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Abstract
We study a distributed multi-armed bandit setting among a population of n memory-constrained
nodes in the gossip model: at each round, every node locally adopts one of m arms, observes
a reward drawn from the arm’s (adversarially chosen) distribution, and then communicates with
a randomly sampled neighbor, exchanging information to determine its policy in the next round.
We introduce and analyze several families of dynamics for this task that are decentralized: each
node’s decision is entirely local and depends only on its most recently obtained reward and that of
the neighbor it sampled. We show a connection between the global evolution of these decentral-
ized dynamics with a certain class of “zero-sum” multiplicative weight update algorithms, and we
develop a general framework for analyzing the population-level regret of these natural protocols.
Using this framework, we derive sublinear regret bounds under a wide range of parameter regimes
(i.e., the size of m and n) in an adversarial reward setting (where the mean of each arm’s distribu-
tion can vary over time), when the number of rounds T is at most logarithmic in n. Further, we
show that these protocols can approximately optimize convex functions over the simplex when the
reward distributions are generated from a stochastic gradient oracle.

1. Introduction

Multi-armed bandits are a powerful and general abstraction in online learning [9, 20, 29], and
recently there has been significant interest in distributed, multi-player variants, in which multiple
agents can sample in parallel and can coordinate under limited communication [2, 4, 6, 8, 12, 14,
18, 19, 22, 23, 31, 34]. However, one setting that has received significantly less attention is the
decentralized setting, e.g. [21], in which individual nodes lack a global view of the set of arms, have
limited memory, and can only exchange information via random, direct exchanges.

In decentralized learning, the goal of the system would be to collectively limit regret at the
population level by ensuring that nodes consistently choose better arms at each round. This model
is well-motivated by distributed settings in which it is impractical for a single node to obtain global
information about the system. We briefly introduce the setting and objective as follows:

Problem Setting Consider a population of n nodes distributed over a complete communication
graph. The nodes interact with an m-armed bandit instance over a sequence of T rounds, each of
which is structured as follows:

(i) Arm Adoption: At the start of each round t, each node u ∈ [n] must adopt one of the m arms.
(ii) Reward Generation and Observation: Then, each arm j generates a single stochastic reward

gtj ∼ νtj , where νtj is a distribution supported on [−σ, σ] with mean µt
j ∈ [−1, 1], for some

1 ≤ σ ≤ 10. Every node adopting arm j subsequently observes the reward gtj .
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(iii) Communication: Then, every node u simultaneously samples a neighbor to receive informa-
tion from, uniformly at random. Each node subsequently uses this interaction to inform its
adoption strategy at round t+ 1, following a fixed local (randomized) protocol.

Let pt := (pt1, . . . , p
t
m) ∈ ∆m denote the distribution1 specifying the fraction of the population

adopting each arm j at round t, and define gt := (gt1, . . . , g
t
m) and µt := (µt

1, . . . , µ
t
m). Then the

objective of the population is to minimize its expected population-level regret R(T ),2

R(T ) := max
j∈[m]

∑
t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨pt,gt⟩] . (1)

Discussion and Related Models From a node-local perspective, this is a setting of an adversarial
m-armed bandit. However, from a global perspective, the full reward vector gt is distributed over the
population at every round, making it a decentralized version of prediction with expert advice [3],
which is reflected in the objective. Other than the boundedness conditions, the setting makes no
assumptions on how the rewards gtj are generated; in particular we assume an adversarial reward
setting, where each µt can change over rounds. Communication occurs according to the standard
synchronous gossip model with uniform neighbor sampling [7, 28]. As such, our model is related
to the decentralizated optimization model, which has become popular when studying variants of
SGD-based optimization [15, 17, 33]. Moreover, processes within this model are closely related to
distributed opinion dynamics [5] (which are used to model complex behavior in distributed systems
and also social and biological settings) and to evolutionary game theory [1, 27].

The most closely related models were studied by Celis et al. [10], Su et al. [30], and Sankarara-
man et al. [25]. However, all these works consider only a stationary setting where rewards come
from fixed-mean Bernoulli distributions. Additionally, they assume that (a) at any round a node can
choose not to adopt an arm, and that either (b) a node can alternate between strategies each round,
and, e.g., choose an arm uniformly at random with some small probability [10, 30], (c) that node
communication is implicitly performed through some centralized coordination to account for nodes
that made no adoption choice at the current round [10], or that (d) a node can remember its adoption
history from multiple prior rounds, and where each node adopting arm j at round t generates its
own, independent reward from the distribution νtj [25].

