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Abstract
Generalization properties are a central aspect of the design and analysis of learning algorithms.
One notion that has been considered in many previous works as leading to good generalization
is flat minima, which informally describes a loss surface that is insensitive to noise perturbations.
However, the design of efficient algorithms (that are easy to analyze) to find them is relatively
under-explored. In this paper, we propose a new algorithm to address this issue, which minimizes
a stochastic optimization objective that averages noise perturbations injected into the weights of a
function. This algorithm is shown to enjoy both theoretical and empirical advantages compared to
existing algorithms involving worst-case perturbations. Theoretically, we show tight convergence
rates of our algorithm to find first-order stationary points of the stochastic objective. Empirically,
the algorithm induces a penalty on the trace of the Hessian, leading to iterates that are flatter than
SGD and other alternatives, with tighter generalization gaps. Altogether, this work contributes a
provable and practical algorithm to find flat minima by optimizing the noise stability properties of
a function.

1. Introduction

The generalization properties of learning algorithms such as stochastic gradient descent (SGD) are
central in recent learning theory literature. For instance, implicit regularization refers to a phe-
nomenon where SGD prefers low-norm solutions such as the nuclear norm of a matrix in linear
networks [1, 15]. For linearly separable data trained by logistic loss, gradient descent converges to
the max-margin solution [16, 22]. As many recent studies have shown, various forms of noise in-
jection and perturbation can also induce implicit bias in the algorithm. For example, injecting label
noise (which is also known as label smoothing) induces a nonlinear dynamic at the interpolating
regime [4], which corresponds to penalizing large eigenvalues of the Hessian [6].

From a practical standpoint, adding inductive bias to SGD can lead to better empirical perfor-
mance. A widely used algorithm is sharpness-aware minimization (SAM) [13], based on a (con-
strained) minimax optimization formulation, which penalizes the worst-case perturbations. How-
ever, this minimax optimization problem is challenging to analyze because of the convex-concave
constrained formulation, whose computational complexity is NP-hard in the worst case [7]. The
algorithm by Foret et al. [13] simplifies the inner maximization by taking one gradient step along
the sign of the gradient before computing the gradient. The dynamic of this algorithm is analyzed
in Bartlett et al. [3], showing that the algorithm induces an implicit bias on the largest eigenvalue of
the Hessian. Despite a strong interest in characterizing the inductive bias and developing learning
algorithms that yield generalizable solutions, we seem to have more questions than answers. For
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example, [23] performed various analyses of SAM, including showing the convergence of SAM in
the convex quadratic case and the implicit bias induced by a stochastic version of SAM.

The goal of this work is to present a new perspective on finding generalizable solutions by
designing a new algorithm that minimizes the average weight perturbations injected into a function.
Concretely, let f : Rd → R be a real-valued, nonconvex function. Let P denote a d-dimensional
distribution which is symmetric at zero. We consider the following optimization problem, which
perturbs the weight of f with a random sample of P:

min
W∈Rd

F (W ) := E
U∼P

[f(W + U)] . (1)

For small enough perturbations, F (W ) is approximately equal to f(W ) plus a penalty on the Hes-
sian trace of f(W ). The difference between the perturbed function and the original f measures
noise stability properties of a function around a local neighborhood [18], leading algorithms to
converge to “flat” regions where the loss surface is less sensitive to perturbations.

The problem of showing explicit convergence rates and algorithmic complexities for minimiz-
ing (1) is largely under-explored. The gradient of F cannot be directly computed because it is the
average of an infinite population of gradients of f . This can be estimated with zeroth-order opti-
mization techniques [9, 12], but it incurs a dimension factor of

√
d. A recent paper by [21] analyzes

the regularization effect inducted by noise injection for one-hidden-layer ReLU and deep linear net-
works. However, non-asymptotic optimization convergence results are still not known. The main
contribution of this paper is to show matching upper and lower bounds for minimizing the stochas-
tic objective (1) when f is smooth. Along the way, we design a new algorithm that leverages the
symmetry of P and injects multiple perturbations (for better empirical performance); See Alg. 1.

Our main result shows that this algorithm convergences to a first-order stationary point (of F )
whose gradient norm squared is at most O((k · T )−1/2) after T steps. This is tight, as we construct
lower bound instances (both convex and nonconvex) for which the iterates found by SGD (and its
variants, including momentum and adaptive learning rates) will have gradients whose norm matches
this rate up to constants. From a technical standpoint, we provide a fine-grained characterization
of the SGD noise for a convex quadratic function, leveraging a martingale property of the noise
sequence. For the nonconvex case, we build on a chain-like construction by [8] while incorporating
noise perturbations in the analysis of the lower bound.

We conduct experiments to compare the trace of the Hessian and its largest eigenvalue during
the iterations of our algorithm (NSO), SGD, SAM, and SGD with noise injection in the weights.
Curiously, across various datasets and neural network architectures, our algorithm finds solutions
whose Hessian trace and top eigenvalue are much smaller than all these alternative algorithms. We
hypothesize that this is because problem (1) explicitly penalizes the Hessian trace (when the per-
turbations are small). While our analysis does not formally explain these empirical observations,
we believe they justify the design rationale of our algorithm, showing it enjoys practical perfor-
mance (see Sec. 4 for additional results on test performance). Future works can possibly analyze
the solutions preferred by noise-injected SGD in neural nets (cf. literature on “Gaussian smoothing”
[19, 20]), or design faster methods for finding local minima of the stochastic objective [5, 11].

Notations: We use the big-O notation f(x) = O(g(x)) to indicate that there exists a fixed
constant C independent of x such that f(x) ≤ C · g(x) for large enough values of x. We use the
notation f(x) ≲ g(x) to indicate that f(x) = O(g(x)). Let H[f(W )] denote a d by d matrix
whose (i, j)-th entry is equal to the twice-derivative of f(W ) over the i-th and j-th entry of W . Let
N(0, Idd) denote the d-dimensional isotropic Gaussian.
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Algorithm 1 Noise Stability Optimization (NSO)
Input: Initialization W0 ∈ Rd, a gradient estimator gz , a d-dimensional distribution P
Parameters: Number of epochs T , learning rates η0, η1, . . . , ηT−1, number of perturbations k
Output: Wt

1: for i = 0, 1, . . . , T − 1 do
2: Sample U

(1)
i , U

(2)
i , . . . , U

(k)
i independently from P

3: Update iterates (with random seeds z(1)i , z
(2)
i , . . . , z

(k)
i ) according to

Wi+1 = Wi −
ηi
2k

k∑
j=1

(
g
z
(j)
i

(
Wi + U

(j)
i

)
+ g

z
(j)
i

(
Wi − U

(j)
i

))
(2)

4: end for
5: Let t be chosen uniformly at random from 1, 2, . . . , T

2. Algorithm

This section describes the design of our algorithm based on two rationales: (1) leveraging the sym-
metry of the perturbation distribution to zero out the first-order term in Taylor’s expansion. (2)
injecting multiple perturbations to reduce the variance of the stochastic gradient. We state a stan-
dard assumption regarding access to the gradient.

Assumption 1 Given a random seed z, let gz : Rd → Rd be a (continuous) function providing an
unbiased gradient estimate. For any W ∈ Rd, gz satisfies the following

E
z
[gz(W )] = ∇f(W ) and E

z

[
∥gz(W )−∇f(W )∥2

]
≤ σ2. (3)

Algorithm 1 provides the entire procedure. This algorithm has an implicit bias towards mini-
mizers with low Hessian trace. This can be seen by Taylor’s expansion of F (W ) (cf. Eq. (1)):

E
U∼P

[
f(W ) + U⊤∇f(W ) +

1

2
⟨UU⊤,H[f(W )]⟩+ ϵU

]
= f(W ) +

σ2

2
Tr [H[f(W )]] + E [ϵU ] , (4)

where P denotes a d-dimensional distribution N(0, σ2 Idd) and ϵU denotes expansion error terms
whose order is o(σ2). Provided with a small enough ϵU , F is approximately equal to f plus a
penalty on the Hessian trace Tr[H[f ]].

