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Abstract
In this work, we derive a new problem-dependent regret bound for Thompson Sampling with Gaus-
sian priors (Algorithm 2 in [1]), one of the classical stochastic bandit algorithms that has demon-
strated excellent empirical performance and been widely deployed in real-world applications. The

existing regret bound is
∑

i∈[K]:∆i>0

288(e64+6) ln(T∆2
i+e32)

∆i
+ 10.5

∆i
+∆i, where [K] denotes the

arm set, ∆i denotes the single round performance loss when pulling a sub-optimal arm i instead
of the optimal arm, and T is the time horizon. Since real-world learning tasks care about learning
algorithms’ performance when T is finite, the existing regret bound is only non-vacuous when T >

288 · e64, which may not be practical. Our new regret bound is
∑

i∈[K]:∆i>0

1252 ln
(
T∆2

i+100
1
3

)
∆i

+

18 ln(T∆2
i )

∆i
+ 182.5

∆i
+∆i, which tightens the leading term’s coefficient significantly. Despite having

made some improvements, we would like to emphasize that the goal of this work is to deepen the
understanding of Thompson Sampling from a theoretical perspective to unlock the full potential of
this classical learning algorithm in order to solve challenging real-world learning problems.

1. Introduction

We study the learning problem of stochastic multi-armed bandits (MAB) specified by (K; p1, . . . , pK),
where K is the number of arms and pi is the reward distribution associated with arm i with its
mean denoted as µi. In this learning problem, a player chooses an arm to pull in each round
t = 1, 2, . . . , T without knowledge of the reward distributions. At the end of the round, the player
obtains and observes a reward that is drawn from the reward distribution associated with the pulled
arm. The goal of the player is to choose arms sequentially to maximize the cumulative reward over
T rounds. Since only the pulled arm has the chance to be observed at the end of each round, the
main challenge for solving bandit problems is the balance between exploitation and exploration in
each round. Exploitation involves pulling the arms that have the potential to produce high rewards
based on past experience, whereas exploration involves pulling the arms that can help the player to
better learn the reward distributions or the means of the reward distributions.

Many applications that require the balance between exploitation and exploration can be framed
as bandit learning problems. In healthcare, bandit algorithms can be used for clinical trials where
exploitation refers to prescribing known effective treatments and exploration refers to prescrib-
ing new medicine or procedures to discover potentially more effective or personalized treatments.
In content recommendation or online advertising systems, bandit algorithms can help to decide
whether to show users familiar content (exploitation) or to introduce users to new and potentially
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more interesting content (exploration) to optimize overall satisfaction. In inventory management,
bandit algorithms can be used to decide whether to reorder products that have sold well historically
(exploitation) or to switch to new products or suppliers (exploration) to maximize overall profit.

Successful stochastic bandit algorithms such as the Upper Confidence Bound (UCB)-based
[2, 3, 6, 11, 13] and the Thompson Sampling-based [1, 4, 7–10, 12] have been extensively stud-
ied in literature. The key difference between the UCB-based and the Thompson Sampling-based
algorithms lies in the exploration mechanism. In UCB-based algorithms, the exploration is driven
by adding a deterministic bonus to the empirical estimates, whereas in Thompson Sampling-based
algorithms, the exploration is achieved by injecting random noise into the empirical estimates.

The problem-dependent regret bound with a finite time horizon T is of great interest as real-
world applications cannot run learning algorithms infinitely. As implied by the name, a problem-
dependent regret bound takes the problem instance (K; p1, p2, . . . , pK) (or (K;µ1, µ2, . . . , µK))
into account and usually takes the

∑
i:∆i>0O

(
ln(T )
∆i

)
form [1–4, 7, 9, 13], where ∆i denotes the

single round performance loss when pulling a sub-optimal arm i instead of the optimal arm, and the
big-Oh notation hides a universal constant. For the aforementioned UCB-based learning algorithms,
the hidden constants are in a reasonable range depending on the added bonus, for example, the
constant in the big-Oh notation for UCB1 [3] is 8.

As empirically studied in [5], Thompson Sampling performs excellently for practical learning
tasks. We revisit one of the two original versions of Thompson Sampling for stochastic bandits
with bounded rewards, Thompson Sampling with Gaussian Priors ( Algorithm 2) in [1]. For ease of
presentation, we rename it as Vanilla Thompson Sampling.1 The key idea of Thompson Sampling
is to maintain a posterior distribution (a Gaussian distribution) to model the mean µi of the reward
distribution pi. The exploitation component is from the mean of the posterior distribution while
the spread of the posterior distribution contributes to the exploration. Although learning algorithms
from [4, 7–10, 12] are all Thompson Sampling-based, they either use Beta priors (Beta distributions
to model µi) [12] or design new distributions to model µi [4, 7–10]. None of them revisits Vanilla
Thompson Sampling.

Now, we review the existing problem-dependent regret bound and discuss why it may not be
enough for some real-world applications.

Existing regret bound derived in [1]. The regret bound of Vanilla Thompson Sampling is

∑
i:∆i>0

288
(
e64 + 6

)
ln
(
T∆2

i + e32
)

∆i
+

10.5

∆i
+∆i . (1)

Since the coefficient for the leading term is at least 288·e64 ≈ 1.8×1030, this regret bound is vacuous
for learning problems when T ≤ 288 · e64. Note that when T ≤ 288 · e64, the regret is at most T ,
and thus, the existing regret bound does not take the bandit problem instance (K;µ1, µ2, . . . , µK)
into account due to the extremely large coefficient for the ln(T ) term. Therefore, we are motivated
to derive a new regret bound with a more acceptable coefficient for the ln(T ) leading term.

