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Abstract
Optimal auction mechanism design has long been a focus in computer science and economics. While
substantial progress has been made in single-item auctions, optimal design for multi-item auctions
has yet to be derived. Recent years have seen a surge in deriving near-optimal auctions through deep
learning. As one of the approaches, ALGNet models the bidding process as a two-player game. The
ALGNet model however adopted a rather simple design for generating optimal misreports to derive
the regret of the trained auction mechanisms. We show that this design can be improved both in
network structure and the testing method. Specifically, we train a misreport network tailored for each
individual bidder which leads to better misreports. This approach is especially effective when the
auctions are asymmetric. By studying misreport, we can get a more accurate estimate of the regret
in the auction mechanism thus enhancing its robustness. Experimental results demonstrate that
our approach can detect misreport more effectively than previous methods resulting in an increase
in regret values as large as 70%. The new misreport network can also be applied to train auction
mechanisms, allowing for a better description of the auction process.

1. Introduction

Optimal auction mechanism design is an important and active research area at the intersection of
computer science, game theory, and economics [2–4, 10, 11, 14, 20, 21, 23, 24]. The focus is on
designing an incentive-compatible auction mechanism that maximizes the seller’s revenue. One
prominent usage of such auctions is spectrum auctions [1, 22].

Myerson [15] solved the problem of optimal auction mechanism design for the single-item
case. However, in the context of multi-item auctions, even in the simplest scenario of two bidders
and two items, the theoretically optimal auction remains unknown. Due to this theoretical hurdle,
subsequent research adopts an approach that treats auction design as a learning problem. To meet
specific requirements, such as incentive compatibility (i.e. zero regret for bidders) and individual
rationality (i.e. non-negative revenue for the auctioneer), researchers introduce various constraints in
the learning process. Among the learning techniques, neural networks dominate auction mechanism
training for their superior generalization and flexibility. RegretNet proposed by Duetting et al. [8]
is a pioneering approach in the field. This type of learning framework has enabled researchers to
approximate the optimal design, although it may not be the theoretically optimal one.

To improve the training process of RegretNet, ALGNet [18] models the auction process as a
two-player game by using a neural network to approximate the misreport (i.e. fake bids made by
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bidders to improve their utilities). However, one issue with ALGNet is that although a neural network
is utilized for misreport optimization in the training phase, there does not exist an equally powerful
neural network for misreport optimization in the testing phase. As a result, inferior misreports are
generated while testing the mechanism which leads to a lower regret value than the actual one.

To address this shortcoming, we propose to also train a misreport neural network for testing
the mechanism. Experimental results confirm that the misreport network consistently generates
better misreport than that used in the testing phase of ALGNet. Another issue with ALGNet is
that it utilizes a single misreport network for all bidders. This design is optimal only in symmetric
auctions in which the bidders draw their valuations from the same distribution. The design is not very
effective in handling asymmetric auctions in which the bidders draw their valuations from different
distributions. We therefore extend the ALGNet approach by training a distinct misreport network for
each bidder. We refer to this approach as Multi-MisreportNet. Results show that the method captures
each bidder’s behavior more accurately.

In summary, we confirm and improve upon the shortcomings of ALGNet by using a separately
trained misreport network in testing and an individualized misreport network for each bidder.

2. Preliminaries

Consider n bidders represented by N = {1, . . . , n} and m items available for auction represented by
M = {1, . . . ,m}. Each bidder i has a valuation function vi : 2

M → R≥0. The value that bidder i
assigns to a subset of items S ⊆M is denoted as vi(S) =

∑
j∈S vi({j}), where vi is independently

drawn from a distribution Fi over possible valuation functions Vi. We denote the set of all possible
valuation profiles as V =

∏n
i=1 Vi, and v = (v1, . . . , vn) ∈ V a the valuation profile.