Based on PAC-Bayesian bounds, a lower Hessian trace can imply a tighter generalization gap.
Suppose f is an l-layer network, whose i-th layer is denoted as vi, for i = 1, 2, . . . , l. Let Hi be
the (loss) Hessian matrix with respect to vi. Based on a linear PAC-Bayes bound (e.g., Theorem
2.1, [10]), the generalization gap between the population and empirical risks can be bounded by

a data-dependent bound via the Hessian trace as
∑l

i=1

√
∥vi∥2Tr [Hi]/n (see Theorem 2.1 of Ju

et al. [17]). Thus, lowering the Hessian trace leads to a tighter generalization bound.
We experiment with common image and text classification tasks to compare the Hessian trace

of the iterates of NSO (Algorithm 1) and SGD. The results are shown in Figure 1, suggesting that
NSO reduces the Hessian trace (of the local minimizer in the last epoch) by 60% more than SGD.
Interestingly, the generalization gap incurred by NSO is again lower than SGD by over 20%. We
will provide more experiments and details later in Sec. 4.
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Figure 1: Training curves comparing NSO and SGD; NSO adds a penalty that biases to minimizers
with lower Hessian trace compared to SGD and incurs a lower generalization gap.

3. Main Results

Our first result gives a fine-grained convergence analysis of the noise stability optimization algo-
rithm. Since finding global minimizers of an arbitrary nonconvex function takes exponential time
in the worst case, we focus on finding approximate first-order stationary points in this paper. We
assume that f is smooth, whose gradient is Lipschitz-continuous, which implies F is also smooth.

Theorem 2 (Abridged version of Theorem 5, Sec. A) Suppose Assumptions 1 and 3 hold. Let P
be a distribution that is symmetric at zero. There exists a fixed learning rate η < C−1

1 such that if
we run Algorithm 1 with ηi = η for all i, arbitrary number of perturbations k, for T ≳ k

σ2 steps,
the algorithm returns Wt such that

E
[
∥∇F (Wt)∥2

]
≲

√
C3

1 + C1σ2

k · T , (5)

in expectation over the randomness of t, perturbations, and gradient queries.

Recall that Algorithm 1 involves averaging the gradients at W+U and W−U for k perturbations
U . This is equivalent to applying SGD to the following symmetrized loss:

F (W ) = E
U∼P

[
1

2

(
f(W + U) + f(W − U)

)]
. (6)

We provide a motivating example to illustrate the rationale behind the symmetrized gradient.

Example 1 Let u be a Gaussian random variable with mean zero and variance σ2. Let f(w) =
1
4w

4. Thus, by definition from Eq. 1, F (w) = 1
4Eu[(w + u)4]. Let us compare the variance of

T =
1

2
(∇f(w + u) +∇f(w − u)) and G =

1

2
(∇f(w + u) +∇f(w + u′)),

where u′ is another independent sample from the same distribution as u. Notice that both T and G
require two gradient queries; Interestingly, T has a lower variance than G:

var[T ] = 18w2σ4 < var[G] = 18w2σ4 + 4.5w4σ2 + 7.5σ6. (7)

See Sec. 4 for a comparison between these two gradients in more realistic settings.

Our proof generalizes this example to characterize the variance of the stochastic gradients of NSO.
Next, we complement the upper bound with a matching lower bound. We give two examples,

one on a convex quadratic function, and another on a nonconvex, piecewise quadratic function. For
both examples, we show that SGD (and its extensions to momentum and adaptive learning rates),
after running T steps, all its iterates have a gradient norm that matches Eq. (10) up constants.
Our construction is inspired by the SGD lower bound of [8]. Our analysis gives a fine-grained
characterization of the SGD noise. Moreover, the analysis applies to any gradient oracle (with mean
zero and bounded variance), which may be of independent interest. For details, see Sec. B.
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4. Numerical Results

This section conducts experiments to evaluate the empirical benefits of our algorithm. We evaluate
Algorithm 1 by fine-tuning pretrained neural nets on image classification datasets, including online
medical image classification datasets containing eye fundus images for diabetic retinopathy clas-
sification, and several natural image classification datasets, including Aircrafts, Birds, and Indoor.
We compare our algorithm with stochastic gradient descent (SGD) and sharpness-aware minimiza-
tion (SAM). We sample perturbations from isotropic Gaussian distribution N(0, σ2 Idd) and tune σ
among 0.008, 0.01, and 0.012. To evaluate the trace and eigenvalues of the loss Hessian matrix, we
use Hessian vector products. Other details about the implementation are provided in App. C.

First, we justify both rationales of our design in Sec. 2. The first compares NSO with weight-
perturbed SGD using two independently sampled random gradient estimates (cf. Example 1). We
validate that NSO can reduce the largest eigenvalue (λ1) and the Hessian trace by 8.6% more. The
second studies the effect of increasing k, as using larger k in NSO would lead to a better estimation
of the gradient. We vary k = 1, 2, 3 on both datasets. The results are shown in Table 1 below.

Table 1: We describe several ablation studies to understand the relationship between different algo-
rithms. (1) With the same number of gradient queries, NSO can converge to minimizers
with lower λ1 than weight-perturbed SGD, and achieve better test accuracy. (2) As we add
more perturbations, the λ1 of Hessian decreases further.

Dataset: Aircrafts Test accuracy (↑) λ1[H] (↓) Dataset: Indoor Test accuracy (↑) λ1[H] (↓)

WP-SGD (k = 2) 60.63±0.38 675±58 WP-SGD (k = 2) 76.49±0.40 748±53
NSO (k = 1) 62.31±0.36 612±44 NSO (k = 1) 77.39±0.55 688±58

WP-SGD (k = 4) 60.40±0.39 597±47 WP-SGD (k = 4) 77.11±0.31 688±44
NSO (k = 2) 63.46±0.43 567±63 NSO (k = 2) 77.44±0.30 652±56

WP-SGD (k = 6) 60.79±0.69 685±63 WP-SGD (k = 6) 77.34±0.44 658±37
NSO (k = 3) 63.64±0.68 550±39 NSO (k = 3) 77.94±0.64 630±74

Next, we report results comparing both the Hessian trace and λ1 of iterates at the final epoch.
Curiously, NSO achieves notably smaller λ1 and Hessian trace. Figure 2 visualizes this comparison.
Due to space limit, the detailed results (including a comparison of empirical test performance) are
reported in Table 3, App. C.

Indoor Caltech-256 Aircrafts CIFAR-10 CIFAR-100
0

1

2

3

4×103 λ1

NSO SAM SGD

Indoor Caltech-256 Aircrafts CIFAR-10 CIFAR-100
0.0

0.3

0.6

0.9

1.2×104 trace

NSO SAM SGD

Figure 2: Comparing the loss Hessian’s largest eigenvalue and trace between NSO, SAM, and SGD,
conducted on ResNet-34, averaged over three random seeds. Interestingly, NSO finds
minimizers with lower Hessian trace than SAM. We hypothesize this is because the al-
gorithm minimizes an objective that involves an explicit penalty on the Hessian trace.
Formally explaining this behavior is an interesting question for future work.
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Appendix A. Upper Bound

We state the following assumptions.

Assumption 3 Let C1, C2, D be fixed, positive constants. First, the initialization W0 ∈ Rd sat-
isfies F (W0) − minW∈Rd F (W ) ≤ D2. Second, the gradient of f(W ) exists and is C1-Lipschitz
continuous: For any W1 ∈ Rd and W2 ∈ Rd, the following holds

∥∇f(W2)−∇f(W1)∥ ≤ C1 ∥W2 −W1∥ . (8)

A simple corollary of the above is that ∇F (W ) is also Lipschitz-continuous.

Proposition 4 Suppose condition (8) holds. Then, ∇F (W ) is also C1-Lipschitz-continuous.

To see this, we apply Eq. (8) inside the expectation of F (W ). For any W1,W2 ∈ Rd, by definition,

∥∇F (W1)−∇F (W2)∥ =

∥∥∥∥∇ E
U∼P

[f(W1 + U)]−∇ E
U∼P

[f(W2 + U)]

∥∥∥∥
=

∥∥∥∥ E
U∼P

[∇f(W1 + U)−∇f(W2 + U)]

∥∥∥∥
≤ E

U∼P
[∥∇f(W1 + U)−∇f(W2 + U)∥] ≤ C1 ∥W1 −W2∥ .