1. The other original version is to use Beta distributions to model the mean rewards and the problem-dependent regret
bounds are derived in [1, 12].
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Preview of our new bound (Theorem 1). The regret bound of Vanilla Thompson Sampling is

∑
i:∆i>0

1252 ln
(
T∆2

i + 100
1
3

)
∆i

+
18 ln

(
T∆2

i

)
∆i

+
182.5

∆i
+∆i . (2)

Despite the fact the coefficient is significantly improved, we would like to emphasize that the pur-
pose of this work is not to find the optimal coefficient. Instead, we intend to answer the following
fundamental question in Vanilla Thompson Sampling.

When the posterior distribution of the optimal arm is not concentrated, that is, the optimal arm
has not been sufficiently observed, what is the the expected number of rounds needed before the
optimal arm has a good posterior sample?

Intuitively, this quantity indicates the concentration speed of optimal arm’s posterior distribu-
tion. After the optimal arm’s posterior distribution is concentrated, the player is unlikely to pull a
sub-optimal arm. In Lemma 2.13 of [1], the derived upper bound on the expected number of rounds
needed is e64. As will be shown in Lemma 2, our new upper bound is 29.

2. Stochastic Bandit Problems

Consider a classical stochastic bandit problem where we have an arm set [K] with size K and each
arm i ∈ [K] is associated with a fixed but unknown reward distribution pi with [0, 1] support. Let
µi denote the mean of distribution pi. Without loss of generality, we assume that the first arm
is the unique optimal arm. In other words, we assume µ1 > µi for all i ̸= 1. In each round
t = 1, 2, . . . , T , the player pulls an arm it ∈ [K] and receives a reward Xit(t) ∼ pit . The goal of
the player is to pull arms sequentially to maximize the cumulative reward, or equivalently, minimize
the (cumulative)-regret, defined as

R(T ) = T · µ1 − E
[

T∑
t=1

µit

]
, (3)

where the expectation is taken over it. The regret measures the cumulative performance loss be-
tween always pulling the optimal arm and the player’s choices of which arms to pull.

Notation. Let ni(t) denote the number of pulls of arm i by the end of round t and µ̂i,ni(t)(t)
denote the empirical mean of arm i by the end of round t. For ease of presentation, we write µ̂i,ni(t)

for short. LetN
(
µ, σ2

)
denote a Gaussian distribution with µ as the mean parameter and σ2 as the

variance parameter.

3. Vanilla Thompson Sampling

Vanilla Thompson Sampling is described in Algorithm 1 below.2 The core idea of it is to maintain a
posterior distributionN

(
µ̂i,ni(t−1),

1
ni(t−1)

)
to model the mean µi for each arm i and use a random

2. Only for the purpose of practical implementation only, we make minor modifications as compared to the original
version presented in [1]. We add an initialization phase to initialize the empirical mean of each arm. However, it does
not change the algorithm fundamentally. More details can be found in Appendix A.
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sample θi(t) ∼ N
(
µ̂i,ni(t−1),

1
ni(t−1)

)
in the learning. With all posterior samples θi(t) in hand, the

player is safe to behave greedily and pull the arm with the highest posterior sample. It is important to
note that the posterior sample θi(t) already takes into account the exploitation-exploration balance.
As mentioned in Section 1, the mean of the posterior distribution, µ̂i,ni(t−1), is for the exploitation
purpose, and, the variance of the posterior distribution, 1

ni(t−1) , controls the level of exploration.

Algorithm 1 Thompson Sampling with Gaussian Priors [1]
1: Initialization: for each i ∈ [K]: pull it once to initialize ni and the empirical mean µ̂i,ni

2: for t = K + 1,K + 2, · · · do
3: Draw θi(t) ∼ N

(
µ̂i,ni ,

1
ni

)
for all i ∈ [K]

4: Pull arm it ∈ argmaxi∈[K] θi(t) and observe Xit(t)
5: Set nit ← nit + 1 and update the empirical mean µ̂it,nit

of the pulled arm it accordingly.
6: end for

Theorem 1 The regret of Algorithm 1 is at most

∑
i∈A:∆i>0

1252 ln
(
T∆2

i + 100
1
3

)
∆i

+
18 ln

(
T∆2

i

)
∆i

+
182.5

∆i
+∆i , (4)

where ∆i := µ1−µi denotes the single round performance loss when pulling a sub-optimal arm i.

The full proof for Theorem 1 is deferred to Appendix C. The improvement of our regret bound
mainly comes from Lemma 2 below. It answers the question raised at the end of Section 1 and
significantly improves the results shown in Lemma 2.13 in [1]. Note that in Lemma 2.13 of [1], the
RHS of (5) below is e64. Let Ft = {iτ , Xiτ (τ), τ = 1, . . . , t} collect all the history information by
the round of round t consisting of the pulled arms and their associated rewards.