Although the auctioneer knows the distributions F = (F1, . . . , Fn), the actual valuations v
of the bidders are unknown. Bidders report their bids and an auction mechanism determines the
allocation of items to the bidders and the corresponding payments. An auction mechanism (g, p) is a
combination of allocation rules gi : V → 2M and payment rules pi : V → R≥0. Given a bid profile
b = (b1, . . . , bn) ∈ V , the auction computes an allocation g(b) and payments p(b). We denote the
valuation profile v without bidder i as v−i, and similarly for bid profile b−i. The set of possible
valuation profiles for all bidders except bidder i is denoted as V−i =

∏
j ̸=i Vj .

A bidder’s utility, denoted as ui(vi, b) = vi(gi(b)) − pi(b), is determined by their valuation
vi and the bid profile b. An auction is dominant strategy incentive compatible (DSIC) if truthful
reporting is the optimal strategy for every bidder, regardless of the other bidders’ reports. In formal
terms, this means that ui(vi, (vi, b−i)) ≥ ui(vi, (bi, b−i)) holds true for all bidders i, all valuations
vi ∈ Vi, all bids bi ∈ Vi, and all bids b−i ∈ V−i from others. On the other hand, an auction is said
to be (ex-post) individually rational (IR) if every bidder obtains a non-zero utility, meaning that
ui(vi, (vi, b−i)) ≥ 0. This ensures that every bidder receives some benefit from participating in the
auction and does not suffer a loss.

A DSIC auction is designed so that each bidder has a dominant strategy to report the true
valuation, and the revenue on the valuation profile v is

∑
i pi(v). The goal is to identify an auction

mechanism that satisfies DSIC and IR as much as possible and minimize the negated expected
revenue −EF [

∑n
i=1 pi(v)]. DSIC is measured the regret of the mechanism defined as follows:

rgti = E
[
max
v′i∈Vi

ui
(
vi,

(
v′i, v−i

))
− ui (vi, (vi, v−i))

]
(1)
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Intuitively, a smaller regret means a mechanism is close to being DSIC. RegretNet [8] is the first
to use neural networks to find near-optimal auction mechanisms, which use a neural network ω to
approximate (g, p) to derive u and compute rgt. ALGNet [18] is a refinement of RegretNet that
enhances the training process by using another neural network to approximate the optimal misreport
v′i = argmaxv′i∈Vi

ui (vi, (v
′
i, v−i)). For the details of ALGNet, please refer to Appendix A.

3. MisreportNet

As we explained in Section 1, during the training process of ALGNet, there is no equally powerful
network available for validation during testing. This limitation can lead to the discovery of slightly
suboptimal misreports during testing, resulting in a lower regret value than the actual one.

To address the above issue, this section describes the design of MisreportNet during testing.
Firstly, we present the utilization of Single-MisreportNet as an evaluation method for auction
mechanisms. Secondly, we expand upon this model to develop Multi-MisreportNet, with the aim of
identifying optimal misreports for different bidders.

3.1. Single-MisreportNet

The primary aim of our study is to design a suitable neural network denoted Mφ that accepts a
valuation profile V as input and generates a matrix Mφ(V ) ∈ Rn×m as misreports to test the auction
mechanism, as shown in Equation (2). Each row of this matrix corresponds to the optimal misreport
value v′

i for bidder i.

Mφ(V )ij = argmaxv′
i∈F ui

(
vi, V−i,v

′
i

)
(2)

φ represents the parameters of neural network M . Given a valuation vector vi for bidder i and
the valuation vectors V−i of other bidders, the neural network Mφ outputs the optimal misreport
value v′

i for bidder i, such that bidder i obtains the maximum utility ui.

L = −EV ∈F

[
n∑

i=1

[uwi ([Mφ(V )]i , V−i)− uwi (vi, V−i)]

]
(3)

Given the parameters φ of the MisreportNet and the parameters w of the auction mechanism,
the MisreportNet’s performance is evaluated using a utility loss function L, as shown in Equation
(3), where the differences between the utility obtained by each bidder under the true valuation vi

and the utility obtained under the misreported valuation [Mφ(V )]i are computed. The results for
all bidders are summed to obtain the total utility difference. A larger value of the utility difference
(−L) indicates a better performance of the MisreportNet, meaning greater accuracy in misreport and
resulting in higher regret.