In the event that f(W ) is twice-differentiable and the Hessian matrix of f(W ) is C2-Lipschitz
continuous, then the following holds:∥∥H[f(W2)

]
−H

[
f(W1)

]∥∥
2
≤ C2 ∥W2 −W1∥ , for any W1,W2 ∈ Rd. (9)

For a random variable U ∼ P , let the second moment E[∥U∥2] be denoted as H(P) and the fourth
moment E[∥U∥4] be G(P). Now we can state our first result. There are two cases, depending on
whether or not the Hessian exists.

Theorem 5 Suppose Assumptions 1 and 3 hold. Let P be a distribution that is symmetric at zero.
There exists a fixed learning rate η < C−1

1 such that if we run Algorithm 1 with ηi = η for all i,
arbitrary number of perturbations k, for T ≳ k

σ2 steps, the algorithm returns Wt such that

E
[
∥∇F (Wt)∥2

]
≤ 4D

√
C3

1H(P) + C1σ2

k · T , (10)

in expectation over the randomness of t, perturbations, and gradient queries. Additionally, when
f(·) is twice-differentiable and its Hessian is C2-Lipschitz-continuous, then the following is also
true

E
[
∥∇F (Wt)∥2

]
≤ 4D

√
C1C2

2G(P) + C1σ2

k · T . (11)

The only difference in (10) and (11) is their dependence on P . Let us consider P = N(0, σ2 Idd)
for example. For small perturbations, the fourth moment G(P) = (d2 + 2d)σ4 is smaller than the
second moment H(P) = dσ2. More precisely, when σ2 ≤ C2

1C
−2
2 (d + 2)−1, Eq. (11) gives a

tighter bound than (10).
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A.1. Proof Overview
Next, we characterize the variance of the stochastic gradient. For i = 0, . . . , T − 1, denote

δi :=
1

2k

k∑
j=1

(
∇f
(
Wi + U

(j)
i

)
+∇f

(
Wi − U

(j)
i

))
−∇F (Wi) (12)

ξi :=
1

2k

k∑
j=1

(
g
z
(j)
i

(
Wi + U

(j)
i

)
−∇f

(
Wi + U

(j)
i

)
+ g

z
(j)
i

(
Wi − U

(j)
i

)
−∇f

(
Wi − U

(j)
i

))
. (13)

It is not hard to see that the mean of δi and ξi are both zero. The former is by the symmetry of P (cf.
Eq. (6)). The latter is because gz is unbiased (cf. Eq. (3)). Next, we give the second moment of δi
and ξi. The key is that both of their variances scale as 1

k , where k is the number of noise injections.

Lemma 6 For any i = 1, . . . , T , suppose ∇f(W ) is C1-Lipschitz, then

E
[
∥ξi∥2

]
≤ σ2

k
and E

[
∥δi∥2

]
≤ C2

1H(P)

k
. (14)

Additionally, suppose H[f(W )] is C2-Lipschitz, then

E
[
∥δi∥2

]
≤ 3C2

2G(P)

8k
. (15)

The proof of Lemma 6, based on Proposition 4, can be found in App. D.1. These results are needed
in the analysis of the gradient dynamic. In particular, the following result is based on results in [14]
(cf. App. D.2).

Lemma 7 In the setting of Theorem 5, for any η0, · · · , ηT−1 less than C1
−1 and a random variable

according to a distribution Pr[t = j] =
ηj∑T−1

i=0 ηi
, for any j = 0, . . . , T − 1, the following holds:

E
[
∥∇F (Wt)∥2

]
≤ 2C1∑T−1

i=0 ηi
D2 +

C1

∑T−1
i=0 η2i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T−1

i=0 ηi
. (16)

Proof of Theorem 5 Let the step sizes be equal to a fixed η for all epochs. Thus, Eq. (16) becomes

E
[
∥∇F (Wt)∥2

]
≤ 2

Tη
D2 +

C1η

T

T−1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
. (17)

Minimizing over η above leads us to the following upper bound on the right-hand side of (17)

2T−1
√
2C1 ·D

√√√√T−1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
.

The proof of Eqs. (10) and (11) follows by applying Lemma 6 to the above. Recall that the step size
η must be less than η ≤ C1

−1. Thus, we must have the following

η =
D√∑T−1

i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )√ 2

C1
≤ 1

C1
⇒ 2C1D

2k

C2
1H(P) + σ2

≤ T,

by applying Eq. (14) to the above. For Eq. (11), the condition is similar and is omitted. In either
case, as long as T ≳ k

σ2 , then Eqs. (10) and (11) must hold. ■
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Appendix B. Lower Bound

B.1. A Convex Example
We focus on iterative algorithms in the form of update (2) in Algorithm 1. We consider a quadratic
function

f(W ) =
C1

2
∥W∥2 . (18)

The argument holds for any distribution P with mean zero. The stochastic objective F (W ) is equal
to f(W ) + C1 ·H(P)/2. The SGD path of Algorithm 1 evolves as follows:

Wt+1 = Wt − ηt ·
1

2k

k∑
j=1

(
C1

(
Wt + U

(j)
t

)
+ C1

(
Wt − U

(j)
t

))
− ηtξ̄t,

=
(
1− C1ηt

)
Wt − ηtξ̄t, (19)

where we denote ξ̄t as the averaged noise 1
k

∑k
j=1 ξ

(j)
t . The key observation is that the gradient

noise sequence ξ̄1, ξ̄2, . . . , ξ̄T forms a martingale sequence:

a) For any i = 1, 2, . . . , T , conditioned on the previous random variables ξ(j)i′ for any i′ < i and
any j = 1, 2, . . . , k, the expectation of ξ̄i is equal to zero.

b) The variance of ξ̄i is equal to σ2

k , since conditional on the previous random variables, the ξ(j)i s
are all independent from each other.

This martingale property lets us characterize the SGD path of Wt, as shown in the following result.

Lemma 8 Consider f specified in Eq. (18). For any step sizes η0, . . . , ηT−1 less than C−1
1 , we

have

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
= min

1≤t≤T

(
2C1D

2
t−1∏
j=0

(
1− C1ηj

)2
+

C1σ
2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− C1ηj

)2)
. (20)

Proof By iterating over Eq. (19), we can get

Wt = W0

t−1∏
j=0

(
1− C1ηj

)
−

t−1∑
i=0

ηiξ̄i

t−1∏
j=i+1

(
1− C1ηj

)
. (21)

Meanwhile,
∇F (Wt) = ∇f(Wt) = C1Wt ⇒ ∥∇F (Wt)∥2 = C2

1 ∥Wt∥2 .
Thus, following Eq. (21), we can get

E
[
∥∇F (Wt)∥2

]
= C2

1 ∥W0∥2
t−1∏
j=0

(
1− C1ηj

)2
+ C2

1

t−1∑
i=0

E


∥∥∥∥∥∥ηiξ̄i

t−1∏
j=i+1

(
1− C1ηj

)∥∥∥∥∥∥
2
 (22)

Above, we use martingale property a), which says the expectation of ξ̄i is equal to zero, for all i. In
addition, based on property b), the second term in the right of Eq. (22) is equal to

C2
1

t−1∑
i=0

η2i

 t−1∏
j=i+1

(
1− C1ηj

)2
E
[∥∥ξ̄i∥∥2]

 =
C2

1σ
2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− C1ηj

)2
.

To see this, based on the martingale property of ξ̄:

10
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• The cross terms between ξ̄i and ξ̄j for different i, j are equal to zero in expectation:

E
[
⟨ξ̄i, ξ̄j⟩|ξ̄j

]
= 0, for all 1 ≤ j < i ≤ T.

• Additionally, the second moment of ξ̄i is equal to σ2

k :

E
[∥∥ξ̄i∥∥2] = σ2

k
, for any i = 1, . . . , T.

Lastly, let W0 be a vector such that

∥W0∥ = D

√
2C−1

1 ⇒ F (W0)− min
W∈Rd

F (W ) ≤ D2.

Inserting the above value of W0 to Eq. (22) leads to

E
[
∥∇F (Wt)∥2

]
= 2C1D

2
t−1∏
j=0

(
1− C1ηj

)2
+

C2
1σ

2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− C1ηj

)2
(23)

By taking the minimum over t = 1, . . . , T , we conclude that Eq. (20) holds.

This result applies to arbitrary learning rates. Next, we show a simpler statement for a slightly
different quadratic function

f(W ) =
1

2κ
∥W∥2 , where κ = max{C−1

1 , 2
T−1∑
i=0

ηi}, (24)

which will be easier to work with for small learning rates, as we shall see next.

