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Abstract
Recent empirical work has revealed an intriguing property of deep learning models by which the
sharpness (largest eigenvalue of the Hessian) increases throughout optimization until it stabilizes
around a critical value at which the optimizer operates at the edge of stability, given a fixed step-
size [Cohen et al., 2022b]. We investigate empirically how the sharpness evolves when using
stepsize-tuners, the Armijo linesearch and Polyak stepsizes, that adapt the stepsize along the it-
erations to local quantities such as, implicitly, the sharpness itself. We find that the surprisingly
poor performance of a classical Armijo linesearch may be well explained by its tendency to ever-
increase the sharpness of the objective in the full or large batch regimes. On the other hand, we
observe that Polyak stepsizes operate generally at the edge of stability or even slightly beyond,
while outperforming its Armijo and constant stepsizes counterparts. We conclude with an analysis
that suggests unlocking stepsize tuners requires an understanding of the joint dynamics of the step
size and the sharpness.

1. Introduction

Selecting a good learning rate is a time-consuming part of practical machine learning. To alleviate
this, a number of automatic stepsize tuners have been proposed in the literature. Two of the most
common methods are the stochastic Armijo line-search of Vaswani et al. [2019] and the stochastic
Polyak stepsize of Berrada et al. [2020], Loizou et al. [2021]. These methods enjoy strong theoreti-
cal guarantees that, as we will see, do not always translate into fast empirical performance.

A different line of work has highlighted a number of important phenomena during training of
deep neural networks with large learning rates [Foret et al., 2022, Ghorbani et al., 2019, Gilmer
et al., 2022, Neyshabur et al., 2017]. In particular, many experiments have shown the tendency for
the loss’s sharpness (largest Hessian eigenvalue) to increase until it reaches the edge of stability
(EOS), in which the maximum eigenvalue increases to and stabilizes at 2/γ for stepsize γ, corre-
sponding to the largest eigenvalue that converges for gradient descent with stepsize γ in a quadratic
objective [Cohen et al., 2022a,b, Giladi et al., 2020, Wu et al., 2018].

While there are some studies of sharpness dynamics with preconditioners [Cohen et al., 2022b],
little is known about sharpness dynamics with stepsize tuners that condition on local properties of
the loss landscape. This work takes a first step to fill this void by providing a systematic study of
loss and sharpness dynamics in Armijo and Polyak stepsize tuners.

We find the following. In the deterministic (full batch) setting, Armijo performs worse than
constant stepsize while Polyak performs well. Armijo exhibits an ever-increasing sharpness while
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Figure 1: Interplay between stepsize tuners and sharpness. We plot the training loss (top) and sharp-

ness (bottom) for various architectures on a subset of CIFAR10, for the different stepsize tuners (Armijo-GD,

Polyak-GD) as well as GD with fixed stepsizes γ, all in the full-batch setting. The sharpness of GD stabilizes

around the value 2/γ (dashed line). While Armijo-GD decreases the objective monotonically, the sharpness

climbs further above any other method. In contrast, the train loss of Polyak-GD is not monotonically de-

creasing but the sharpness plateaus at low values.

Polyak operates almost systematically at EOS or above. In the stochastic (minibatch) setting, the
performance of Armijo depends highly on the mini-batch size, while Polyak performs slightly less
well than in the full batch setting and operates mostly again at EOS. Our theoretical insights show
that the joint dynamics of loss and stepsize tuning itself is necessary to explain these phenomena.

2. Methods

We consider minimizing of the average f of n functions f1, . . . , fn, representing typically the aver-
age loss of a deep network on a set of samples, that is, we aim to solve

w⋆ ∈ argmin
w∈Rp

{
f(w)

def
=

1

n

n∑
i=1

fi(w)

}
. (1)

In that purpose, we consider gradient or stochastic gradient descent algorithms of the form

wt+1 = wt − γt∇ϕ(wt), with ϕ = f (deterministic regime) or ϕ = fi (stochastic regime) , (2)

for i sampled uniformly at random in [n] in the stochastic regime. Here rather fixing the stepsize
(a.k.a. learning rate) γt to a constant, we consider stepsize-tuners that automatically adjust γt given
local information on the objective. We consider the two following stepsize-tuners.

Armijo line-search. The Armijo line-search is a standard method for setting the stepsize of
gradient-based optimizers in the deterministic setting [Nocedal and Wright, 1999]. Vaswani et al.