Table 1: Results of Single-MisreportNet (Single) under ALGNet Testing

3×10 Regret per bidder Bias 5×10 Regret per bidder Bias

Single 0.00263± 0.0002
70.78%

Single 0.00448± 0.0003
71.65%

ALGNet 0.00154± 0.0002 ALGNet 0.00261± 0.0004
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We present the Single-MisreportNet method tests performed in the ALGNet environment in Table
1. The mechanism testing using the neural network-generated misreports yields higher regret values
compared to the ALGNet of direct bidding optimization. This indicates that the testing method of
ALGNet is not as effective in identifying the optimal misreports for bidders, resulting in slightly
underestimated regret values. Therefore, by employing the neural network to search for the optimal
misreports, we can obtain more realistic misreport values.

3.2. Multi-MisreportNet

Through our validation in Section 3.1, the MisreportNet testing method’s effectiveness was de-
termined. However, this approach of using a single neural network to find multiple bidders for
misreports is inherently inconsistent with the realities of auctions. Therefore, we propose a multi-
MisreportNet with a ‘one-bidder-one-misreport’ structure. This design allows us to capture the
misreport strategy of each bidder individually, leading to more realistic regret outcomes.

𝒐𝒏𝒍𝒚
𝒖𝒕𝒊𝒍𝒊𝒕𝒚𝟏
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𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒔𝒎

𝑴𝒊𝒔𝒓𝒆𝒑𝒐𝒓𝒕𝟐

𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒔𝒎
𝒐𝒏𝒍𝒚
𝒖𝒕𝒊𝒍𝒊𝒕𝒚𝟐

𝑴𝒊𝒔𝒓𝒆𝒑𝒐𝒓𝒕𝟑

𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒔𝒎
𝒐𝒏𝒍𝒚
𝒖𝒕𝒊𝒍𝒊𝒕𝒚𝟑

𝒓𝒆𝒈𝒓𝒆𝒕𝟏

bidders, i

items, j

𝒊𝒏𝒑𝒖𝒕(𝟑 × 𝟏𝟎)

𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟏
𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟐
𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟑

𝒎𝒊𝒔_𝒃𝒊𝒅𝟐(𝟏 × 𝟏𝟎)

𝒎𝒊𝒔_𝒃𝒊𝒅𝟏(𝟏 × 𝟏𝟎)

𝒎𝒊𝒔_𝒃𝒊𝒅𝟑(𝟏 × 𝟏𝟎)

𝒎𝒊𝒔_𝒃𝒊𝒅𝟏, 𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟐 , 𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟑

𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟏, 𝒎𝒊𝒔_𝒃𝒊𝒅𝟐 , 𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟑

𝒎𝒊𝒔_𝒃𝒊𝒅𝟏, 𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟐, 𝒕𝒓𝒖𝒆_𝒃𝒊𝒅𝟑

𝒓𝒆𝒈𝒓𝒆𝒕𝟐
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Figure 1: Multi-MisreportNet Architecture.

We introduce an intuitive framework, as illustrated in Figure 1, that can be easily utilized in
various settings. We proceed by initializing n−misreport networks, each associated with a bidder’s
misreport strategy. The input consists of an n × m bidding matrix, while the output is a 1 × m
misreport vector specific to each bidder’s misreport network. Note that the mechanism used to train
the misreport in the figure is fixed. Our objective is to determine the optimal misreport for each
individual. During the training phase of each misreport network, our focus is solely on optimizing
the corresponding bidder’s bid to achieve their individual optimal bid, denoted as bidderi. To create a
new bidding matrix, we combine the true bids of the remaining bidders with the output of the optimal
misreport. This matrix is subsequently injected into the auction mechanism used for testing, enabling
us to perform allocation and payment calculations.