In contrast, our focus is to design and analyze extremely simple, memory-constrained dynamics
in which (i) a node can remember only its most recent arm choice and reward observation (ii) every
node runs an identical, fixed protocol that applies the same simple decision rule at every round, and
that (iii) nodes cannot choose to adopt one of m arms uniformly at random (since at the end of each
round, each node is only aware of their most recent adoption decision, and that of the neighbor they
communicated with). In other words: we desire dynamics that are fully decentralized, and that are
also robust to adversarially chosen rewards.

Our contributions We introduce and analyze several families of local dynamics satisfying prop-
erties (i), (ii), and (iii) above, and we obtain bounds on population regret R(T ) that scale sublinearly
with T . Informally, for general adversarial rewards, our dynamics obtain average regret

1

T
R(T ) ≤ O

(√
logm

T

)
+ Õ

(
σm

nϵ
+

σm

nc

)
,

1. We write ∆m := {p ∈ Rm : ∥p∥1 = 1} to denote the probability simplex over m coordinates.
2. In standard bandit settings, this quantity is often called pseudo-regret [9, 20]. We use the term regret for clarity and

note that this is the same objective considered in the related work of Celis et al. [10].
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for any c ≥ 1, n ≥ 3c log n, and T ≤ (12 − ϵ) log n rounds, for any ϵ ∈ (0, 12).
Here, the Õ(·) surpresses (for readability) lower-order logarithmic dependencies on m and n,

and by virtue of the analysis framework we introduce, this regret bound (stated formally in Theo-
rem 2.3) is decomposed into an approximation error (where we bound the regret of a “smoother”
version of the induced sequence {pt}) and an estimation error (where we pay for the error intro-
duced by this coupling). In our bound, the approximation error matches the known optimal regret
in the (centralized) prediction with expert advice setting [3], while the estimation error can be inter-
preted as a cost of decentralization: in order to achieve sublinear regret (or equivalently, vanishing
average regret), the population size n must grow sufficiently large with respect to m, and thus the
regret can generally be sharpened with larger populations. Additionally, in this adversarial reward
setting, we show under the constraints of the problem setting that regret can grow linearly with T
if the number of rounds can be arbitrarily large. For this reason, our bounds constrain T to grow at
most logarithmically in the population size n.

Roughly speaking, we obtain these bounds by analyzing the evolution of the sequences {pt}
induced by our families of dynamics. Surprisingly, we show for each dynamics that the adoption
mass ptj evolves (in conditional expectation) by multiplicative factors of the form (1 + Fj(p

t,gt))
for each arm j, and where each Fj is a function depending on pt and gt that collectively satisfy the
key “zero-sum” property of

∑
j∈[m] p

t
j · Fj(p

t,gt) = 0. We more generally relate processes of this
form to a class of (centralized) zero-sum multiplicative weights update (MWU) algorithms, and we
derive bounds on their regret that may be of independent interest. This connection is then leveraged
to establish a general analysis framework for bounding the regret of the original process {pt}.

Finally, using the known connections between (online) convex optimization and the standard,
centralized MWU algorithm (and related processes like mirror descent and the exponentiated gra-
dient method) [3, 11, 13], we use our dynamics and analysis framework to obtain expected error
rates for optimizing a convex function f : ∆m → R by assuming the reward sequence {gt} is
generated by a stochastic gradient oracle. For this, we give an error rate at the average iterate
p̃ := 1

T

∑
t∈[T ] p

t induced by our protocols that matches (up to some constant factors) the regret
bound from the adversarial reward setting above. This result is given formally in Theorem 2.4.

2. Technical Overview of Results

Notation and Other Preliminaries Throughout, we deal with multiple sequences of vectors in-
dexed over rounds t ∈ [T ], for which we use the short hand notation {pt} := p0,p1, . . . ,pt. We
often compute expectation (resp., probabilities) conditioned on two sequences {pt} and {gt} (or
{qt} and {gt}) simultaneously, and we denote this double conditioning by Et[·]. When we wish
to condition just on a single vector pt, we will usually write Ept [·]. Given p = (p1, . . . , pm), we
write E[p] to denote the vector (E[p1], . . . ,E[pm]). Throughout, we use the fact that for a random
variable x, if x ≤ α with probability at least 1 − γ, then E[x] ≤ α + γ. We assume all logarithms
are natural unless otherwise specified, and we use 1 to denote the vector of all ones.