Lemma 2 Let τ (1)s be the round when the s-th pull of the optimal arm 1 occurs and θ1,s ∼
N
(
µ̂1,s,

1
s

)
. Then, for any integer s ≥ 1, we have

EF
τ
(1)
s

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

} − 1

 ≤ 29 . (5)

Also, for any integer s ≥ L1,i :=
4(

√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
∆2

i
, we have

EF
τ
(1)
s

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

} − 1

 ≤ 180
T∆2

i
. (6)

4



FROM 6235149080811616882909238708 TO 29: VANILLA THOMPSON SAMPLING REVISITED

Discussion. If event θ1,s > µ1 − ∆i
2 occurs, we can view the optimal arm has a good poste-

rior sample as compared to the sub-optimal arm i. Informally, a good posterior sample of the
optimal arm indicates the pull of the optimal arm. The pulls of the optimal arm contribute to reduc-
ing the variance of the posterior distribution and the width of the confidence intervals. The value
of P

{
θ1,s > µ1 − ∆i

2 | Fτ
(1)
s

= F
τ
(1)
s

}
is the probability of the event that the optimal arm has a

good posterior sample occurs given the history information. E
[
1/P

{
θ1,s > µ1 − ∆i

2 | Fτ
(1)
s

}
− 1
]

quantifies the expected number of independent draws needed before the optimal arm has a good
posterior sample. The first result shown in Lemma 2 says that even if the optimal arm has not been
observed enough, i.e., s < L1,i, it takes at most 29 draws in expectation before the optimal arm has
a good posterior sample. That is also to say, it takes at most 29 rounds in expectation before the
next pull of the optimal arm. The second result says that after the optimal arm has been observed
enough, i.e., s ≥ L1,i, the expected number of draws before the optimal arm has a good posterior
sample is in the order of 1

T∆2
i
. That is also to say, after the optimal arm has been observed enough,

it will be pulled very frequently.

4. Conclusion and Future Work

In this paper, we have revisited Vanilla Thompson Sampling and derived a new problem-dependent
regret bound that significantly improves the existing regret bound. The next step is to further tighten
the coefficient of the leading term using numerical optimization.
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Appendix A. Posterior Distribution Computation of Algorithm 1

Let N
(
x | µ, σ2

)
:= 1

σ
√
2π
2−

1
2σ2 (x−µ)2 , where x ∈ R. Our Algorithm 1 also strictly follows the

template of Thompson Sampling described in [1, 5].

1. A setψ of parameters µ̃i. Here, setψ collects all the real numbers, and thus, the true parameter
µi ∈ ψ.

2. An assumed prior distribution p(µ̃i) on these parameters collected in ψ. Here, conceptually,
we assume the prior distribution is a zero-mean Gaussian distribution with an infinite variance.
Indeed, it captures the fact that the player has no belief in the learning problems before seeing
any evidence.

3. An assumed reward likelihood function p(xi | µ̃i) = N (xi | µ̃i, 1).

4. Past observations Di consisting of all the observed rewards of this arm i. The likelihood
function for all the data in Di has the form p(Di | µ̃i) ∝ N

(
µ̂i,ni | µ̃i, 1

ni

)
, where ni is the

number of observations in Di and µ̂i,ni is the empirical average of these ni observations.

5. A posterior distribution p(µ̃i | Di) ∝ p(Di | µ̃i) · p(µ̃i) ∝ N
(
µ̃i | µ̂i,ni ,

1
ni

)
.

To implement Algorithm 1, we do not need to use a Gaussian distribution with an infinite variance
as the prior distribution. Instead, we can pull each arm once to initialize ni = 1 and the empirical
mean µ̂i,ni . Note thatN (µ̂i,ni , ni) is the posterior distribution when arm i only has one observation.

Appendix B. Useful Facts

Fact 3 Let X1, X2, . . . , Xn be independent random variables with support [0, 1]. Let µ1:n =

1
n

n∑
i=1

Xi. Then, for any a > 0, we have

P {|µ1:n − E [µ1:n]| ≥ a} ≤ 2e−2na2 . (7)

Fact 4 (Concentration and anti-concentration bounds of Gaussian distributions). For a Gaussian
distributed random variable Z with mean µ and variance σ2, for any z > 0, we have

P {Z > µ+ zσ} ≤ 1

2
e−

z2

2 , P {Z < µ− zσ} ≤ 1

2
e−

z2

2 , (8)

and
P {Z > µ+ zσ} ≥ 1√

2π

z

z2 + 1
e−

z2

2 . (9)

7
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Appendix C. Proofs

Proof of Theorem 1: For a sub-optimal arm i such that ∆i ≤
√

1
T , we have the total regret of

pulling this sub-optimal arm i over T rounds is at most T∆i ≤
√
T ≤ 1

∆i
. For a sub-optimal arm i

such that ∆i >
√

1
T , we upper bound its expected number of pulls E [ni(T )] by the end of round T .

Let µ̄i,ni(t−1) := µ̂i,ni(t−1) +

√
2 ln(T∆2

i )
ni(t−1) denote the upper confidence bound.

Let Li :=

⌈
4(

√
0.5+

√
2)

2
ln(T∆2

i )
∆2

i

⌉
.

To decompose the regret, we define Eµi (t − 1) :=

{∣∣µ̂i,ni(t−1) − µi
∣∣ ≤√0.5 ln(T∆2

i )
ni(t−1)

}
and

Eθi (t) :=
{
θi(t) ≤ µ̄i,ni(t−1)

}
. Then, we have

E [ni(T )]

≤ Li +
T∑
t=1

E [1 {it = i, ni(t− 1) ≥ Li}]

≤ Li +
T∑
t=1

E
[
1
{
it = i, Eθi (t), E

µ
i (t− 1), ni(t− 1) ≥ Li

}]
︸ ︷︷ ︸

=:ω1

+
T∑
t=1

E
[
1
{
it = i, Eθi (t), ni(t− 1) ≥ Li

}]
︸ ︷︷ ︸

=:ω2

+
T∑
t=1

E
[
1
{
it = i, Eµi (t− 1), ni(t− 1) ≥ Li

}]
︸ ︷︷ ︸

=:ω3

.

