-Lipschitz continuous. This condition implies f is upper-bounded by a
quadratic and guarantees that gradient descent (GD) with step-size η < 2/L decreases the optimality
gap at each iteration (Bertsekas, 1997). However, experience shows that gradient methods can still
shrink the optimality gap when f is not L-smooth, particularly for deep neural networks (Bengio,
2012; J. Cohen et al., 2021; Li et al., 2020). Even for functions verifying smoothness, convergence
rates are often pessimistic and fail to predict optimization speed in practice (Paquette et al., 2023).

In this paper, we prove new sub-optimality bounds for gradient descent without global smoothness
assumptions by deriving upper-bounds of the form,

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
M(xk+1, xk)

2
∥xk+1 − xk∥22, (1)

where the directional smoothness M(xk+1, xk) depends only on properties of f along the chord
between xk+1 and xk. Our bounds provide a path-dependent perspective on gradient descent and
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are tighter than conventional analyses when the step-size sequence is adapted to the directional
smoothness, meaning ηk < 2/M(xk+1, xk). As adapted step-sizes require solving an implicit
equation, we show the exponential search from Carmon and Hinder (2022) can be used to obtain
similar path-dependent complexities up to a log-log penalty. Our contributions are the following:

Directional smoothness constants. We introduce two related directional smoothness constants
M(y, x); one depends only on the end-points y, x and is easily computed, while the other yields a
tighter bound but depends on the chord C = {αx+ (1− α)y : α ∈ [0, 1]}.

Convergence rates. We leverage directional smoothness to prove new convergence rates for gra-
dient descent under a directional strong convexity assumption as well as without a curvature condi-
tion. Our bounds are step-size independent and improve over the standard analyses.

Quadratic case. For quadratic objectives, we show solving the implicit equation ηk = 1
M(xk+1,xk)

is feasible and results in an adaptive step-size that requires no knowledge of problem constants and
performs as well as, or better than, gradient descent with the optimal fixed step-size 1

L .

Exponential search. We give a simple restarting mechanism which comes within a double loga-
rithm of the complexity obtained using adapted step-sizes that depend on the directional smoothness.

1.1. Related work

Local smoothness: Global smoothness of f can be avoided by using local Lipschitz continuity of
the gradient (“local smoothness”). Such analyses often require the iterates to be bounded so that
local smoothness gives a quadratic bound like Eq. (1). Zhang and Hong (2020) enforce boundedness
by breaking optimization into stages, while Patel and Berahas (2022) develop a framework using
stopping times and Lu and Mei (2023) use line-search and a modified update. Finally, Park et al.
(2021) leverage the local smoothness constants along the optimization path to ensure convergence.

Adaptive step-sizes: Our work is related to that by Malitsky and Mishchenko (2020), who use
a smoothed M(y, x) to set the step-size. Vladarean et al. (2021) apply a similar step-size to
primal-dual hybrid gradient methods, while Zhao and Huang (2024) relate directional smoothness
to Barzilai-Borwein updates (Barzilai and Borwein, 1988). Finally, Vainsencher et al. (2015) use
local versions of L for neighbourhoods of the global minimizer to set the step-size for SVRG.

2. Directional smoothness

A common view of GD for L-smooth functions is that it minimizes the quadratic upper-bound,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥22. (2)

However, this viewpoint gives rates which depend on the global, worst-case growth of f . This
is both counter-intuitive and undesirable: the iterates of gradient descent depend only on local
properties of f , so the analysis should show the conditioning GD “sees” on the optimization path
{xk+1 := xk − ηk∇f(xk)}. Towards this goal, assume f is both differentiable and absolutely con-
tinuous and define the point-wise directional smoothness as,

D(y, x) :=
2∥∇f(y)−∇f(x)∥2

∥y − x∥2
. (3)
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Point-wise smoothness is a local estimate of L and satisfies D(y, x) ≤ 2L. However, when f is
convex and C2, D(y, x) also gives a surprising alternative to the smoothness upper-bound.

Lemma 1 (Point-wise Directional Smoothness) If f is convex and twice-differentiable, then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ D(x, y)

2
∥y − x∥22. (4)

Eq. (4) is purely local. However, it is weaker than the standard quadratic upper-bound by a factor
of two and requires f ∈ C2. As an alternative, we define the path-wise directional smoothness,

A(x, y) := sup
t∈[0,1]

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩
t∥x− y∥2

, (5)

and show that it exactly verifies the quadratic upper-bound with no additional assumptions.