2



STEPSIZE TUNING AND PROGRESSIVE SHARPENING

[2019] adapted this classical method to the stochastic regime and provided convergence guarantees
for smooth convex functions in the interpolation regime. The Armijo condition consists in selecting
the stepsize γt to ensure decrease of the objective or its mini-batch counterpart as

ϕ(wt−γt∇ϕ(wt)) ≤ ϕ(wt)−cγt∥∇ϕ(wt)∥2, with ϕ = f (deterministic) or ϕ = fi (stochastic) ,
(3)

for c > 0 a hyperparameter of the method, set to 10−4 in our experiments as in usual implemen-
tations. To ensure that the above is satisfied, one starts from a maximum stepsize γmax, set to
γmax = 1 for each step in the experiments, and decreases the stepsize by a constant factor of 0.8
until the above equation is satisfied.

Polyak stepsize. A recent breakthrough in optimization was the realization that the venerable
Polyak stepsize, [Polyak, 1969] originally developed for deterministic/full gradient optimization,
extends naturally to stochastic optimization [Berrada et al., 2020, Jiang and Stich, 2023, Loizou
et al., 2021]. Many variants of this stepsize have been proposed, see, e.g., [Gower et al., 2022, Li
et al., 2022]. In this manuscript we focus on the SPSmax variant of [Loizou et al., 2021] that sets
the stepsize based on the following formula:

γt = min

{
ϕ(wt)− ϕ⋆

∥∇ϕ(wt)∥2
, γmax

}
with ϕ = f (deterministic) or ϕ = fi (stochastic) , (4)

for γmax a hyperparameter of the method that restricts Polyak from taking a too large step. In our
experiments, this parameter is set to γmax = 1 and we consider ϕ⋆ = 0, that is, the model can overfit
the training regime.

3. Experiments and Discussion

We study stepsize tuners on the CIFAR10 image classification dataset [Krizhevsky and Hinton,
2009] with a squared loss and weight decay with parameter 10−4. We will distinguish between
the deterministic setting – full batch gradient descent (GD) – and the stochastic setting – minibatch
gradient descent (SGD). We selected GD stepsizes close to the maximal stepsize that does not lead
to divergence.

3.1. Deterministic regime

Setting. We first consider training deep networks on a reduced subset of 4096 samples of CI-
FAR10 training on all the samples each step. We trained on a 6-layer fully connected network,
VGG, and with ResNet. Architectural details can be found in Appendix A.1.

Results. As promised, Armijo-GD (linesearch, deterministic setting) gives monotonically de-
creasing loss for all architectures (Fig. 1, top). This is in contrast with the extremely non-monotonic
loss trajectories for fixed stepsize gradient descent (GD). Note that this non-monotonicity comes
from non-linear discrete effects, and not sampling noise. However, Armijo-GD greatly underper-
forms constant stepsize GD. This observation comes somewhat as a surprise given that stepsize
tuners such as Armijo have been the workhorse of non-convex optimization for decades [Nocedal
and Wright, 1999]. This inefficiency seems to be related to the strong progressive sharpness (in-
creasing sharpness) of Armijo-GD (Fig. 1, bottom). The cost of the non-monotonicity in the face
of increasing sharpness is a decrease in stepsize (Fig 2, top). This can be further elucidated by
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Figure 2: A closer look at the learning rate dynamics. In the top plot, we show the learning rate dynamics

for the different stepsize tuners and GD. The Armijo backtracking line-search (red) decreases the learn-

ing rate monotonically, while the Polyak stepsize (violet) oscillates around the maximal acceptable value

from (4), γmax = 1. In the bottom plot, we show the product of the learning rate and the sharpness of the

Hessian. For constant stepsize GD, this product stabilizes at the critical EOS value 2 (black dashed line).

For Armijo-GD the value either stays well below 2 or lingers around it from the start. For Polyak-GD, the

product oscillates around the critical value without stabilizing like GD.

measuring the stepsize times the sharpness (Fig. 1, bottom). For fixed stepsize this oscillated above
and below the EOS at value 2, leading to sharpness regularization; for Armijo-GD, the value is very
much below 2 for the MLP (left, bottom), and near but often below 2 for the other architectures.

In contrast, Polyak-GD gives non-monotonic loss trajectories but with a faster decrease than
Armijo, and leads to low final values of the sharpness (Fig 2). The stepsizes selected by Polyak’s
method tend to select the maximal acceptable value from (4), γmax = 1, and leads the normal-
ized spectral norm to oscillate about (and sometimes well above) the critical value of 2 (Fig 2).
Zooming in the first iterations of the method and recording at each iteration as done in Fig. 6 in
Appendix B shows that Polyak’s method only selects large stepsizes (around the maximal one) once
the sharpness has sufficiently decreased.