2.1. Families of Local Dynamics

We begin by describing several families of local dynamics for the decentralized bandit setting. We
call the first family adoption dynamics, defined from the perspective of any node u at round t:
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Adoption Dynamics: given a non-decreasing adoption function f : R → [0, 1], for each u ∈ [n]:

(i) At round t, assume: node u adopted arm j; u sampled node v; and v adopted arm k ∈ [m].
(ii) At round t+ 1: node u adopts arm k with probability f(gtk) and arm j otherwise.

Note here that each node’s adoption strategy at round t + 1 depends only on the reward gtk
obtained by its neighbor. A natural choice for f is the sigmoid function with parameter β, and
we call the resulting protocol β-sigmoid-adopt. Now consider the sequence of distributions {pt}
induced by running an adoption dynamics with reward sequence {gt}. In conditional expectation
through round t, we show that the mass of each coordinate j grows by a multiplicative factor with
magnitude 1 + f(gtj)− ⟨pt, f(gt)⟩. This is captured formally in Proposition A.1 in Appendix A.

Our second family of dynamics, which we call comparison dynamics, shares a similar property
in conditional expectation. We first define this second family as follows:

Comparison Dynamics: given a non-decreasing score function h : R → R≥0, for each u ∈ [n]:

(i) At round t, assume: node u adopted arm j; u sampled node v; and v adopted arm k ∈ [m].
(ii) At round t+ 1: define ρj ∝ h

(
gtj
)

and ρk ∝ h
(
gtk
)
.

Then node u adopts arm j with probability ρj and arm k with probability ρk.

Here, a node considers both its own and its neighbor’s most recent reward observation to deter-
mine its next decision (in particular, by comparing the “scores” of the rewards under h). As a natural
example, we can instantiate a comparison dynamics with an exponential score function, which re-
sults in ρj and ρk forming a softmax distribution. We call the resulting protocol β-softmax-compare.

As mentioned, every instantiation of a comparison dynamics yields a coordinate-wise multi-
plicative update rule (in conditional expectation) similar to those of adoption dynamics. In par-
ticular, in Proposition A.2 in Appendix A, we derive an conditionally expected update rule for
comparison dynamics similar to that of Proposition A.1.

Together, Propositions A.1 and A.2 show that under both families of dynamics, the new, con-
ditionally expected adoption masses p̂t+1 := Et[p

t+1] take on the more general form p̂t+1
j :=

Et[p
t+1
j ] = ptj ·

(
1 + Fj(p

t,gt)
)
, where the set of m functions Fj satisfies

∑
j pj · Fj(p,g) = 0

for all p ∈ ∆m and g ∈ Rm. This observation motivates us to define the set of processes {qt} that
evolve according to such multiplicative updates at each step. Specifically, consider a sequence of
distributions {qt} that evolves according to the following definition:2

Definition 2.1 (Zero-Sum Multiplicative Weights Update) Let F = {Fj}j∈[m] be a a family of
m potential functions Fj : ∆m × Rm → [−1, 1] satisfying the zero-sum condition∑

j∈[m] qj · Fj(q,g) = 0 (2)

for all q ∈ ∆m and g ∈ Rm. Then initialized from q0 ∈ ∆m and given T , we say the sequence
{qt} is a zero-sum MWU process with reward sequence {gt} if for all t ∈ [T ] and j ∈ [m]:

qt+1
j = qtj ·

(
1 + Fj

(
qt,gt

))
. (3)

Compared to the standard (linear) versions of MWU methods [3], the zero-sum condition (2)
always ensures the set of updated weights in (3) remains a distribution, without an additional renor-
malization step (i.e., the simplex ∆m is invariant to {qt}). Further below, we develop general regret
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bounds for these zero-sum MWU processes with respect to {gt}, where the bounds depend on some
quality measure of the family F in distinguishing higher-mean and lower-mean rewards.