Lemma 9 Consider f given in Eq. (24) above. For any step sizes η0, . . . , ηT−1 less than C−1
1 , the

following holds for the stochastic objective F :

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2max{C−1
1 , 2

∑T−1
i=0 ηi}

. (25)

The proof of Eq. 25 is similar to Lemma 8; See details in App. D.3. Now we are ready to state the
main result of this section.

Theorem 10 There exists convex quadratic functions f such that for any gradient oracle satisfying
Assumption 1 and any distribution P with mean zero, if ηi = η < C−1

1 for any i = 1, . . . , T , or if∑T−1
i=0 ηi ≲

√
T , then the following must hold:

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
C1σ2

32k · T . (26)

The result of Eq. (26) matches the upper bound for twice-differentiable functions in Eq. (11).
More precisely, for small perturbations when the moments H(P) and G(P) are constants, e.g.,
when P = N(0, d−1 Idd), the lower bound matches the upper bound up to constants.

11
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B.1.1. PROOF OF CONVEX LOWER BOUND

By Lemma 9, there exists a function such that the left-hand side of Eq. (26) is at least

D2

2max{C−1
1 , 2

∑T−1
i=0 ηi}

≥ C1D
2

2max{1, 2x−1
√
T}

=
D2x

4
√
T
, (27)

which holds if
∑T−1

i=0 ηi ≤
√
Tx−1 for any fixed x > 0.

On the other hand, if
∑T−1

i=0 ηi ≥ x−1
√
T and ηi = η for a fixed η, then η > x−1/

√
T . By

setting ηi = η for all i in Lemma 8, the left-hand side of Eq. (26) is equal to

min
1≤t≤T

(
2C1D

2(1− C1η)
2t +

C2
1σ

2

k

t−1∑
k=0

η2(1− C1η)
2(t−k−1)

)
.

Recall that η < C−1
1 . Thus, ρ = C1η must be strictly less than one. With some calculation, we can

simplify the above to

min
1≤t≤T

(
2C1D

2(1− ρ)2t +
σ2ρ2

k

1− (1− ρ)2t

1− (1− ρ)2

)
= min

1≤t≤T

(
σ2ρ

k(2− ρ)
+ (1− ρ)2t

(
2C1D

2 − σ2ρ

k(2− ρ)

))
. (28)

If 2C1D
2 < σ2ρ

k(2−ρ) , the above is the smallest when t = 1. In this case, Eq. (28) is equal to

2C1D
2(1− ρ)2 +

σ2ρ2

k
≥ 1

1
2C1D2 + k

σ2

= O(1).

If 2C1D
2 ≥ σ2ρ

k(2−ρ) , the above is the smallest when t = T . In this case, Eq. (28) is at least

σ2ρ

k(2− ρ)
≥ σ2ρ

2k
≥ σ2C1x

−1

2k
· 1√

T
. (29)

To conclude the proof, we set x so that the right-hand side of (27) and (29) match each other. This
leads to

x =

√
2σ2C1

kD2
.

Thus, by combining the conclusions from both (27) and (29) with this value of x, we finally conclude
that if

∑T−1
i=0 ηi ≤

√
Tx−1, or for all i = 0, . . . , T − 1, ηi = η < C−1

1 , then in both cases, there
exists a function f such that Eq. (26) holds. This completes the proof of Theorem 10. ■

B.2. A Nonconvex Example
Next, we construct a nonconvex function. Let et be the basis vector for the t-th dimension, for
t = 0, 1, . . . , T − 1. We consider a chain-like function:

f(W ) =
1

2G
⟨W, e0⟩2 +

T−1∑
i=0

hi(⟨W, ei+1⟩), (30)

12
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Figure 3: Examples of piecewise quadratic functions hi with Lipschitzness C1 and parameter αi.

where hi a quadratic function parametrized by αi, defined as follow:

hi(x) =


1
4C1α

2
i |x| ≤ αi,

− 1
2C1

(
|x| − αi

)2
+ 1

4C1α
2
i αi ≤ |x| ≤ 3

2αi,
1
2C1

(
|x| − 2αi

)2 3
2αi ≤ |x| ≤ 2αi,

0 2αi ≤ |x|.

See Figure 3 for several examples of this function.
One can verify that ∇hi is C1-Lipschitz but is not differentiable. Additionally, ∇f is C1-

Lipschitz when G ≤ C−1
1 (cf. Eq. (30)). As for the other parts of the construction:

• Let W0 satisfy that ⟨W0, ei⟩ = 0 for any i ≥ 1 while ⟨W0, e0⟩ ≠ 0.

• Let P satisfy that the i-th coordinate is at most 2−1αi−1, for i = 1, . . . , T .

• Let the gradient oracle be chosen such that the i-th step’s gradient noise ξi = ⟨ξi, ei+1⟩ei+1.
This implies only coordinate i+ 1 is updated in step i, as long as ⟨ξi, ei+1⟩ ≤ 2−1αi.

Based on this construction, in step i, the gradient noise ξi plus the perturbation noise is less
than αi at coordinate i+ 1. Thus, we have that h′i(⟨Wt, ei+1⟩) = 0. This implies ∇f(Wi) is equal
to G−1⟨Wi, e0⟩. Roughly speaking, the above construction will go through provided the learning
rate ηi is smaller than αi. Recall from Assumption (3) that F (W0) ≤ D2, which is the same as∑T−1

i=0 α2
t ≤ D2. With some calculation, the learning rates must satisfy

∑T−1
i=0 ηi ≲

√
T . This

ensures the iterates will be trapped close to W0 even after T steps; Thus, the gradient of every
iterate must be “large”. The details are stated in Lemma 15, App. D.4.

When the learning rate is fixed at η ≳ T−1/2, we construct a chain-like function as above but
use a different piece-wise quadratic function with a fixed α (cf. Lemma 16, App. D.4). The gradient
noise grows by 1−η/C1 up to T steps at each step. We then carefully set α to lower bound the norm
of the gradient. Based on these two results, we state the lower bound for a nonconvex example.

Theorem 11 Suppose the learning rates η0, . . . , ηT−1 are at most C−1
1 and satisfy

∑T−1
i=0 ηi ≲√

kT or ηi = η < C−1
1 for any epoch i. There exists a nonconvex, differentiable, but not twice-

differentiable function f : Rd → R with dimension d ≥ T satisfying Assumption 3, a gradient
oracle satisfying Assumption 1, and perturbation distribution P such that the following is true

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
C1σ2

32k · T . (31)

One can see that the rate in Eq. (31) again matches our upper bound for the case of differentiable
functions in Eq. (10), when H(P) is a constant (e.g. when P = N(0, d−1 Idd).

13
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B.3. Extensions
The lower bound regarding convex functions can be naturally extended to momentum SGD:

Vt+1 = µVt − ηtGt, and Mt+1 = Mt + Vt+1, (32)

where Gt refers to the stochastic gradient in Eq. (2). This can be seen by generalizing the argument
of Lemma 8 to weighted combinations of iterates. We state the following corollary, leaving its proof
to Appendix D.5.

Corollary 12 There exists a convex quadratic function satisfying Assumption 3 with Lipschitz Hes-
sians such that for M1, . . . ,MT following momentum SGD, the following must be true:

min
1≤t≤T

E
[
∥∇F (Mt)∥2

]
≳ D

√
C1σ2

k · T . (33)

Next, we discuss extensions to SGD with adaptive learning rates. Again, notice that the proof of
Lemma 9 holds for any arbitrary learning rates. Furthermore, the proof of Theorem 11 also applies
to any learning rates under certain bounded conditions. It is conceivable that similar results can be
derived for SGD with adaptive step sizes under similar bounded conditions when ηi is a function of
previous weights and step size.

The construction for the nonconvex case can also be extended to SGD with adaptive learning
rates such as AdaGrad. To see this, notice that the proof of Lemma 15 does not use any specific
properties of the learning rates. In fact, we can set the width of each ht function, αt, in proportion
to the learning rate ηt, for an arbitrary t. Thus, even if the algorithm uses an adaptive learning rate
schedule such as AdaGrad, the construction can still go through.