3.2. Stochastic regime

Setting. We repeat the experiments, this time in the stochastic (minibatch) setting. We now train
on all of CIFAR10, with minibatch sizes {256, 1024, 4096}. Results in Fig. 3 are in the MLP
architecture while results on VGG and ResNet are presented in Appendix B.

Results. The performance of the stepsize tuners varies greatly with the batch size. For the largest
batch size of 4096 (Fig. 3, top), we observe essentially the same behavior as in the deterministic (full
batch) setting: Armijo-SGD displays progressive sharpening to long times, the stepsize decreases,
and optimization is poor. Polyak once again performs well.
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Figure 3: Batch sizes impact the behavior of stepsize tuners in the stochastic regime. We consider

training an MLP (see Appendix for VGG and ResNet) on the full CIFAR10 dataset with various batch-sizes.

In this stochastic regime, Armijo’s performance varies greatly with the mini-batch considered, with a good

performance at medium scale, and poor performance otherwise. Progressive sharpening of Armijo is only

observed at medium and large scales. Polyak performs reasonably well in all settings, while operating

potentially above the edge of stability regime in, e.g., the medium scale.

For the intermediate batch size of 1024, (Fig. 3, middle), Armijo-SGD optimizes well while
maintaining relative smoothness of the loss trajectory. There is sharpening but less than some of
the GD settings. Armijo-SGD still stays below the EOS. In contrast, Polyak-SGD now optimizes
similarly to Armijo and fixed step size SGD (slower at the start but faster later) to similar values of
the loss. Polyak-SGD seems to stabilize above the EOS.

For the smallest batch size of 256 (Fig. 3, bottom), Armijo-SGD induces small sharpness, but
dramatically underperforms fixed stepsize SGD. In this case, Armijo-SGD often selects the maximal
stepsize1 and remains above EOS. This is in contrast to fixed stepsize SGD which remains below
the EOS. This is similar to Polyak-SGD which performs poorly here compared to fixed stepsize
while staying above the EOS.

The varying behavior of Armijo-SGD in the stochastic regime may be explained by the discrep-
ancy between the maximal acceptable stepsize on a mini-batch and on the full loss. As shown by
Mutschler and Zell [2020, Figure 7], the best stepsize decreasing the value on a mini-batch tends to

1. The plot is in epochs, at the scale of each steps, we observed stepsizes sometimes of the order of 0.5 rather than 1.
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be larger than the stepsize that would have been selected on the full loss. The improved performance
of Armijo in the stochastic setting may then be explained by its inability to satisfy the criterion that
would be used in the full-batch regime.

4. Simple models fail to capture stepsize tuner dynamics

In their empirical study, Cohen et al. [2022b] uncovered two distinct phenomena: increasing largest
Hessian eigenvalue at early times (progressive sharpening) and stabilization of said eigenvalue
around a critical value (EOS). One natural hypothesis is that good stepsize tuners will quickly reach
values near the EOS and stay there during training. We will analyze the stepsize tuners using a sim-
ple model of EOS behavior and see that EOS alone is not sufficient to understand our experiments
- we must eventually understand the sharpening dynamics themselves.

The edge of stability dynamics is well represented by the projection onto the top eigenmode of
the Hessian/NTK jointly with the dynamics of the eigenvalue itself [Agarwala et al., 2023, Damian
et al., 2022]. We ask a basic question: can this simplified model be used to derive the stable values
for the step sizes achieved by Armijo-GD and Polyak-GD observed in practice?

More concretely, suppose wt is close to a minimum w⋆. Suppose that wt − w⋆ is given by
atvmax,t, where at is a scalar and vmax,t is the eigenvector associated with the largest eigenvalue
λmax,t of ∇2f(wt). The edge of stability dynamics corresponds to λmax,t staying near 2/γt and at
oscillating about 0. Under these assumptions, the question is: what is the behavior of the constraints
on γt induced by the stepsize tuners?

We will make the further approximation that the loss is well approximated by the second order
expansion around w⋆, and that vt and λmax,t are approximately constant. The loss and gradients are
then approximated as

f(wt) ≈
1

2
(wt − w⋆)⊤∇2f(w⋆)(wt − w⋆) =

1

2
λmaxa

2
t , ∇f(wt) ≈ λmaxatvmax.