Finally, the individual regrets are calculated and subsequently presented, serving as a quantifi-
cation of the post-regret induced by the optimal misreport for each bidder. These regrets elucidate
the relative disparity between the bidder’s optimal misreport and their true bid, thereby offering a
relatively more accurate metric to gauge their retrospective remorse. To gain a deeper understanding
of how multiple networks operate, we show the pseudo-code of the training part in the Appendix B.
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4. Experiments

To evaluate the robustness of the auction mechanism and the efficiency of our proposed multi-
MisreportNet, we conduct experiments in different settings within the ALGNet framework. We
denote the auction setting as n ×m, with n and m representing the number of bidders and items,
correspondingly. See Appendix C for specific environment setup details. We demonstrate in Appendix
D that the auction mechanism of ALGNet performs adequately for simple auction environments on
a smaller scale. Therefore, we focus our experiments on more complex auction settings, such as
3× 10 and 5× 10. In this section, we offer a detailed analysis of the experimental outcomes, which
demonstrate that the MisreportNet can detect misreport more effectively.

In Table 2, we present the outcomes of the regret examination for the multi-MisreportNet with
configurations 3× 10 and 5× 10. Additionally, we contrast the outcomes of the single-Misreport
and ALGNet (where ALGNet is considered as the baseline).

Table 2: Results of Multi-MisreportNet (Multi) under ALGNet Testing

Setting Bidder Multi regret Single regret ALGNet regret

bidder1 0.00389± 0.0003
3× 10 bidder2 0.00398± 0.0004 0.00263± 0.0002 0.00154± 0.0002

bidder3 0.00439± 0.0004

bidder1 0.00478± 0.0002
bidder2 0.00483± 0.0003

5× 10 bidder3 0.00476± 0.0003 0.00448± 0.0003 0.00261± 0.0004
bidder4 0.00489± 0.0003
bidder5 0.00484± 0.0003

Compared to the single-misreport method, it appears that designing a network for each person
leads to a larger difference in regret and is therefore more aligned with the actual auction conditions.
While the disparity between single and multi of 5× 10 is relatively minor than that of 3× 10, it may
be explained by the intricacies involved with auction models on a larger scale. Consequently, the
ALGNet mechanism shows less efficacy than what is observed in the 3× 10 setting.

We also show the outcomes in the asymmetric auction setting in Table 3. Our results show
that Multi-MisreportNer enhances the identification of disparities in the distribution of individuals,
leading to more precise findings.

Table 3: Comparison between Multi-MisreportNet and ALGNet in 3× 10 asymmetric auction setting

Setting Bidder Distribution Multi regret ALGNet regret

bidder1 v1 ∼ U [3, 6] 0.09260± 0.0186 0.03611± 0.0069
3× 10 bidder2 v2 ∼ U [4, 7] 0.01411± 0.0094 0.00081± 0.0015

bidder3 v3 ∼ U [5, 8] 0.12206± 0.0375 0.03768± 0.0190
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5. Conclusion and future work

This paper proposes to introduce a separately trained misreport network for mechanism testing to
detect better misreports so as to obtain a more realistic regret value. We also employed a multi-
MisreportNet approach to handle bidder heterogeneity, which resulted in increased and more accurate
regret value. In future work, we aim to integrate multi-MisreportNet into mechanism training to
address optimal asymmetric auction mechanism design and evaluate its effectiveness in asymmetric
auction design.
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Appendix A. Related Work

Designing the optimal mechanism under varying scenarios is a fundamental research area in eco-
nomics. Initial approaches conceptualized the problem as a linear program — a strategy encumbered
with scalability issues due to the substantial data prerequisites and time consumption. An alternate
solution was to explore within a specific family of DSIC (Dominant Strategy Incentive Compatible)
auctions, such as the Virtual Valuation Combinatorial Auctions (VVCAs) family[20]. However, this
approach also comes with certain constraints. The restriction to a specific family of auctions subtly
introduces the threat that the optimal mechanism may not be encapsulated within this family, thereby
deeming the pursuit of achieving the optimal mechanism as unattainable.