Lemma 2 (Path-wise Directional Smoothness) The path directional smoothness satisfies

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ A(x, y)

2
∥y − x∥22. (6)

Path smoothness is tighter than point-wise smoothness since A(y, x) ≤ L, but not easily computed
because it depends on the chord between x and y. We refer to both concepts (Eq. (3) and (5)) as
directional smoothness and use the notation M(y, x) to stand-in for either quantity. Substituting the
GD update into directional smoothness gives a descent lemma which reflects only local geometry,

f(xk+1) ≤ f(xk)− ηk
(
1− ηkM(xk+1, xk)

2

)
∥∇f(xk)∥22. (7)

See Lemma 6 for proof. If ηk < 2/M(xk+1, xk), then GD is guaranteed to decrease f and we call
ηk adapted to the directional smoothness. However, finding a sequence of adapted step-sizes is not
straightforward. For instance, computing the standard 1/L analogue requires solving the non-linear
equation ηk = 1/M(xk+1(ηk), xk) which is non-trivial. We tackle this problem in Section 5.

Relation to Smoothness: As mentioned, if f is L-smooth, then M(y, x) is globally bounded with
D(y, x) ≤ 2L and A(y, x) ≤ L. This second inequality follows from one application of Cauchy-
Schwarz and mirrors the standard proof of the smoothness upper-bound (see Nesterov et al. (2018,
Theorem 2.1.5)). However, since L is a global quantity, the directional smoothness is often much
smaller than predicted by these bounds (Malitsky and Mishchenko, 2020).

In order for M(y, x) to be well-defined, we only need the weaker assumption that f is locally
smooth. A function is locally smooth if for every compact set S there exists LS ≥ 0 such that f is
LS-smooth on S . Although our bounds on the directional smoothness also hold with LS , we expect
D(y, x) and A(y, x) to smaller in general because they only depend on a small subset of S .

3. Path-Dependent convergence rates

Now we leverage directional smoothness to derive new guarantees for gradient descent. We empha-
size that the following results are sub-optimality bounds, rather than convergence rates; a sequence
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Figure 1: Illustration of GD with step-size ηk = 1/L. Even though the step-size exactly minimizes
the upper-bound from L-smoothness, Mi directional smoothness better predicts the progress of the
actual gradient step. Our rates improve on L-smoothness because they use this tighter bound.

of adapted step-sizes is required to convert our propositions into full a convergence theory. As a
trade-off, we obtain bounds reflecting the locality of GD, rather than treating it as a global method.

We start with the case when f has lower curvature. Instead of using strong convexity or the PL-
condition (Karimi et al., 2016), we propose the following directional strong convexity constant:

µ(y, x) = inf
t∈[0,1]

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩
t∥x− y∥2

. (8)

If f is convex, then µ(y, x) verifies the standard lower-bound from strong convexity. Moreover,
µ(y, x) ≥ µ when f is strongly convex (Lemma 7). We prove two bounds for convex functions
using directional strong convexity. For simplicity, let Mi :=M(xi+1, xi) and µi := µi(xi+1, xi).

Proposition 3 If f is convex, then GD with step-size sequence {ηk} satisfies,

δk ≤

[∏
i∈G

(1 + ηiλiµi)

]
δ0 +

∑
i∈B

 ∏
j>i,j∈G

(1 + ηjλjµi)

 ηiλi
2
∥∇f(xi)∥22 (9)

where λi = ηiMi − 2, G =
{
i : ηi <

2
M(xi+1,xi)

}
, B = [k] \ G, and δi = f(xi)− f(x∗).

The analysis splits iterations into good steps where ηk is adapted to the directional smoothness, and
bad steps B where the step-size is too large and GD may increase the optimality gap. In the case
where f is L-smooth and µ-strongly convex, using the step-size sequence ηk = 1/L gives,

f(xk+1)− f(x∗) ≤
k∏
i=0

(
1− µi (2−Mi/L)

L

)
[f(x0)− f(x∗)] , (10)

where µi (2−Mi/L) ≥ µ. Eq. (9) gives a tighter rate for GD under standard assumptions and
step-sizes by localizing to the convergence path. We give a more elegant bound in Appendix B,
which does not divide k into good steps and bad steps. In exchange, the requirement for ηk to be
adapted to the directional smoothness changes to ηk ≤ 1/M(xk+1, xk). We conclude this section
with a bound for when there is no lower curvature, meaning µi = 0.