(10)
Term ω1 is very similar to Lemma 2.14 in [1], which is challenging to derive a tighter upper bound.
Terms ω2 (similar to Lemma 2.16 in [1]) and ω3 (similar to Lemma 2.15 in [1]) are not difficult
to bound. We use Gaussian concentration inequality (Fact 4) for upper bounding term ω2 and
Hoeffding’s inequality (Fact 3) for upper bounding terms ω3. From Lemma 6 and Lemma 7 we
have ω2 ≤ 0.5

∆2
i

and ω3 ≤ 2
∆2

i
.

For term ω1, similar to Lemma 2.8 in [1], we have our Lemma 5, a lemma that links the proba-
bility of pulling a sub-optimal arm i to the probability of pulling the optimal arm 1 in round t by in-
troducing the upper confidence bound µ̄i,ni(t−1). Note that both events Eµi (t−1) and ni(t−1) ≥ Li

are determined by the history information. The value of µ̄i,ni(t−1) is determined by the history infor-
mation. Also, the distributions for θj(t) for all j ∈ [K] are determined by the history information.

Lemma 5 For any instantiation Ft−1 of Ft−1, we have

E
[
1
{
it = i, Eθi (t)

}
| Ft−1 = Ft−1

]
≤ P{θ1(t)≤µ̄i,ni(t−1)|Ft−1=Ft−1}

P{θ1(t)>µ̄i,ni(t−1)|Ft−1=Ft−1}E
[
1
{
it = 1, Eθi (t)

}
| Ft−1 = Ft−1

]
.

8
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With Lemma 5 in hand, now, we are ready to upper bound term ω1. We have

ω1 =
T∑
t=1

E
[
1
{
it = i, Eθi (t), E

µ
i (t− 1), ni(t− 1) ≥ Li

}]
=

T∑
t=1

E

1 {Eµi (t− 1), ni(t− 1) ≥ Li} · E
[
1
{
it = i, Eθi (t)

}
| Ft−1

]
︸ ︷︷ ︸

LHS in Lemma 5



≤
T∑
t=1

E


1 {Eµi (t− 1), ni(t− 1) ≥ Li}

P
{
θ1(t) ≤ µ̄i,ni(t−1) | Ft−1

}
P
{
θ1(t) > µ̄i,ni(t−1) | Ft−1

}E [1{it = 1, Eθi (t)
}
| Ft−1

]
︸ ︷︷ ︸

RHS in Lemma 5︸ ︷︷ ︸
η



≤(a)
T∑
t=1

E

[
E

[
P
{
θ1(t)≤µ1−

∆i
2
|Ft−1

}
P
{
θ1(t)>µ1−

∆i
2
|Ft−1

} · 1 {it = 1} | Ft−1

]]

=
T∑
t=1

E

[
P
{
θ1(t)≤µ1−

∆i
2
|Ft−1

}
P
{
θ1(t)>µ1−

∆i
2
|Ft−1

} · 1 {it = 1}

]
.

(11)
Inequality (a) in (11) uses the argument that for a specific Ft−1 of Ft−1 such that either event
Eµi (t − 1) or ni(t − 1) ≥ Li does not occur, term η in (11) will be 0. Note that for any Ft−1,

we have 1 < 1
P{θ1(t)>µ̄i,ni(t−1)|Ft−1=Ft−1} < +∞. Recall Li =

⌈
4(

√
0.5+

√
2)

2
ln(T∆2

i )
∆2

i

⌉
. For any

specific Ft−1 such that both events Eµi (t − 1) and ni(t − 1) ≥ Li occur, we have µ̄i,ni(t−1) =

µ̂i,ni(t−1)+

√
2 ln(T∆2

i )
ni(t−1) ≤ µi+

√
0.5 ln(T∆2

i )
ni(t−1) +

√
2 ln(T∆2

i )
ni(t−1) ≤ µi+

√
0.5 ln(T∆2

i )
Li

+

√
2 ln(T∆2

i )
Li

≤

µi +
∆i
2 = µ1 − ∆i

2 , which implies
P{θ1(t)≤µ̄i,ni(t−1)|Ft−1=Ft−1}
P{θ1(t)>µ̄i,ni(t−1)|Ft−1=Ft−1} ≤

P
{
θ1(t)≤µ1−

∆i
2
|Ft−1=Ft−1

}
P
{
θ1(t)>µ1−

∆i
2
|Ft−1=Ft−1

} .

Now, we partition all T rounds into multiple intervals based on the arrivals of the observations
of the optimal arm 1. Let τ (1)s be the round when arm 1 is pulled for the s-th time. Note that this
partition in time horizon ensures that the posterior distribution of arm 1 stays the same among all the

rounds when t ∈
{
τ
(1)
s + 1, . . . , τ

(1)
s+1

}
. Let L1,i :=

4(
√
2+

√
3.5)

2
ln(T∆2

i )
∆2

i
and θ1,s ∼ N

(
µ̂1,s,

1
s

)
.