Appendix C. Experiment Details

We describe setups and results left from the main text. We consider two types of image classification
datasets. First, we use two medical image datasets related to diabetic retinopathy classification
using eye fundus images. Each dataset contains the interior surface images of a single eye and
labels regarding the severity of diabetic retinopathy of the eye. The two datasets are available in
the following sources: Retina I (Messidor) 1 and Retina II (APTOS) 2. Second, we consider fine-
grained image classification datasets, including Aircrafts 3, Birds4, and Indoor5. Besides, we use
the following datasets to illustrate the consistent performance of our algorithm, including Flowers,
Cars, Caltech-256, CIFAR-10, and CIFAR-100. We report the dataset statistics in Table 2.

Results on CIFAR. We report fine-tuning results of ResNet-34 on CAFAR-10 and CIFAR-100.
Our algorithm achieves 18% and 26% smaller the Hessian eigenvalues and traces, respectively. The
results are shown in Table 4.

1. https://www.adcis.net/en/third-party/messidor2/
2. https://kaggle.com/competitions/aptos2019-blindness-detection
3. https://www.robots.ox.ac.uk/˜vgg/data/fgvc-aircraft/
4. http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
5. http://web.mit.edu/torralba/www/indoor.html
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Table 2: Basic statistics for image classification tasks.
Retina I Retina II Aircrafts Birds Indoor Flowers Cars Caltech-256 CIFAR-10 CIFAR-100

Training 1,396 2,930 3,334 5,395 4,824 1,020 7,330 7,680 45,000 45,000
Validation 248 732 3,333 599 536 1,020 814 5,120 5,000 5,000
Test 250 733 3,333 574 1,340 6,149 8,441 5,120 10,000 10,000
Classes 5 5 100 200 67 102 196 256 10 100

Table 3: Top panel: Largest eigenvalue of neural net loss Hessian matrix. Middle panel: Hessian
trace. Lower panel: Test accuracy. All results are averaged over three random seeds.

Dataset Retina I Retina II Aircrafts Birds Indoor

SGD 8,996±92 2,413±32 1,239±43 1,286±76 1,169±66
LS 4,911±73 1,494±99 1,339±84 992±55 876±81
SAM 4,246±55 1,341±26 958±60 1,061±49 975±56
ASAM 4,267±58 1,629±41 641±89 1,089±56 722±56

NSO (Alg. 1) 3,916±47 1,095±49 612±44 1,045±68 688±58

SGD 30,433±217 6,921±54 6,218±63 4,252±93 4,078±78
LS 19,219±119 4,559±49 6,332±76 4,585±79 4,196±36
SAM 16,411±161 3,702±94 5,034±59 3,515±48 3,789±49
ASAM 14,745±131 4,174±52 5,191±32 3,799±44 3,124±73

NSO (Alg. 1) 11,554±77 3,519±57 4,193±46 3,067±65 2,991±32

SGD 61.69±0.89 83.70±0.53 59.76±0.71 73.34±0.11 75.95±0.46
LS 63.56±0.72 83.65±0.68 58.47±0.29 74.38±0.33 75.87±0.35
SAM 64.39±0.66 84.65±0.78 61.54±0.82 73.65±0.65 76.57±0.56
ASAM 64.79±0.37 84.88±0.38 62.02±0.61 74.72±0.58 76.72±0.31

NSO (Alg. 1) 66.57±0.75 85.24±0.45 62.31±0.36 75.35±0.53 77.39±0.55

Table 4: Comparisons on CIFAR datasets. Left: Largest eigenvalue of the loss Hessian matrix.
Middle: Hessian trace. Right: Test accuracy. All results are averaged over 3 random
seeds.

Largest Eigenvalue Trace Test Accuracy
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Vanilla SGD 1,522 ± 45 4,870 ± 88 4,738 ± 73 14,372 ± 346 95.48±0.10 82.25±0.16
Label smoothing 1,416 ± 45 3,459 ± 95 2,903 ± 92 11,295 ± 384 96.68±0.10 83.75±0.19
SAM 1,372 ± 49 3,419 ± 75 2,847 ± 78 10,230 ± 385 96.64±0.47 83.48±0.16
ASAM 1,425 ± 67 2,599 ± 79 2,830 ± 57 10,478 ± 263 96.73±0.16 83.84±0.12

NSO (Alg. 1) 1,136 ± 58 2,184 ± 59 2,061 ± 70 5,829 ± 211 97.10±0.28 84.29±0.27

Appendix D. Proofs for Technical Lemmas

D.1. Proof of Lemma 6

The smoothness condition in Assumption 3 is equivalent to the following domination inequality:

|f(W2)− f(W1)− ⟨∇f(W1),W2 −W1⟩| ≤
C1

2
∥W2 −W1∥2 . (34)

See, e.g., Bach [2, Chapter 5]. We state a similar result on the Hessian as follows.
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Proposition 13 Suppose f(W ) is twice-differentiable and the Hessian of f(W ) is C2-Lipschitz.
Then, for any W1 ∈ Rd and W2 ∈ Rd, the following holds:∥∥∇f(W2)−∇f(W1)−H

[
f(W1)

]
(W2 −W1)

∥∥ ≤ C2

2
∥W2 −W1∥2 . (35)

Proof We apply a line integral along W2 −W1 below:∥∥∇f(W2)−∇f(W1)−H
[
f(W1)

]
(W2 −W1)

∥∥
=

∥∥∥∥∫ 1

0
H
[
f(W1 + τ(W2 −W1))

]
dτ(W2 −W1)−H

[
f(W1)

]
(W2 −W1)

∥∥∥∥
=

∥∥∥∥∫ 1

0

(
H
[
f(W1 + τ(W2 −W1))

]
−H

[
f(W1)

])
(W2 −W1)dτ

∥∥∥∥
≤
∫ 1

0
C2τ ∥W2 −W1∥2 dτ =

C2

2
∥W2 −W1∥2 .

Based on the above result, we provide proofs for the variance of δi and ξi for any i = 0, 1, . . . , T−1.

Proof of Lemma 6 First, we can see that

E
U1
i ,...,U

k
i

[
∥δi∥2

]
= E

U1
i ,...,U

k
i

∥∥∥∥∥∥ 1

2k

k∑
j=1

(
∇f(Wi + U j

i ) +∇f(Wi − U j
i )− 2∇F (Wi)

)∥∥∥∥∥∥
2

=
1

k2

k∑
j=1

E
Uj
i

[∥∥∥∥12(∇f(Wi + U j
i ) +∇f(Wi − U j

i )− 2∇F (Wi)
)∥∥∥∥2

]
(U j1

i ⊥ U j2
i when j1 ̸= j2)

=
1

k
E
U1
i

[∥∥∥∥12(∇f(Wi + U1
i ) +∇f(Wi − U1

i )
)
−∇F (Wi)

∥∥∥∥2
]

(U1
i , . . . , U

k
i are identical)

In the second step, we use the fact that for two independent random variables U, V , and any contin-
uous functions h(U), g(V ), h(U) and g(V ) are still independent (recall that f is continuous since
it is twice-differentiable). We include a short proof of this fact for completeness. If U and V are
independent, we have

Pr[U ∈ A, V ∈ B] = Pr[U ∈ A] · Pr[V ∈ B],∀A,B ∈ Borel(R).