Proposition 4 Let x̄k =
∑k

i=0 ηixi+1/
∑k

i=0 ηi. If f is convex, then GD satisfies,

f(x̄k)− f(x∗) ≤
∥x0 − x∗∥22 +

∑k
i=0 η

2
i (ηiMi − 1)∥∇f(xi)∥22

2
∑k

i=0 ηi
. (11)
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Figure 2: Results from linear regression with L = 1000 and Hessian skew for 20000 steps of
gradient descent: (a) shows the directional smoothness over training trajectory, (b) shows the sub-
optimality gap over training trajectory, and (c) shows the step-sizes over training trajectory.

This rate, which is at least as tight as the standard analysis, is key to our results in the next sections.

4. The quadratic case

In the past sections, we showed how to obtain tighter convergence rates for GD when using step-
sizes adapted to the local smoothness. Now we show that selecting adapted step-sizes is straight-
forward when f is a convex quadratic. Suppose f(x) = x⊤Bx/2 − c⊤x, where B is a positive
semi-definite matrix. Using Proposition 4 with step-sizes ηi = 1/M(xi+1(ηi), xi) for each i yields

f(x̄k)− f∗ ≤
∥x0 − x∗∥2

2
∑k

i=0 ηi
=

∥x0 − x∗∥2

2
∑k

i=0
1

M(xi+1,xi)

≤ ∥x0 − x∗∥
2

2(k + 1)

∑k
i=0M(xi+1, xi)

k + 1
, (12)

which depends solely on the average directional smoothness along the trajectory.

It is not clear how to solve ηi = 1/M(xi+1, xi) in general, given that xi+1 is a function of ηi.
However, if f is quadratic as above and Mi is the point-wise smoothness, then Lemma 9 shows
D(xi+1, xi) = 2∥B∇f(xi)∥/∥∇f(xi)∥ and thus ηi = 1/D(xi+1, xi) can be computed easily.
This step-size was first suggested by Dai and Yang (2006), who show it approximates the Cauchy
step-size and converges to 2

L . Interestingly, this matches recent results on the edge-of-stability (Ahn
et al., 2022; J. Cohen et al., 2021). To our knowledge, no prior non-asymptotic convergence rate
exists for this step-size, meaning our work gives it new theoretical justification.

Figure 2 compares the performance of GD with adapted step-sizes and with a fixed step-size for
a synthetic linear regression problem with Hessian skew (Pan et al., 2022). The results shown
are averaged over ten different random initializations. We find that adapted step-sizes speed-up
optimization by taking advantage of the directional smoothness, which drops significantly during
optimization when using a fixed step-size. Interestingly, the adapted step-sizes can be much larger
than even 2/L, especially in the beginning of training when they oscillate around 2/L. This reflects
the theoretical connections to edge-of-stability (J. M. Cohen et al., 2022).
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5. Exponential search

Our goal is to move beyond quadratics and take advantage of our tighter rates for general convex
functions. We consider a fixed horizon k and denote by xi(η) the sequence of iterates obtained by
gradient descent from initialization x0 using a fixed step-size η. Define the adaptedness criterion

ψ(η) =

∑k
i=0 ∥∇f(xi(η))∥2∑k

i=0M(xi+1(η), xi(η))∥∇f(xi(η))∥2
, (13)

and suppose that η that satisfies ψ(η)
2 ≤ η ≤ ψ(η). Using these bounds in Proposition 4 yields

f(x̄k)− f∗ ≤
∥x0 − x∗∥2

k

[∑k
i=0M(xi+1, xi)∥∇f(xi)∥2∑k

i=0 ∥∇f(xi)∥2

]
, (14)

This is a weighted average of the directional smoothness constants, where the weights are the ob-
served squared gradient norms. This is always smaller than the maximum directional smoothness
along the trajectory, and can be much smaller than the global smoothness bound.