The Armijo-GD condition (3) becomes: 1
2λmax(1 − λmaxγt)

2a2t ≤ λmax(1 − cγtλmax)a
2
t , which

constrains the stepsize selected by Armijo to satisfy

γt ≤
2(1− c)

λmax
.

For slowly changing λmax,t ≈ λmax, Armijo-SGD stabilizes below the EOS. For Polyak-GD we
have, for γmax = 1,

γt = min

{
f(wt)− f⋆

∥∇f(wt)∥2
, 1

}
= min

{
1

2λmax
, 1

}
=

{
1/(2λmax) if λmax < 1/2

1 otherwise
.

This threshold is also below the EOS, and in fact smaller than the threshold for Armijo-GD.
However, in practice Polyak-GD seems to give rise to larger learning rates than Armijo-GD,

while in the SGD setting things are highly senstitive to batch size. Therefore this simple model does
not capture the true dynamics. Understanding stepsize tuners requires analysis of the joint dynamics
of γt and λmax,t; in other words, progressive sharpening must be considered as well as EOS.
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Appendix A. Experimental details

A.1. Architectures

Here are some additional details on the architectures considered

1. MLP: We considered 6 layers of output size (128, 128, 64, 64, 32, 32) followed by a last clas-
sification layer of output dimension 10. All layers are without batch normalization or dropout.
Each layer consists in a linear transformation followed by the ReLU activation function ex-
cept for the classification layer, which has no activation.

2. VGG11: We follow the implementation of the VGG11 architecture [Simonyan and Zisserman,
2014] except that we removed dropout layers and the batch normalization layers.

3. ResNet34: We follow the implementation of the Resnet34 architecture [He et al., 2016] except
that we removed the batch normalization layers.

A.2. Evaluation

1. Sharpness computation: To compute the sharpness, that is, the spectral norm of the Hessian,
we used a power iteration method, stopped once changes in the residual go below a threshold
of 10−3 or after 1000 iterations.

2. Visualization: For the stochastic experiments we average the evaluations of each quantity
around 20 steps.

Appendix B. Additional experiments

B.1. VGG and ResNet in stochastic regime

On Fig. 4 and 5, we display the training dynamics of SGD, ArmijoSGD and PolyakSGD, when
considering the VGG and ResNet architectures. Compared to the MLP setting of Fig 3, we still
observe the same sharpening Armijo at large and medium scales, though less starkly displayed for
the ResNet architecture. In this regime, we oberve that the best regime for which Armijo works is
the smallest one, hinting that the ideal batch-size for Armijo naturally depends on the architecture
considered. On the other hand, Polyak SGD performs very well in all settings. Note that the
constant stepsizes for SGD were chosen as in the full batch regime and do not illustrate the best
possible performance of SGD in these settings. In other words, the stark contrast of performance
between PolyakSGD and the constant size variants may be an effect of the loose search of constant
stepsizes of SGD rather than a true qualitative difference. On the other hand, this illustrates the
benefit of Polyak SGD in this context which alleviates the search for a stepsize.

B.2. Zoom into Polyak’s behavior

In Fig. 2 we plotted several metrics every 50 epochs. In Fig. 6, we show the train loss and the
learning rate at every epoch (that is every step as we are in full batch) for the first 200 epochs. We
observe that the learning rate is not just constant to 1 but oscillates between 0 and 1 except at the
start where it stays at a low value. Polyak starts taking large stepsizes (between 0 and 1) only once
the sharpness has significantly decreased.
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Figure 4: Training dynamics in stochastic regime for the VGG11 architecture.

We also present on Fig. 7, how the maximal stepsize for the Polyak method affects the increasing
sharpness. Unsurprisingly by setting a small maximal stepsize we retrieve a comportment akin to
the one displayed by constant stepsize SGD. On the other hand, in this experiment, fixing a maximal
stepsize even relatively large does not lead to divergence, though the algorithm is less stable at the
start.
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Figure 5: Training dynamics in stochastic regime for the ResNet34 architecture.
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Figure 6: Polyak GD with maximal stepsize of 1. on a ResNet34 for the first 200 epochs. We
observe that at the start, the learning rate remains small until the sharpness has sufficiently
decrease for the optimizer to take large stepsizes.
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Figure 7: Varying the maximal stepsize of Polyak. Even for large maximal stepsizes Polyak con-
verges efficiently, though it is less stable at the start. Small maximum stepsizes lead to a
similar behavior as constant stepsizes.
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