The design of auctions gradually began to incorporate an assortment of traditional machine-
learning algorithms. However, the continual evolution and refinement of deep learning brought
about a realization: these machine learning algorithms were seen as less adaptive, less diverse, and
less proficient than the solutions facilitated by deep learning. As a result, RegretNet capitalized
on neural networks and pursued near-optimal auction mechanisms, which marked an innovative
milestone in the field. This methodology fused the auction’s assignment and payment rules into
unique allocation networks and payment networks, respectively. The results derived from RegretNet’s
model effectively offered an approximation that was in close proximity to the performance of all
previously deemed optimal auctions. Such a groundbreaking approach wielded substantial influence,
acting as a cornerstone to guide the design blueprint for numerous ensuing studies.

ALGNet, an advanced development over the pre-existing RegretNet, introduces a pioneering
evaluation criterion in auction mechanisms- the square root disparity between anticipated revenue and
expected regret (

√
P−
√
R). This novel concept mitigates the use of time-bound and hyperparameter-

sensitive loss functions, thereby alleviating the typically resource-intensive quest for the perfect
hyperparameters, an issue commonly observed with RegretNet.In parallel with this, ALGNet im-
plements a misreporting network, analogizing the training process to a strategic game between two
players. The aim is to optimize the misreport throughout the training process in such a manner
that the aggregate benefit is maximized. The significant limitation of this approach, however, is the
potential for the identified misreports to plateau at local optima.

Recognizing this limitation, our proposed research centers around undertaking a deeper dive into
the misreporting network. Specifically, we seek to better understand its structure and function, with
the ultimate goal of enhancing its performance. This, we believe, will help unlock the full potential
of ALGNet in yielding a more robust, reliable, and advantageous auction mechanism.

Following the development of RegretNet, numerous subsequent works have made valuable contri-
butions. One notable example is RegretFormer [12], in which the authors introduced a novel network
structure encompassing attention layers and a new loss function capable of predefining a regret
budget. Additionally, You and colleagues have incorporated two performance-enhancing generic
methods into the deep learning auction mechanism, particularly the integration with RegretFormer,
which resulted in outcomes reaching the state of the art.

Beyond the aforementioned studies, various unique angles have been explored within the field
of auction mechanism design. Kuo et al.[13] proposed ProportionNet, introducing the concept of
fairness as a solution to maintain high revenue and ensure strong incentives. Similarly, Peri et al.[16]
presented PreferenceNet, which incorporated human preferences into auction design, creating a
relatable example through expected allocation encoding. Duan et al.[7] transcended the narrow
confines of earlier studies by integrating common contextual information about bidders and projects

8
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within the auction learning framework. Feng et al.[9] expanded upon the concept of RegretNet to
accommodate private budget constraints and facilitate Bayesian incentive compatibility, yielding
auction designs closely aligned with incentive compatibility principles. Curry et al.[6] revisited the
learning challenge of affine maximization auctions, introducing an architectural system that supports
multiple bidders with perfect honesty. Rahme et al.[19] analyzed the auction design challenge
from the perspective of permutation equivariant symmetry, devising a neural network capable of
flawlessly retrieving the optimal permutation equivariant mechanism and demonstrating its superior
generalization abilities. In a further study, Curry et al.[5] tested the efficacy of application-specific
methods using neural networks to explicitly verify the strategyproofness within specific valuation
profiles. Their modifications to the RegretNet architecture paved the way for more precise regret
values. Lastly, Qin et al.[17] expanded upon the benefits of permutation equivariant neural networks
within additive valuation and symmetric valuation settings, explained through rigorous proofs.