We have reduced our problem to finding η ∈ [ψ(η)/2, ψ(η)], which is similar to the problem
Carmon and Hinder (2022) solve with bisection search. Although we adapt their technique to our
setting, our approach differs from Carmon and Hinder (2022) in that they start with a small step-size
and narrow upwards, while we start with a large step-size and narrow downwards. We give more
details in Algorithm 1, which we prove obtains the following guarantee.

Theorem 5 Assume the objective f is convex and L-smooth. Then Algorithm 1 with η0 > 0
requires at most 2T (log log 2η0

L−1 ∨ 1) iterations of gradient descent and in the last run it outputs a
step-size η and point x̂T = 1

T

∑T−1
t=0 xt(η) such that exactly one of the following holds:

Case 1: η = η0 and f(x̂T )− f∗ ≤
∥x0 − x∗∥2

2Tη0

Case 2: η ̸= η0 and f(x̂T )− f∗ ≤
∥x0 − x∗∥2

2T

[∑k
i=0M(x′i+1, x

′
i)∥∇f(x′i)∥2∑k

i=0 ∥∇f(x′i)∥2

]
,

where x′1, x
′
2, . . . are the iterates generated by GD with step-size η′ satisfying η′ ∈ [η, 2η].

The proof of Theorem 5 is provided in the appendix. Observe that we only get a log log dependence
on the global smoothness constant, while obtaining a convergence rate that scales with the weighted
average of the directional smoothness constants along a very close trajectory.

6. Conclusion

We present new sub-optimality bounds for gradient descent under two novel measures of local
gradient variation which we call directional smoothness. Our results hold for any sequence of step-
sizes and improve over standard analyses when the step-size sequence is adapted to the directional
smoothness. Although finding adapted step-sizes is challenging, we show that for convex quadrat-
ics the sequence ηk = 1/M(xk+1, xk) can be computed with a single Hessian-vector product.
We tackle the general case with an algorithm based on exponential search; our approach gives a
weighted-version of the path-dependent convergence rate with no need for adapted step-sizes.
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Appendix A. Directional Smoothness: Proofs

Lemma 1 (Point-wise Directional Smoothness) If f is convex and twice-differentiable, then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ D(x, y)

2
∥y − x∥22. (4)

Proof Taylor’s theorem and the integral form of the remainder imply

f(y) = f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

〈
y − x,∇2f(x+ t(y − x))(y − x)

〉
(1− t)dt

= f(x) + ⟨∇f(x), y − x⟩ −
∫ 1

0
t
〈
y − x,∇2f(x+ t(y − x))(y − x)

〉
dt

+

∫ 1

0

〈
y − x,∇2f(x+ t(y − x))(y − x)

〉
dt

≤ f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

〈
y − x,∇2f(x+ t(y − x))(y − x)

〉
dt,

where we have used the fact that
〈
y − x,∇2f(x+ t(y − x))(y − x)

〉
≥ 0 for all t ∈ [0, 1] by

convexity of f . The fundamental theorem of calculus now implies

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

〈
y − x,∇2f(x+ t(y − x))(y − x)

〉
dt

= f(x) + ⟨∇f(x), y − x⟩+ ⟨y − x,∇f(y)−∇f(x)⟩
≤ f(x) + ⟨∇f(x), y − x⟩+ ∥y − x∥2∥∇f(y)−∇f(x)∥2

= f(x) + ⟨∇f(x), y − x⟩+ D(x, y)

2
∥y − x∥22,

where the last two steps use Cauchy-Schwarz inequality and the definition of D(x, y).

Lemma 2 (Path-wise Directional Smoothness) The path directional smoothness satisfies

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ A(x, y)

2
∥y − x∥22. (6)

Proof Starting again from the fundamental theorem of calculus,

f(x)− ⟨∇f(x), y − x⟩ =
∫ 1

0
⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt

≤
∫ 1

0
A(x, y)t∥x− y∥22dt

=
A(x, y)

2
∥y − x∥22.

which completes the proof.
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Lemma 6 One step of gradient descent with step-size ηk > 0 makes progress as

f(xk+1) ≤ f(xk)− ηk
(
1− ηkM(xk+1, xk)

2

)
∥∇f(xk)∥22.