Thus, if h and g are continuous functions, we obtain

Pr[h(U) ∈ A, g(V ) ∈ B]

=Pr[U ∈ h−1(A), V ∈ g−1(B)]

=Pr[U ∈ h−1(A)] · Pr[V ∈ g−1(B)] = Pr[h(U) ∈ A] · Pr[g(V ) ∈ B].
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Thus, we have shown that

E
[
∥δi∥2

]
=

1

k
E

U∼P

[∥∥∥∥12(∇f(Wi + U) + f(Wi − U)
)
−∇F (Wi)

∥∥∥∥2
]
. (36)

Next, we deal with the variance of the two-point stochastic gradient, depending on whether f has
Lipschitz-Hessian or not. If f has C1-Lipschitz gradient, we will show that

E
U

[∥∥∥∥12(∇f(W + U) +∇f(W − U)
)
−∇F (W )

∥∥∥∥2
]
≤ 2C2

1H(P). (37)

By equation (34) from Proposition 13, the left-hand side of equation (37) is equal to

E
U

[∥∥∥∥12(∇f(W + U)−∇F (W )
)
+

1

2

(
∇f(W − U)−∇F (W )

)∥∥∥∥2
]

≤E
U

[
1

2
∥∇f(W + U)−∇F (W )∥2 + 1

2
∥∇f(W − U)−∇F (W )∥2

]
(by Cauchy-Schwartz inequality)

=
1

2
E
U

[
∥∇f(W + U)−∇F (W )∥2

]
(by symmetry of P since it has mean zero)

=
1

2
E
U

[∥∥∥∥ E
U ′∼P

[
∇f(W + U)−∇f(W + U ′)

]∥∥∥∥2
]

≤1

2
E
U

[
E

U ′∼P

[∥∥∇f(W + U)−∇f(W + U ′)
∥∥2]]

≤1

2
E

U,U ′

[
C2
1

∥∥U − U ′∥∥2] = 1

2
C2
1 E
U,U ′

[
∥U∥2 +

∥∥U ′∥∥2] = C2
1H(P) (by equation (34))

If, in addition, the Hessian of f is C2-Lipschitz, we show that

E
U

[∥∥∥∥12(∇f(W + U) +∇f(W − U)
)
−∇F (W )

∥∥∥∥2
]
≤ 3

8
C2
2G(P). (38)

By equation (35) from Proposition 13, we know that∥∥∇f(W + U)−∇f(W )−H
[
f(W )

]
U
∥∥ ≤ C2

2
∥U∥2 , and (39)∥∥∇f(W − U)−∇f(W ) +H

[
f(W )

]
U
∥∥ ≤ C2

2
∥U∥2 . (40)
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Next,

E
U

[
∥∇F (W )−∇f(W )∥2

]
= ∥∇F (W )−∇f(W )∥2 (41)

=

∥∥∥∥E
U

[
∇f(W + U)−∇f(W )−H

[
f(W )

]
U
]∥∥∥∥2

(since EU [U ] = 0)

≤E
U

[∥∥∇f(W + U)−∇f(W )−H
[
f(W )

]
U
∥∥2]

(by Cauchy-Schwartz ineq.)

≤E
U

[(C2

2
∥U∥2

)2]
, (42)

where the last step uses equation (40). Hence, using triangle inequality, the left-hand side of equa-
tion (38) is equal to

1

k
E
U

[∥∥∥∥12∇f(W + U)− 1

2
∇F (W ) +

1

2
∇f(W − U)− 1

2
∇f(W ) +∇f(W )−∇F (W )

∥∥∥∥2
]

≤1

k

(
E
U

[(C2

4
∥U∥2

)2
+
(C2

4
∥U∥2

)2
+
(C2

2
∥U∥2

)2])
(by combining equations (39), (40), and (42))

=
3C2

2

8k
· E
U

[
∥U∥4

]
=

3C2
2

8k
G(P).

Therefore, we have proved equation (38).
As for the variance of ξi, we note that U (1)

i , . . . , U
(j)
i are all independent from each other.

Therefore,

E{
U

(j)
i ,z

(j)
i

}k

j=1

[
∥ξi∥2

]

=
1

4k
E
U,z

[
∥gz(W + U)−∇f(W + U) + gz(W − U)− f(W − U)∥2

]
≤ 1

2k
E
U,z

[
∥gz(W + U)−∇f(W + U)∥2 + ∥gz(W − U)−∇f(W − U)∥2

]
≤ σ2

k
.

The first step uses the fact that both gz(·) and f(·) are continuous functions The second step above
uses Cauchy-Schwartz inequality. The last step uses the variance bound of gz(·) from equation (3),
Thus, the proof is finished. ■

D.2. Proof of Lemma 7

In this result, we analyze the convergence of NSO for functions with Lipschitz gradients.

18
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Proof of Lemma 7 Using Proposition 4 and Proposition 13, we have

F (Wi+1)

≤F (Wi) + ⟨∇F (Wi),Wi+1 −Wi⟩+
C1

2
η2i

∥∥∥∥12(∇f(Wi + Ui) +∇f(Wi − Ui)
)
+ ξi

∥∥∥∥2
=F (Wi)− ηi⟨∇F (Wi), δi + ξi +∇F (Wi)⟩+

C1η
2
i

2
∥δi + ξi +∇F (Wi)∥2

=F (Wi)−
(
ηi −

C1η
2
i

2

)
∥∇F (Wi)∥2 −

(
ηi − C1η

2
i

)
⟨∇F (Wi), δi + ξi⟩+

C1η
2
i

2
∥δi + ξi∥2 .

Summing up the above inequalities for i = 0, 1, . . . , T − 1, we obtain

T−1∑
i=0

(
ηi −

C1η
2
i

2

)
∥∇F (Wi)∥2 (43)

≤F (W0)− F (WT )−
T−1∑
i=0

(
ηi − C1η

2
i

)
⟨∇F (Wi), δi + ξi⟩+

C1

2

T−1∑
i=0

η2i ∥δi + ξi∥2

≤D2 −
T−1∑
i=0

(
ηi − C1η

2
i

)
⟨∇F (Wi), δi + ξi⟩+

C1

2

T−1∑
i=0

η2i ∥δi + ξi∥2 . (44)

where F (W0)−F (WT ) ≤ F (W0)−minW∈Rd F (W ) ≤ D2. For any t = 0, 1, . . . , T − 1, clearly,
ηt ≤ 2ηt − C1η

2
t as long as 0 < ηt ≤ 1

C1
. Hence, we have

1

2

T−1∑
t=0

ηt ∥∇F (Wt)∥2 ≤
T−1∑
t=0

(
ηt −

C1η
2
t

2

)
∥∇F (Wt)∥2 ,

which implies that

1

2

T−1∑
i=0

ηi ∥∇F (Wi)∥2 ≤ D2 −
T−1∑
i=0

(
ηi − C1η

2
i

)
⟨∇F (Wi), δi + ξi⟩+

C1

2

T−1∑
i=0

η2i ∥δi + ξi∥2 .

(45)

Additionally, since Ut is drawn from a distribution with mean zero. Hence, by symmetry, we get
that

E
Ut

[δt] =
1

2
E
Ut

[∇f(Wt − Ut)−∇f(Wt + Ut)] = 0. (46)

Thus, if we take the expectation over U0, U1, . . . , UT−1, ξ0, ξ1, . . . , ξT−1, then

E [⟨∇F (Wi), δi + ξi⟩] = 0.
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Recall that t is a random variable whose probability mass is specified in Lemma 7. We can write
equation (45) equivalently as

E
t; U0,...,UT−1,ξ0,ξ1,...,ξT−1

[
∥∇F (Wt)∥2

]
=

∑T−1
i=0 ηi E

[
∥∇F (Wi)∥2

]
∑T−1

i=0 ηi

≤
2D2 + C1

∑T−1
i=0 η2i E

[
∥δi + ξi∥2

]
∑T−1

i=0 ηi

=
2D2 + C1

∑T−1
i=0 η2i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T−1

i=0 ηi
.

where we use the fact that δi and ξi are independent for any i. Hence, we have finished the proof of
equation (16). ■

Remark 14 Our analysis builds on the work of Ghadimi and Lan [14]. The difference is that we
additionally deal with stochasticity due to random perturbations. Additionally, we analyze the case
of injecting multiple perturbations, which requires a careful analysis of the variance of NSO.

D.3. Proof of Lemma 9

We know that F (W ) = f(W ) + d if P is the isotropic Gaussian distribution. Clearly, the gradient
of F is C1-Lipschitz, and the Hessian of F is arbitrarily Lipschitz continuous. Let the initialization
W0 ∈ Rd be set such that F (W0)−minW∈Rd F (W ) = D2. This condition can be met we can set

W0 as a vector whose Euclidean norm is equal to D

√
2max

{
C−1
1 , 2

∑T−1
i=0 ηi

}
.