Appendix B. Training Algorithm

Algorithm 1: Multi-Misreport Net training
Input: n - number of agents, m - number of objects, B - batch size
Output: V ′[n,m] - Best misreport bid
Parameter: R - number of iterations for misreport network training, α - learning rate
Initialize: M [1 to n] - different misreport nets for each bidder, A - auction mechanism
1. for k = 1, ..., R do
2. Sample valuation batch S of size B
3. for i = 1, ..., n do
4. v′i = Mi(S)
5. ui = Utility(A, Vi, V

′
i )

6. φk+1
i ← φk

i − α∇φiL
(
φk
i

)
(ui)

7. end for
8. end for
9. return V ′ = {v′1, v′2, ...v′n}

The method of Multi-MisreportNet is summarized in Algorithm 1. We can employ this algorithm
to evaluate any existing auction mechanism A, which in this study refers to the ALGNet model. The
algorithm takes as input the number of agents n, the number of objects m, and the batch size B. The
output is the combination of the optimal misreport for each bidder, i.e. V ′[n,m]. The algorithm
iterates over the training process R times (line 1). At each iteration, the algorithm samples a valuation
batch S of size B (line 2). The algorithm then trains each misreportNet by computing the utility of
the auction mechanism with the true value estimates and the misreported value estimates (lines 3-5).
The gradient of the loss function concerning the weights of each misreport net is computed using
backpropagation. Gradient descent is then used to update the weights of each misreport net (line 6).
The algorithm iterates over the training process R times to improve the quality of the misreport nets.
The proposed MMN algorithm has the potential to improve the efficiency and fairness of auction
mechanisms and can be applied to a variety of auction settings.
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ENHANCING THE MISREPORT NETWORK FOR OPTIMAL AUCTION DESIGN

Appendix C. Setup

We focused our experimental efforts on the 3× 10 and 5× 10 auction settings. To implement the
misreport network framework, we utilize the PyTorch deep learning tool, which is appropriate for
complex and computationally intensive tasks.

We conducted our experiments on a server equipped with an Intel Xeon processor and an NVIDIA
GPU that boasts 32GB of memory. The misreportNet we employed comprises seven layers, with
each layer containing 100 hidden nodes. We utilized the tanh activation function at the hidden nodes.
During the training phase, we employed a batch size of 200 and conducted 300 iterations, while
testing the network on 20,000 samples. In each batch of data, we optimized the parameters using the
Adam optimizer with a learning rate of 0.001. The bidders’ valuations were sampled from a uniform
distribution between 0 and 1, i.e., vij ∈ [0, 1].

Appendix D. Other results

Table 4: Single-MisreportNet Results in 1× 2 and 1× 10 Auction Environments

Setting Single regret baseline

1× 2 0.00006± 1.7080e− 06 0.00012± 5.6765e− 06
1× 10 0.00257± 2.7801e− 05 0.00186± 7.3553e− 05

Through experiments conducted in multiple environments, we have observed a more pronounced
evaluation of regret by the neural network when optimizing for misreports in scenarios characterized
by a larger number of items. This observation can be attributed to the augmented dimensionality
of features stemming from an augmented quantity of items, thereby endowing the neural network
with an enhanced and more elaborate information repository. Consequently, the neural network
can effectively capture and leverage varied feature combinations and correlations, enhancing its
understanding and predictive capabilities regarding participants’ behavior.

Moreover, in scenarios with a larger number of items, participants exhibit a wider array of bidding
strategies, necessitating the neural network to better comprehend and predict the diverse strategies
and behaviors employed by different participants. This heightened complexity of decision-making
contributes to improved performance in the neural network’s decision-making process.

Table 5: Single-MisreportNet and Multi-MisreportNet Results in 2× 2 Auction Environments

Bidder Multi regret Single regret baseline

bidder1 0.00075± 1.0045e− 05
0.00066± 6.8621e− 06 0.00064± 2.6137e− 05

bidder2 0.00061± 5.1336e− 06

Additionally, we speculate that in the 1× 2 and 2× 2 environments, the mechanism itself may
have already been trained to a near-optimal state, thereby resulting in less discernible effects in the
misreport testing.
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