Proof Starting from Eq. (3), we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
M(xk+1, xk)

2
∥xk+1 − xk∥22

= f(xk)− ηk∥∇f(xk)∥22 +
η2kM(xk+1, xk)

2
∥∇f(xk)∥22

= f(xk)− ηk
(
1− ηkM(xk+1, xk)

2

)
∥∇f(xk)∥22.

Appendix B. Path-Dependent Convergence Rates: Proofs

Lemma 7 If f is convex, then for any y, x ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ(y, x)

2
∥y − x∥22. (15)

If f is µ strongly convex, then µ(y, x) ≥ µ.

Proof The fundamental theorem of calculus implies

f(x)− ⟨∇f(x), y − x⟩ =
∫ 1

0
⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt

≥
∫ 1

0
µ(x, y)t∥x− y∥22dt

=
µ(x, y)

2
∥y − x∥22.

Note that we have implicitly used convexity to verify the inequality in the second line in the case
where µ(y, x) = 0. Now assume that f is µ strongly convex. As a standard consequence of strong-
convexity, we obtain:

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩
t∥x− y∥2

=
⟨∇f(x+ t(y − x))−∇f(x), x+ t(y − x)− x⟩

t2∥x− y∥2

≥ µ∥x− t(y − x)− x∥
2
2

∥y − x∥22
= µ.

10
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Proposition 3 If f is convex, then GD with step-size sequence {ηk} satisfies,

δk ≤

[∏
i∈G

(1 + ηiλiµi)

]
δ0 +

∑
i∈B

 ∏
j>i,j∈G

(1 + ηjλjµi)

 ηiλi
2
∥∇f(xi)∥22 (9)

where λi = ηiMi − 2, G =
{
i : ηi <

2
M(xi+1,xi)

}
, B = [k] \ G, and δi = f(xi)− f(x∗).

Proof First note that λi < 0 for i ∈ G and λi ≥ 0 for i ∈ B. We start from Eq. (7),

f(xk+1) ≤ f(xk) + ηk

(
ηkM(xk+1, xk)

2
− 1

)
∥∇f(xk)∥22

= f(xk) + 1k∈G ·
[
ηkλk
2
∥∇f(xk)∥22

]
+ 1k∈B ·

[
ηkλk
2
∥∇f(xk)∥22

]
≤ f(xk) + 1k∈G · [ηkλkµi (f(xk)− f(x∗))] + 1k∈B ·

[
ηkλk
2
∥∇f(xk)∥22

]
,

where we used that directional strong convexity gives

∥∇f(xk)∥22 ≥ 2µi (f(xk)− f(x∗)) .

Subtracting f(x∗) from both sides and then recursively applying the inequality gives the result.

Proposition 8 Let ∆i = ∥xi−x0∥22. If f is convex, then GD with step-size sequence {ηk} satisfies,

∆k ≤

[
k∏
i=0

(1− µiηi)

]
∆0 +

k∑
i=0

∏
j>i

(1− µiηj)

 η2i (Miηi − 1) ∥∇f(xk)∥22. (16)

Proof Let ∆k = ∥xk − x∗∥22 and observe

∆k = ∥xk − xk+1 + xk+1 − x∗∥22 = ∆k+1 + ∥xk − xk+1∥22 + 2 ⟨xk − xk+1, xk+1 − x∗⟩ .

Using this expansion in ∆k+1 −∆k, we obtain

∆k+1 −∆k = −∥xk − xk+1∥22 − 2 ⟨xk − xk+1, xk+1 − x∗⟩
= −η2k∥∇f(xk)∥22 − 2ηk ⟨∇f(xk), xk+1 − x∗⟩
= −η2k∥∇f(xk)∥22 − 2ηk ⟨∇f(xk), xk+1 − xk⟩ − 2ηk ⟨∇f(xk), xk − x∗⟩ .

Now we control the inner-products with directional strong convexity and directional smoothness.

≤ −η2k∥∇f(xk)∥22 − 2ηk ⟨∇f(xk), xk+1 − xk⟩+ 2ηk

[
f(x∗)− f(xk)−

µi
2
∆k

]
≤ −η2k∥∇f(xk)∥22 + 2ηk

[
f(xk)− f(xk+1) +

M(xk+1, xk)η
2
k

2
∥∇f(xk)∥

]
+ 2ηk

[
f(x∗)− f(xk)−

µi
2
∆k

]
= η2k (M(xk+1, xk)ηk − 1) ∥∇f(xk)∥22 + 2ηk [f(x

∗)− f(xk+1)]− µiηk∆k

≤ η2k (M(xk+1, xk)ηk − 1) ∥∇f(xk)∥22 − µiηk∆k.