Then, we have

9
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ω1 ≤
T∑
t=1

E

[
P
{
θ1(t)≤µ1−

∆i
2
|Ft−1

}
P
{
θ1(t)>µ1−

∆i
2
|Ft−1

} · 1 {it = 1}

]

≤ E

 T∑
s=1

τ
(1)
s+1∑

t=τ
(1)
s +1

P
{
θ1(t)≤µ1−

∆i
2
|Ft−1

}
P
{
θ1(t)>µ1−

∆i
2
|Ft−1

} · 1 {it = 1}


≤

T∑
s=1

E

P

{
θ1

(
τ
(1)
s+1

)
≤µ1−

∆i
2
|F

τ
(1)
s+1−1

}

P

{
θ1

(
τ
(1)
s+1

)
>µ1−

∆i
2
|F

τ
(1)
s+1−1

}


≤
L1,i∑
s=1

E

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

} − 1

+
T∑

s=L1,i+1

E

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

} − 1

 .

(12)

With Lemma 2 in hand, we have

ω1 ≤ 29 · L1,i +
T∑

s=1

180
T∆2

i
≤

116(
√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
∆2

i
+ 180

∆2
i

. (13)

Plugging the upper bounds of ω1, ω2, and ω3 together in (10), we have

E [ni(T )] ≤ Li + ω1 + ω2 + ω3

≤ 4(
√
0.5+

√
2)

2
ln(T∆2

i )
∆2

i
+ 1 +

116(
√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
∆2

i
+ 180

∆2
i
+ 0.5

∆2
i
+ 2

∆2
i

≤ 18 ln(T∆2
i )

∆2
i

+
1252 ln

(
T∆2

i+100
1
3

)
∆2

i
+ 182.5

∆2
i

+ 1 .

(14)

Proof of Lemma 5: The proof is very similar to the proof of Lemma 2.8 in [1]. Note that the value of
µ̄i,ni(t−1) is determined by the history information. We have the following two pieces of arguments.
The first piece is

E
[
1
{
it = i, Eθi (t)

}
| Ft−1 = Ft−1

]
≤ E

[
1
{
θj(t) ≤ µ̄i,ni(t−1),∀j ∈ [K]

}
| Ft−1 = Ft−1

]
= P

{
θ1(t) ≤ µ̄i,ni(t−1) | Ft−1 = Ft−1

}
P
{
θj(t) ≤ µ̄i,ni(t−1),∀j ∈ [K] \ {1} | Ft−1 = Ft−1

}︸ ︷︷ ︸
>0

.

(15)
The second piece is

E
[
1
{
it = 1, Eθi (t)

}
| Ft−1 = Ft−1

]
≥ E

[
1
{
θ1(t) > µ̄i,ni(t−1) ≥ θj(t),∀j ∈ [K] \ {1}

}
| Ft−1 = Ft−1

]
= P

{
θ1(t) > µ̄i,ni(t−1) | Ft−1 = Ft−1

}︸ ︷︷ ︸
>0

P
{
θj(t) ≤ µ̄i,ni(t−1),∀j ∈ [K] \ {1} | Ft−1 = Ft−1

}︸ ︷︷ ︸
>0

.

(16)
Combining (15) and (16) concludes the proof.
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Proof of Lemma 2: We have two results stated in Lemma 2. The main purpose of the first result
is to show that even if the optimal arm’s posterior distribution has high variance, that is, it has not
been observed enough, after a constant number of rounds in expectation, the optimal arm will have
a good posterior sample. This result further implies that the total regret in expectation between two
consecutive pulls of the optimal arm is also a constant. The second result states that after the optimal
arm has been pulled enough, the expected number of rounds needed before the optimal arm having
a good posterior sample is very small, in the order of 1/(T∆2

i ). This result implies that the total
regret in expectation between two consecutive pulls of the optimal arm is in the order of 1/(T∆i).

Similar to the proof of Lemma 2.13 in [1], we introduce a geometric random variable in the
proof. For any integer s ≥ 1, we let G1,s be a geometric random variable denoting the number of
consecutive independent trials (including the trial) until event θ1,s > µ1 − ∆i

2 occurs. Then, we
have

E

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

}
 = E

[
1

P
{
θ1,s>µ1−

∆i
2
|µ̂1,s

}
]
= E [E [G1,s | µ̂1,s]] = E [G1,s] . (17)

To upper bound E

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

}
, it is sufficient to upper bound E [G1,s]. To upper bound

E [G1,s], we use the definition of expectation when the random variable has non-negative integers as
support. We have

E [G1,s] =
∞∑
r=0

P {G1,s > r} =
∞∑
r=0

E [P {G1,s > r | µ̂1,s}] . (18)

For any s ≥ 1, we claim

E [P {G1,s > r | µ̂1,s}] ≤


1, r ∈ [0, 12] ,

e
−
√

r
π
· ln(13)
ln(13)+2 + 1

r , r ∈ [13, 100] ,

e−
√

r
3π + r−

4
3 , r ≥ 101 .

(19)

For any s ≥ L1,i =
4(

√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
∆2

i
, we claim

E [P {G1,s > r | µ̂1,s}] ≤


1, r = 0 ,

1
r2(T∆2

i )
+ 0.5r

(T∆2
i )

r , r ∈
[
1,

⌊(
T∆2

i + 100
1
3

)3⌋]
,

e−
√

r
3π + r−

4
3 , r ≥

⌊(
T∆2

i + 100
1
3

)3⌋
+ 1 .