Proof of Lemma 9 Clearly, the norm of the gradient of F (W ) is equal to

∥∇F (W )∥ =
1

κ
∥W∥ . (47)

Following the update rule in SGD (cf. equation (2)), similar to equation (19), Wt evolves as follows:

Wt+1 =

(
1− ηt

κ

)
Wt − ηtξ̄t, (48)

where ξ̄t has variance equal to σ2/k, according to the proof of Lemma 8. By iterating equation (48)
from the initialization, we can get a closed-form equation for W (1)

t , for any t = 1, 2, . . . , T :

Wt = W0

t−1∏
j=0

(
1− ηj

κ

)
−

t−1∑
k=0

ηkξk

t−1∏
j=k+1

(
1− ηj

κ

)
. (49)

Following equation (47), we can show that

∥∇F (W )∥2 = κ−2 ∥Wt∥2 .
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Thus, in expectation,

E
[
∥∇F (Wt)∥2

]
= κ−2 E

[
∥Wt∥2

]
= κ−2 ∥W0∥2

t−1∏
j=0

(
1− κ−1ηj

)2
+ κ−2

t−1∑
i=0

E

ηiξ̄i

t−1∏
j=i+1

(
1− κ−1ηj

)2
= κ−2 ∥W0∥2

t−1∏
j=0

(
1− κ−1ηj

)2
+ κ−2

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− κ−1ηj

)2
E
[∥∥ξ̄i∥∥2]

= 2D2κ−1
t−1∏
j=0

(
1− κ−1ηj

)2
+

σ2κ−2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− κ−1ηj

)2
, (50)

where we use the definition of initialization W0 and the variance of ξ̄i in the last step. In order to
tackle equation (50), we note that for all z ∈ [0, 1],

1− z

2
≥ exp

(
log

1

2
· z
)
. (51)

Hence, applying equation (51) to the right-hand side of equation (50), we obtain that for any i =
0, 1, . . . , t− 1,

t−1∏
j=i

(
1− ηj

max{C−1
1 , 2

∑T−1
j=i ηi}

)

≥ exp

(
log

1

2
·
t−1∑
j=i

ηj

max{(2C1)−1,
∑T−1

i=0 ηi}

)
≥ 1

2
.

Thus, equation (50) must be at least

E
[
∥∇F (Wt)∥2

]
≥ 2D2κ−1 · 1

4
+

σ2κ−2

k

t−1∑
i=0

η2i ·
1

4
. (52)

The above result holds for any t = 1, 2, . . . , T . Therefore, we conclude that

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2max{C−1
1 , 2

∑T−1
i=0 ηi}

.

Thus, the proof of Lemma 9 is finished. ■

D.4. Supporting Lemmas for Theorem 11

For technical reasons, given a sample U from a d-dimensional isotropic Gaussian N(0, Idd), we
truncate the i-th coordinate of U so that Ũi = min(Ui, ai), for some fixed ai > 0 that we will
specify below, for all i = 0, 1, . . . , d− 1. We let P denote the distribution of Ũ .

Lemma 15 In the setting of Theorem 11, suppose the learning rates satisfy that
∑T−1

i=0 ηi ≤√
D2kT
2σ2C1

, consider the function f(W ) constructed in equation (30), we have that the conclusion
of equation (31) holds.
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Proof We start by defining a gradient oracle by choosing the noise vectors {ξt}T−1
t=0 to be indepen-

dent random variables such that

ξt = ⟨ξt, et+1⟩ and |⟨ξt, et+1⟩| ≤
σ√
k
, (53)

where et+1 is a basis vector whose (t+1)-th entry is one and otherwise is zero. In words, the above
notation means that only the (t+1)-th coordinate of ξt is nonzero. we use ξ̄t to denote the averaged
noise variable as

ξ̄t =
1

k

k∑
i=1

ξ
(i)
t ,

where ξ
(i)
t also satisfies the above condition (53). Thus, we have

|⟨ξ̄t, et+1⟩| ≤
σ√
k
.

We consider the objective function f(W ) : Rd → R defined in equation (30), Section B. Here
we require d ≥ T + 1 and αi = 2ηiσ/

√
k. The proof is very similar to Lemma 9. Let G =

max
{
C−1
1 , 2

∑T−1
i=0 ηi

}
. We analyze the dynamics of two-point SGD (Algorithm 1) with the ob-

jective function f(W ) and the starting point W0 = D
√
G · e0. For the first iteration, we have

W1 = W0 − η0

(1
2

(
∇f(W0 + U) +∇f(W0 − U)

)
+ ξ̄0

)
= (1− η0G

−1)W0 − η0ξ̄0.

where U is a truncated distribution of P ∼ N(0, Idd) with ⟨U, ei⟩ = min{Pi, ai} and ai =
ηi−1σ/

√
k. Next, from the properties of h1, we get

1

2

(
∇f(W1 + U) +∇f(W1 − U)

)
=G−1⟨W1, e0⟩+

1

2

(
h′0(η0⟨ξ̄0, e1⟩+ ⟨U, e1⟩)e1 + h′0(η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩)e1

)
Here, using the fact that α0 = 2η0σ/

√
k, |⟨U, e1⟩| ≤ η0σ/

√
k, and ⟨ξ̄0, e1⟩ ≤ σ/

√
k, we obtain

h′0(η0⟨ξ̄0, e1⟩+ ⟨U, e1⟩) = h′0(η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩) = 0.

Then, in the next iteration,

W2 = W1 − η1

(
G−1⟨W1, e0⟩+ ξ̄1

)
= −(1− η1G

−1)(1− η0G
−1)W0 − η0ξ̄0 − η1ξ̄1.

Similarly, we use the fact that αi = 2ηiσ/
√
k and the fact that |⟨U, ei+1⟩| ≤ ηiσ/

√
k, which renders

the gradient as zero, for any i = 1, 2, . . . , T − 1. At the t-th iteration, suppose that

Wt = W0

t−1∏
i=0

(
1− ηiG

−1
)
−

t−1∑
i=0

ηiξ̄i.
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Then by induction, at the (t+ 1)-th iteration, we have

Wt+1 = Wt − ηt

(
G−1⟨Wt, e0⟩+ ξ̄t

)
= W0

t∏
i=0

(
1− ηiG

−1
)
−

t∑
i=0

ηiξ̄i. (54)

Next, from the definition of ht above, we have that

F (W0)− min
W∈Rd

F (W ) = F (W0)

=
1

2G
(D

√
G)2 +

T−1∑
i=0

C1

4

(
2ηiσ/

√
k
)2 ≤ D2,

(since ⟨W0 + U, ei+1⟩ ≤ αi)

which implies that we should set the learning rates to satisfy

1

T

( T−1∑
i=0

ηi

)2
≤

T−1∑
i=0

η2i ≤ kD2

2C1σ2
. (55)

Applying equation (51) to the right-hand side of equation (54), we obtain that for any t,

t∏
i=0

(
1− ηiG

−1
)
≥ 1

2
.

From equation (54), we conclude that

min
1≤i≤T

∥∇F (Wi)∥2 = min
1≤i≤T

(
G−1⟨Wt, e0⟩

)2
≥ 1

4
G−2(D

√
G)2

=
D2

4
min

{
C1,

1

2
∑T−1

i=0 ηi

}
≥ D2

4
min

{
C1,

√
2C1σ2

2D
√
kT

}
≥ D

√
C1σ2

32kT
.

In the first step, we use the fact that ⟨ξ̄i, e0⟩ = 0, for all 0 = 1, 2, . . . , T − 1. Thus, we have proved
that equation (31) holds for Wi for any i = 1, 2, . . . , T . The proof is finished.

Next, we consider the case of large, fixed learning rates.

Lemma 16 In the setting of Theorem 11, suppose the learning rates satisfy that
∑T−1

i=0 ηi ≥√
D2kT
2σ2C1

and ηi = η for some fixed η ≤ C−1
1 . Then, consider the function from equation (30),

we have that equation (31) holds.
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Proof We define the functions g, parametrized by a fixed, positive constants α = 1−ρT

1−ρ · 2cησ, as
follows:

g(x) =


−C1

2 x2 + C1
4 α2 |x| ≤ α/2,

C1
2 (|x| − α)2 α/2 ≤ |x| ≤ α,
0 α ≤ |x|.

One can verify that g has C1-Lipschitz gradient, but g is not twice-differentiable. We also consider
a chain-like function:

f(W ) = g(⟨W, e0⟩) +
d−1∑
t=0

C1

2
⟨W, et+1⟩2 (56)

From the definition of f , f also has C1-Lipschitz gradient. Similar to (53), we start by defining
an adversarial gradient oracle by choosing the noise vectors {ξt}T−1

t=0 to be independent random
variables such that

ξt = ⟨ξt, et+1⟩,E
[
⟨ξt, et+1⟩2

]
= σ2, and |⟨ξt, et+1⟩| ≤ cσ,

where c is a fixed constant. We use ξ̄t to denote the averaged noise variable as

ξ̄t =

k∑
i=1

ξ
(i)
t .