11
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Re-arranging this expression allows us to deduce a rate with error terms depending on the local
smoothness,

=⇒ ∆k+1 ≤ (1− µiηk)∆k + η2k (M(xk+1, xk)η − 1) ∥∇f(xk)∥22

≤

[
k∏
i=0

(1− µiηi)

]
∆0 +

k∑
i=0

 k∏
j=i+1

(1− µiηj)

 η2i (M(xi+1, xi)ηi − 1) ∥∇f(xk)∥22.

Proposition 4 Let x̄k =
∑k

i=0 ηixi+1/
∑k

i=0 ηi. If f is convex, then GD satisfies,

f(x̄k)− f(x∗) ≤
∥x0 − x∗∥22 +

∑k
i=0 η

2
i (ηiMi − 1)∥∇f(xi)∥22

2
∑k

i=0 ηi
. (11)

Proof Let ∆k = ∥xk − x∗∥22 and observe

∆k = ∥xk − xk+1 + xk+1 − x∗∥22 = ∆k+1 + ∥xk − xk+1∥22 + 2 ⟨xk − xk+1, xk+1 − x∗⟩ .

Using this expansion in ∆k+1 −∆k, we obtain

∆k+1 −∆k = −∥xk − xk+1∥22 − 2 ⟨xk − xk+1, xk+1 − x∗⟩
= −η2k∥∇f(xk)∥22 − 2ηk ⟨∇f(xk), xk+1 − x∗⟩
= −η2k∥∇f(xk)∥22 − 2ηk ⟨∇f(xk), xk+1 − xk⟩ − 2ηk ⟨∇f(xk), xk − x∗⟩ .

Now we use convexity and directional smoothness to control the two inner-products as follows:

∆k+1 −∆k ≤ −η2k∥∇f(xk)∥22 − 2ηk (f(xk)− f(x∗))− 2ηk ⟨∇f(xk), xk+1 − xk⟩
≤ −η2k∥∇f(xk)∥22 − 2ηk (f(xk)− f(x∗)) + 2ηk(f(xk)− f(xk+1)) + η3kM(xk+1, xk)∥∇f(xk)∥22
= η2k(ηkM(xk+1, xk)− 1)∥∇f(xk)∥22 − 2ηk (f(xk+1)− f(x∗)) .

Re-arranging this equation and summing over iterations implies the following sub-optimality bound:

k∑
i=0

ηi∑k
i=0 ηi

(f(xi+1)− f(x∗)) ≤
∆0 +

∑k
i=0 η

2
i (ηiM(xi+1, xi)− 1)∥∇f(xi)∥22

2
∑k

i=0 ηi
.

Convexity of f and Jensen’s inequality now imply the final result,

=⇒ f(x̄k)− f(x∗) ≤
∆0 +

∑k
i=0 η

2
i (ηiM(xi+1, xi)− 1)∥∇f(xi)∥22

2
∑k

i=0 ηi
.

12
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Appendix C. The Quadratic Case: Proofs

Lemma 9 Let B be a positive semi-definite matrix and suppose that

f(x) =
1

2
x⊤Bx− c⊤x.

Then the point-wise directional smoothness is given by

1

2
D(xi+1, xi) =

∥B∇f(xi)∥
∥∇f(xi)∥

.

Proof

1

2
D(xi+1, xi) =

∥∇f(xi+1)−∇f(xi)∥
∥xi+1 − xi∥

=
∥ [Bxi+1 − c]− [Bxi − c] ∥

xi+1 − xi

=
∥B [xi+1 − xi] ∥

xi+1 − xi

=
∥B [−ηi∇f(xi)] ∥
∥ − ηi∇f(xi)∥

=
∥B∇f(xi)∥
∥∇f(xi)∥

.