(20)

The proofs for the results shown in (19) and (20) are deferred to the end of this session.
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With (19) in hand, for any fixed integer s ≥ 1, we have

E

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

} − 1


= E [G1,s]− 1

=
∞∑
r=0

E [P {G1,s > r | µ̂1,s}]− 1

=
12∑
r=0

E [P {G1,s > r | µ̂1,s}] +
100∑
r=13

E [P {G1,s > r | µ̂1,s}] +
∞∑

r=101
E [P {G1,s > r | µ̂1,s}]− 1

≤ 13 +
100∑
r=13

(
e
−
√

r
π
· ln(13)
ln(13)+2 + 1

r

)
+

∞∑
r=101

(
e−
√

r
3π + 1

r
4
3

)
− 1

≤ 12 +
∫ 100
12

(
e
−
√

r
π
· ln(13)
ln(13)+2 + 1

r

)
dr +

∫∞
100

(
e−
√

r
3π + 1

r
4
3

)
dr

≤ 12 + 10.44 + 2.13 + 3.1 + 0.65
≤ 29 ,

(21)
which concludes the proof for the first stated result in Lemma 2.

With (20), for any fixed integer s ≥ L1,i, we have

E

 1

P
{
θ1,s>µ1−

∆i
2
|F

τ
(1)
s

} − 1


=

∞∑
r=0

E [P {G1,s > r | µ̂1,s}]− 1

≤ 1 +

⌊(
T∆2

i+100
1
3

)3
⌋∑

r=1
E [P {G1,s > r | µ̂1,s}] +

∞∑
r=

⌊(
T∆2

i+100
1
3

)3
⌋
+1

E [P {G1,s > r | µ̂1,s}]− 1

≤

⌊(
T∆2

i+100
1
3

)3
⌋∑

r=1

(
1

r2(T∆2
i )

+ 0.5r

(T∆2
i )

r

)
+

∞∑
r=

⌊(
T∆2

i+100
1
3

)3
⌋
+1

(
e−
√

r
3π + r−

4
3

)

≤ 1
T∆2

i
+ 0.5

T∆2
i
+
∫ +∞
1

(
1

r2(T∆2
i )

+ 1

(2T∆2
i )

r

)
dr +

∫∞
(T∆2

i )
2 e

−
√
r√
3π dr +

∫∞
(T∆2

i )
3 r

− 4
3dr

≤(a) 1
T∆2

i
+ 0.5

T∆2
i
+ 1

T∆2
i
+ 0.5

T∆2
i
+ 6·3π·

√
3π

T∆2
i

+ 3
T∆2

i

≤ 180
T∆2

i
,

(22)
which concludes the proof for the second stated result in Lemma 2. Inequality (a) uses the fact that,
for any a, b > 0, we have

∫ +∞
b e−a

√
xdx = 2

√
b

aea
√
b
+ 2

a2ea
√

b
≤ 2

√
b

a·(1+a
√
b+ 1

2
a2b)

+ 2
a2·(1+a

√
b+ 1

2
a2b)
≤

4
a3

√
b
+ 2

a3
√
b
= 6

a3
√
b
, where the first inequality uses ex ≥ 1 + x+ 1

2x
2.

Now, we present the proofs for the results shown in (19) and (20).
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Proofs for (19). We express the LHS in (19) as

E [P {G1,s > r | µ̂1,s}] = 1− E [P {G1,s ≤ r | µ̂1,s}] = 1− E [E [1 {G1,s ≤ r} | µ̂1,s]]︸ ︷︷ ︸
=:γ

.
(23)

Our goal is to construct a lower bound for γ. Let θh1,s for all h ∈ [r] be i.i.d. random variables
according to N

(
µ̂1,s,

1
s

)
.

When r ∈ [0, 12], the proof is trivial as γ ≥ 0. Then, we have E [P {G1,s > r | µ̂1,s}] ≤ 1.

When r ∈ [13, 100], we introduce z =
√

1
2 ln(r) > 0 and have

γ = E [E [1 {G1,s ≤ r} | µ̂1,s]]

≥ E
[
E
[
1

{
max
h∈[r]

θh1,s > µ1 − ∆i
2

}
| µ̂1,s

]]
≥ E

[
E
[
1
{
µ̂1,s + z

√
1
s ≥ µ1 −

∆i
2

}
1

{
max
h∈[r]

θh1,s > µ̂1,s + z
√

1
s

}
| µ̂1,s

]]

= E

1
{
µ̂1,s + z

√
1
s ≥ µ1 −

∆i
2

}
· P

{
max
h∈[r]

θh1,s > µ̂1,s + z

√
1

s
| µ̂1,s

}
︸ ︷︷ ︸

=:β

 .

(24)

We construct a lower bound for β and have

β = P
{
max
h∈[r]

θh1,s > µ̂1,s + z
√

1
s | µ̂1,s

}
= 1−

∏
h∈[r]

(
1− P

{
θh1,s > µ̂1,s + z

√
1
s | µ̂1,s

})
= 1−

(
1− P

{
θ1,s > µ̂1,s + z

√
1
s | µ̂1,s

})r
≥(a) 1−

(
1− 1√

2π

√
1
2
ln(r)

1
2
ln(r)+1

e−
1
4
ln(r)

)r

≥(b) 1− e
−r· 1√

2π

√
1
2 ln(r)

1
2 ln(r)+1

·r−
1
4

≥(c) 1− e
−r

1
2 · 1√

2π

√
1
2 ln(r)

1
2 ln(r)+ 1

ln(13)
ln(r)

·r
1
4

= 1− e
−r

1
2 · 1√

π
· ln(13)
ln(13)+2

√
r
1
2√

ln(r)

≥(d) 1− e−r
1
2 · 1√

π
· ln(13)
ln(13)+2 .