Suppose {ξ(i)t }ki=1 are i.i.d. random variables for any t, we have

|⟨ξ̄t, et+1⟩| ≤ cσ and E
[∥∥ξ̄t∥∥2] ≤ σ2

k
(57)

Next, we analyze the dynamics of two-point SGD (Algorithm 1) with the objective function f(W )

and the starting point W0 =
∑d

i=1

√
D2

C1d
·ei. In this case, by setting ηi = η for all i = 0, 1, . . . , T −

1. Recall that η < C−1
1 . Denote by ρ = C1η, which is strictly less than one.

Since ht is an even function, its derivative h′t is an odd function. For the first iteration, we have

W1 = W0 − η
(1
2

(
∇f(W0 + U) +∇f(W0 − U)

)
+ ξ̄0

)
= (1− C1η)W0 − ηξ̄0.

where U is a truncate distribution of P ∼ N(0, Idd) with ⟨U, e0⟩ = min{P0, a0} and a0 = cησ.
Using the fact that α = 1−ρT

1−ρ · 2cησ, |⟨U, e0⟩| ≤ cησ, and ⟨ξ̄0, e0⟩ ≤ cσ, we have

g′(η⟨ξ̄0, e0⟩+ ⟨U, e0⟩) + g′(η⟨ξ̄0, e0⟩ − ⟨U, e0⟩) = −2C1η⟨ξ̄0, e0⟩.

Then, in the next iteration,

W2 = W1 − η
(
C1

d∑
i=1

⟨W1, ei⟩ − C1ηξ̄0 + ξ̄1

)
= (1− C1η)

2W0 − (1− C1η)ηξ̄0 − ηξ̄1.
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Similarly, we use the fact that α = 1−ρT

1−ρ · 2cησ and the fact that |⟨U, e0⟩| ≤ cησ, which renders the
gradient as g′(x) = −C1x, for any i = 1, 2, . . . , T − 1. At the t-th iteration, suppose that

Wt = (1− C1η)
tW0 −

t−1∑
i=0

(1− C1η)
t−1−iηξ̄i.

Then by induction, at the (t+ 1)-th iteration, we have

Wt+1 = Wt − η
(
C1

d∑
i=1

⟨Wt, ei⟩ − C1

t−1∑
i=0

(1− C1η)
t−1−iηξ̄i + ξ̄t

)
= (1− C1η)

t+1W0 −
t∑

i=0

(1− C1η)
t−1−iηξ̄i. (58)

Applying equation (51) to the right-hand side of equation (54), we obtain that for any t, Next, from
the definition of g above, we have that

F (W0)− min
W∈Rd

F (W ) = F (W0)

=
dC1

2

(√ D2

C1d

)2
+

C1

4

(2(1− ρT )cησ

(1− ρ)

)2
≤ D2,

(since ⟨W0 + U, e0⟩ ≤ α)

which implies

c2 ≤ D2(1− ρ)2

2σ2ρ2(1− ρT )2
.

We conclude that

min
1≤i≤T

E
[
∥∇F (Wi)∥2

]
= min

1≤i≤T
E

 d∑
j=1

C2
1 ⟨Wi, ej⟩2 + C2

1 ⟨Wi, e0⟩2


= min
1≤i≤T

(
dC2

1 (1− ρ)2t
(√ D2

C1d

)2
+

σ2

k
· ρ2

t∑
i=0

(1− ρ)2(t−1−i)
)

≥ min
1≤i≤T

(
C1D

2(1− ρ)2t +
σ2

k

ρ

2− ρ

(
1− (1− ρ)2t

))
≥ min

{
C1D

2,
σ2

k

ρ

2− ρ

}
≥ σ2

k
C1

√
kD2

2Tσ2C1

/(
2− C1

√
kD2

2Tσ2C1

)
≥ D

√
C1σ2

16k · T .

The proof is finished.
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D.5. Proof of Corollary 12

Proof of Corollary 12 The analysis is similar to Theorem 11. First, consider a quadratic function

f(W ) =
1

2C1
∥W∥2 .

Clearly, f(W ) is C1-Lipschitz. Further, F (W ) = f(W ) + d, for P being the isotropic Gaussian.
Let W0 be a vector whose Euclidean norm equals D

√
2C1. Thus, F (W0)−minW∈Rd F (W ) = D2.

As for the dynamic of momentum SGD, recall that

Vt+1 = µVt − ηtGt and Mt+1 = Mt + Vt+1.

Let ∆t = Mt − Wt, i.e., this is the difference between the iterate of vanilla SGD and momentum
SGD, for every t = 1, 2, . . . , T . Thus, we have that

∆t+1 = Mt+1 −Wt+1

= Mt + Vt+1 − (Wt − ηtGt)

= ∆t + µVt.

This implies that ∆t =
∑t−1

i=0 µ
t−iVi. Next, we can see that

Vt+1 = µVt − (Wt+1 −Wt).

By applying this through for t = 0, 1, . . . and so on, we can obtain that

Vt+1 = Wt+1 −
t∑

i=1

(µt−i − µt−i+1)Wi − µtW0.

As a result,

∆t = Mt −Wt =

t−j∑
j=0

µt−jVj

=

t−j∑
j=0

µt−j

(
Wj −

j−1∑
i=1

(µj−1−i − µj−i)Wi − µj−1W0

)

=

t−j∑
j=0

(
µt−jWj − µj−1W0 −

j−1∑
i=1

(µt−i−1 − µt−i)Wi

)
. (59)

Thus, we can see that Mt is now a linear combination of Wt,Wt−1, . . . ,W0, and the coefficients
of this combination are determined based on Eq. (59). Based on Eq. (21), we can thus obtain a
closed-form solution for momentum SGD. This leads to a different set of constants for the final
analysis, but the details are similar. Same for Eq. (48). Thus, we conclude the proof. ■
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D.6. Proof of Equation 7

We show the calculations for Example 1. Recall from Example 1 that

G =
1

2
((w + u)3 + (w + u′)) and T =

1

2

(
(w + u)3 + (w − u)3

)
,

where u, u′ ∼ N (0, σ2). Thus, the variance of G is equal to 1/2 times

E
u

[
(w + u)6

]
−
(
E
u

[
(w + u)3

] )2
= E

u

[
w6 + 15w4u2 + 15w2u4 + u6

]
−
(
E
u

[
w3 + 3wu2

] )2
= E

u

[
9w4u2 + 15w2u4 + u6

]
= 9w4σ2 + 45w2σ4 + 15σ6.

Besides, the variance of T is equal to 1/2 times

E
u

[
(w3 + 3wu2)2

]
−
(
E
u

[
w3 + 3wu2

] )2
= E

u

[
9w2u4

]
−
(
E
u

[
3wu2

] )2
= 45w2σ4 − 9w2σ4 = 36w2σ4.

D.7. Proof of Equation 4

We state Taylor’s expansion for equation (4) more formally. Given two matrices X1, X2 with size
d1 by d2, the matrix inner product ⟨X1, X2⟩ is equal to Tr

[
X⊤

1 X2

]
.

Proposition 17 Assume that f(W ) is twice-differentiable in W . Let Σ denote a d by d positive
semidefinite matrix (whose eigenvalues are all nonnegative). U denote a sample from P = N (0,Σ),
which has mean zero and covariance Σ ∈ Rd×d. Then, we have that (4) holds.

Proof Given a random perturbation U , in expectation of its randomness, we have that

E
U

[
1

2

(
f(W + U) + f(W − U)

)]
=

1

2

(
f(W ) + ⟨U,∇f(W )⟩+ E

U

[
1

2
⟨UU⊤,H

[
f(W )

]
⟩
]
+ O

(
∥Σ∥3/22

))
+

1

2

(
f(W )− ⟨U,∇f(W )⟩+ E

U

[
1

2
⟨UU⊤,H

[
f(W )

]
⟩
]
+ O

(
∥Σ∥3/22

))
= f(W ) +

1

2
⟨Σ,H

[
f(W )

]
⟩+ O

(
∥Σ∥3/22

)
.

This completes the proof of equation (4).
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