Appendix D. Exponential Search: Proofs

Proof [Proof of Theorem 5] This analysis follows (Carmon and Hinder, 2022). First, instanti-
ate Eq. (11) from Proposition 4 with ηi = η for all i to obtain

f(x̄k)− f∗ ≤
∥x0 − x∗∥2

2ηk
+
η
[
η
∑k

i=0M(xi+1, xi)∥∇f(xi)∥2 −
∑k

i=0 ∥∇f(xi)∥2
]

2k
. (17)

Now, observe that if we get a “Lucky strike” and ϕ(ηhi) = ϕ(η0) ≤ 0, then specializing Eq. (17)
for η = η0 we get

f(x̄k)− f∗ ≤
∥x0 − x∗∥2

2η0k
+
η0
2k

[
η0

k∑
i=0

M(xi+1, xi)∥∇f(xi)∥2 −
k∑
i=0

∥∇f(xi)∥2
]

=
∥x0 − x∗∥2

2η0k
+
η0

∑k
i=0M(xi+1, xi)∥∇f(xi)∥2

2k
· ϕ(η0)

≤ ∥x0 − x∗∥
2

2η0k
.

This covers the first case of Theorem 5.
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Procedure ExponentialSearch(x, L0)
for k ← 1, 2, 3, . . . do

ηout ← RootFindingBisection(x, 2−2kη0, η0) If ηout <∞ Return ηout.
end

end
Procedure RootFindingBisection(x, ηlo, ηhi)

Define ϕ(η) = η − ψ(η) where ψ(η) is given in (13)
/* One access to ϕ requires T descent steps. */
If ϕ(ηhi) ≤ 0 Return ηhi. /* Lucky strike. */
If ϕ(ηlo) > 0 Return∞.
while ηhi > 2ηlo do

ηmid =
√
ηloηhi.

If ϕ(ηmid) > 0 then ηhi = ηmid else ηlo = ηmid.
/* Invariant: ϕ(ηhi) > 0, and ϕ(ηlo) ≤ 0. */

end
Return ηlo.

end
Algorithm 1: Gradient descent with exponential search.

With the first case out of the way, we may assume that ϕ(ηhi) > 0. This implies that ηhi > 1
L , since

if η ≤ 1
L we have ϕ(η) ≤ 0. Now observe that when ηlo = 22

−k
η0 ≤ 1

L , we have that ϕ(ηlo) ≤ 0,
therefore it takes at most k = ⌈log log η0

L−1 ⌉ to find such an ηlo. From here on, we suppose that
ϕ(ηhi) > 0 and ϕ(ηlo) ≤ 0. Now observe that the algorithm’s main loop always maintains the
invariant ϕ(ηhi) > 0 and ϕ(ηlo) ≤ 0, and every iteration of the loop halves log ηhi

ηlo
, therefore we

make at most ⌈log log η0L⌉ loop iterations. The output stepsize ηlo satisfies ηhi
2 ≤ ηlo ≤ ηhi and

ϕ(ηlo) ≤ 0. Specializing Eq. (17) for η = η0 and using that ϕ(ηlo) ≤ 0 we get

f(x̄k)− f∗ ≤
∥x0 − x∗∥2

2ηlok
+
ηlo

∑k
i=0M(xi+1(ηlo), xi(ηlo))∥∇f(xi(ηlo))∥2

2k
· ϕ(ηlo)

≤ ∥x0 − x∗∥
2

2ηlok
. (18)

By the loop invariant ϕ(ηhi) > 0 we have

ϕ(ηhi) > 0⇔ ηhi >

∑T
i=0 ∥∇f(xi(ηhi))∥

2∑T
i=0 ∥∇f(xi(ηhi))∥

2M(xi+1(ηhi), xi(ηhi))

By the loop termination condition we have ηlo ≥ ηhi
2 , combining this with the last equation we get

ηlo ≥
ηhi
2
≥ 1

2

∑T
i=0 ∥∇f(xi(ηhi))∥

2∑T
i=0 ∥∇f(xi(ηhi))∥

2M(xi+1(ηhi), xi(ηhi))
.

Plugging this into Eq. (18) we obtain

f(x̄k)− f∗ ≤
∥x0 − x∗∥2

k
·
∑T

i=0 ∥∇f(xi(ηhi))∥
2M(xi+1(ηhi), xi(ηhi))∑T

i=0 ∥∇f(xi(ηhi))∥
2

It remains to notice that ηhi ∈ [ηlo, 2ηlo].
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