(25)

Inequalities (a) uses anti-concentration bounds of Gaussian distributions (Fact 4) and (b) uses
the fact that e−x ≥ 1−x. Inequalities (c) and (d) use the facts that when r ≥ 13, we have 1 ≤ ln(r)

ln(13)

and
√
r

1
2 ≥

√
ln(r).

13
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Now, we have

γ ≥
(
1− e−r

1
2 · 1√

π
· ln(13)
ln(13)+2

)
· P
{
µ̂1,s +

√
1
2 ln(r)

√
1
s ≥ µ1 −

∆i
2

}
≥

(
1− e−r

1
2 · 1√

π
· ln(13)
ln(13)+2

)
· P
{
µ̂1,s +

√
1
2 ln(r)

√
1
s ≥ µ1

}
≥(a)

(
1− e−r

1
2 · 1√

π
· ln(13)
ln(13)+2

)
·
(
1− 1

r

)
≥ 1−

(
e
−
√

r
π
· ln(13)
ln(13)+2 + 1

r

)
,

(26)

where (a) uses Hoeffding’s inequality (Fact 3).

Plugging the lower bound of γ into (23) gives E [P {G1,s > r | µ̂1,s}] ≤ e−
√

r
π

ln(13)
ln(13)+2 + 1

r .

When r ≥ 101, we introduce z =
√

2
3 ln(r) > 0. We still construct the lower bound of γ as

γ ≥ E
[
1
{
µ̂1,s + z

√
1
s ≥ µ1 −

∆i
2

}
· P
{
max
h∈[r]

θh1,s > µ̂1,s + z
√

1
s | µ̂1,s

}]
≥

(
1−

(
1− 1√

2π
z

z2+1
e−0.5z2

)r)
· P
{
µ̂1,s + z

√
1
s ≥ µ1 −

∆i
2

}
≥

1− e−r· 1√
2π

z
z2+1

e−0.5z2︸ ︷︷ ︸
=:f(r)

 · P{µ̂1,s +√2 ln(r)
3

√
1
s ≥ µ1

}
≥

(
1− e−

√
r
3π

)
·
(
1− 1

r
4
3

)
≥ 1−

(
e−
√

r
3π + 1

r
4
3

)
.

(27)

The third inequality in (27) uses the fact that

f(r) = e
−r· 1√

2π
z

z2+1
e−0.5z2

= e
−r· 1√

2π

√
ln r
1.5

ln r
1.5 +1

e−0.5· ln r
1.5

≤(a) e
− 1√

2π

√
1.5 ln r

ln r+0.5 ln r
·r

2
3

= e
−r

1
2 · 1√

3π

√
r
1
3

ln r

≤(b) e−
√

r
3π ,

(28)

where inequality (a) and (b) use the facts that when r ≥ 100, we have 1.5 < 0.5 ln r and
√

r
1
3

ln r ≥ 1.

Plugging the lower bound of γ into (23) gives E [P {G1,s > r | µ̂1,s}] ≤ e−
√

r
3π + 1

r
4
3

.

Proofs for (20). We still express the LHS in (20) as

E [P {G1,s > r | µ̂1,s}] = 1− E [P {G1,s ≤ r | µ̂1,s}] = 1− E [E [1 {G1,s ≤ r} | µ̂1,s]]︸ ︷︷ ︸
=:γ

.
(29)

When r = 0, we have γ ≥ 0, which means E [P {G1,s > r | µ̂1,s}] ≤ 1.
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When r ∈
[
1,

⌊(
T∆2

i + 100
1
3

)3⌋]
, we define event Eµ1,s :=

µ1 ≤ µ̂1,s +
√

0.5 ln
(
r2

(
T∆2

i+100
1
3

))
s

.

Then, we have

γ = E [E [1 {G1,s ≤ r} | µ̂1,s]]

≥ E
[
E
[
1

{
max
h∈[r]

θh1,s > µ1 − ∆i
2

}
| µ̂1,s

]]
= E

[
1

{
max
h∈[r]

θh1,s > µ1 − ∆i
2

}]
= E

[
1
{
Eµ1,s
}
1

{
max
h∈[r]

θh1,s > µ1 − ∆i
2

}]
+ E

[
1
{
Eµ1,s
}
1

{
max
h∈[r]

θh1,s > µ1 − ∆i
2

}]
≥(a) E

1{Eµ1,s}1

max
h∈[r]

θh1,s > µ̂1,s +

√
0.5 ln

(
r2

(
T∆2

i+100
1
3

))
s − ∆i

2




≥(b) E

1{Eµ1,s}1

max
h∈[r]

θh1,s > µ̂1,s +

√
0.5 ln

(
r2

(
T∆2

i+100
1
3

))
s −

√
(
√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
s




≥(c) E

1{Eµ1,s}1

max
h∈[r]

θh1,s > µ̂1,s +

√
0.5 ln

((
T∆2

i+100
1
3

)7
)

s −

√
(
√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
s




= E

1{Eµ1,s}1

max
h∈[r]

θh1,s > µ̂1,s −

√
2 ln

(
T∆2

i+100
1
3

)
s




= E

1{Eµ1,s} · P
max

h∈[r]
θh1,s > µ̂1,s −

√
2 ln

(
T∆2

i+100
1
3

)
s | µ̂1,s




= E

1{Eµ1,s} ·
1− P

max
h∈[r]

θh1,s ≤ µ̂1,s −

√
2 ln

(
T∆2

i+100
1
3

)
s | µ̂1,s




= E

1{Eµ1,s} ·
1−

∏
h∈[r]

P

θh1,s ≤ µ̂1,s −
√

2 ln
(
T∆2

i+100
1
3

)
s | µ̂1,s




≥(d) E

[
1
{
Eµ1,s
}
·

(
1− 0.5r(

T∆2
i+100

1
3

)r

)]

=

(
1− 0.5r(

T∆2
i+100

1
3

)r

)
· E
[
1
{
Eµ1,s
}]

≥(e)

(
1− 0.5r(

T∆2
i+100

1
3

)r

)
·

(
1− 1

r2
(
T∆2

i+100
1
3

)
)

≥ 1− 1

r2
(
T∆2

i+100
1
3

) − 0.5r(
T∆2

i+100
1
3

)r

≥ 1− 1
r2(T∆2

i )
− 0.5r

(T∆2
i )

r .

(30)
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We now provide detailed explanation for some key steps in (30). Inequality (a) uses the fact that if

event Eµ1,s is true, we have µ1 ≤ µ̂1,s+

√
0.5 ln

(
r2

(
T∆2

i+100
1
3

))
s . RecallL1,i =

⌈
4(

√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
∆2

i

⌉
.

Inequality (b) uses the fact that ∆i
2 ≥

√
4(

√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
4L1

≥

√
(
√
2+

√
3.5)

2
ln
(
T∆2

i+100
1
3

)
s ,

when s ≥ L1,i. Recall 1 ≤ r ≤
⌊(
T∆2

i + 100
1
3

)3⌋
. Inequality (c) uses the fact that r2 ≤(

T∆2
i + 100

1
3

)6
. Inequality (d) uses Gaussian concentration bounds ( Fact 4) and inequality (e)

uses Hoeffding’s inequality (Fact 3) giving P
{
Eµ1,s
}
≥ 1− 1

r2
(
T∆2

i+100
1
3

) .

Plugging the lower bound of γ into (29) gives E [P {G1,s > r | µ̂1,s}] ≤ 1
r2(T∆2

i )
+ 0.5r

(T∆2
i )

r .

When r ≥
⌊(
T∆2

i + 100
1
3

)3⌋
+1, we reuse the result shown in (19) directly. Note that we have

r ≥
⌊(
T∆2

i + 100
1
3

)3⌋
+ 1 ≥

(
T∆2

i + 100
1
3

)3
≥ 101.

Lemma 6 We have
T∑
t=1

E
[
1
{
it = i, Eθi (t), ni(t− 1) ≥ Li

}]
≤ 0.5

∆2
i

. (31)

Proof of Lemma 6: This lemma is very similar to Lemma 2.16 in [1]. Recall event Eθi (t) ={
θi(t) ≤ µ̂i,ni(t−1) +

√
2 ln(T∆2

i )
ni(t−1)

}
. Let τ (i)s be the round when arm i is pulled for the s-th time.

We have
T∑
t=1

E
[
1
{
it = i, Eθi (t), ni(t− 1) ≥ Li

}]
≤

T∑
s=Li

E

 τ
(i)
s+1∑

t=τ
(i)
s +1

1
{
it = i, Eθi (t)

}
≤

T∑
s=Li

E
[
1

{
Eθi
(
τ
(i)
s+1

)}]

=
T∑

s=Li

E

P
{
θi,s > µ̂i,s +

√
2 ln(T∆2

i )

s
| µ̂1,s

}
︸ ︷︷ ︸

Fact 4


≤

T∑
s=Li

1
2e

−0.5·2T∆2
i

≤ 0.5
∆2

i
.

(32)
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Lemma 7 We have

T∑
t=1

E
[
1
{
it = i, Eµi (t− 1), ni(t− 1) ≥ Li

}]
≤ 2

∆2
i

. (33)

Proof of Lemma 7: This lemma is very similar to Lemma 2.15 in [1]. Recall event Eµi (t − 1) ={∣∣µ̂i,ni(t−1) − µi
∣∣ ≤√0.5 ln(T∆2

i )
ni(t−1)

}
. Let τ (i)s be the round when arm i is pulled for the s-th time.

Now, we partition all T rounds based on the pulls of arm i. We have

T∑
t=1

E
[
1
{
it = i, Eµi (t− 1), ni(t− 1) ≥ Li

}]
≤

T∑
s=Li

E

 τ
(i)
s+1∑

t=τ
(i)
s +1

1
{
it = i, Eµi (t− 1)

}
≤

T∑
s=Li

E
[
1

{
Eµi
(
τ
(i)
s+1 − 1

)}]
=

T∑
s=Li

P

|µ̂i,s − µi| >
√

0.5 ln
(
T∆2

i

)
s

︸ ︷︷ ︸
Hoeffding’s inequality

≤
T∑

s=Li

2
(T∆2

i )

≤ 2
∆2

i
,

(34)

which concludes the proof.
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