2.2. Analysis Framework for Bounding the Regret of the Induced Process {pt}

While the (coordinate-wise) iterates of each pt induced by our dynamics have the same update form
as those of a zero-sum MWU process in conditional expectation, neither the sequence {pt} nor the
sequence {Et[p

t+1]} is itself such a process (in the sense of Definition 2.1). However, to analyze
the regret of {pt}, we introduce a true zero-sum MWU process {qt} that starts at the same initial
distribution, runs on the same reward sequence, and uses the same family F as follows:

Definition 2.2 (Coupled Trajectories) Let F = {Fj} be a family of zero-sum functions as in
Definition 2.1. Then given a reward sequence {gt}, consider the sequences of distributions {pt},
{p̂t}, and {qt}, each initialized at p0 ∈ ∆m, such that for all j ∈ [m]:

qt+1
j := qtj ·

(
1 + Fj(q

t,gt)
)
, (4)

p̂t+1
j := Et[p

t+1
j ] = ptj ·

(
1 + Fj(p

t,gt)
)
, (5)

and where ptj is the average of n i.i.d. indicator random variables, each with conditional mean p̂tj .

Given this coupling definition, a straightforward calculation (derived in Appendix B) shows that
we can approximate the regret R(T ) of the sequence {pt} from expression (1) as follows:

R(T ) ≤ R̂(T ) := max
j∈[m]

∑
t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨qt,gt⟩] +
∑

t∈[T ]

σ · E∥pt − qt∥1 . (6)

This (over)-approximation allows us to decompose R(T ) into (a) the regret of the zero-sum MWU
process {qt} (the difference of the first two terms) and (b) the error of the coupling (the final term).
This can be roughly viewed as an approximation error and an estimation error, respectively. In
Appendix B, we introduce a general analysis framework for bounding each of these quantities.

2.3. Regret Bounds for Local Dynamics

Using our analysis framework, we derive instantiated regret bounds for our local dynamics. How-
ever, given that the means µt can be chosen adversarially, observe that if the number of rounds T
can grow arbitrarily large, then R(T ) can grow linearly in T : for sequences {pt} induced by our dy-
namics, once any ptj goes to 0 (which can occur with non-zero probability in each round), then this
mass remains 0 for all subsequent rounds. Adversarially setting the j’th reward to be maximal could
then lead to constant regret per round. For this reason, our regret bounds impose some constraints
on T . In particular, in Appendix F we show that as long as T grows at most logarithimically in the
number of nodes n, then starting from p0 = 1/m, every ptj is at least 1/n with high probability
(i.e., at least one node adopts each arm in round t). This translates into a (pessimistic) constraint on
the T for which we can state meaningful bounds. Specifically, we obtain the following (average)
regret for the β-softmax-compare and β-sigmoid-adopt dynamics (proved in Appendix F):

Theorem 2.3 Consider the sequence {pt} induced by running the β-softmax-compare or β-
sigmoid-adopt protocol on an (adversarial) reward sequence {gt} intialized from p0 = 1/m. Then
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for any c ≥ 1 and n ≥ 3c log n, and assuming that T ≤ (12 − ϵ) log5 n = O
(
log
(

n
m2 logn

))
for

some ϵ ∈ (0, 12), setting β:=
√
(logm)/T yields average regret of:

1

T
·R(T ) ≤ O

(√
logm

T

)
+ Õ

(
σm

nϵ
+

σm

nc

)
.

2.4. Application: Convex Optimization over the Simplex

As an application of our local dynamics and analysis framework (in particular, the regret bounds
of Theorem 2.3 for the adversarial setting), we show how the protocols β-softmax-compare and β-
sigmoid-adopt can approximately optimize convex functions f : ∆m → R over the simplex when
the reward sequence {gt} is generated using a (stochastic) gradient oracle. In particular we assume:

Assumption 1 Given a function f : ∆m → R, we assume that:
(i) f is convex with gradients bounded by ∥∇f(q)∥∞ ≤ G for all q ∈ ∆m, for some G > 0.

(ii) At every round t ∈ [T ], the reward vector gt is of the form: gt := −(∇f(pt)/G) + bt, where
bt ∈ [−σ, σ]m is a coordinate-wise bounded random vector for some σ ∈ [1, 10].

Observe that condition (ii) ensures that the vector gt satisfies the reward distribution conditions
of our bandit setting (in particular, with [−σ, σ]-bounded support, and [−1, 1]-bounded means) and
thus our regret bounds from Section 2.3 can be applied. To this end, by adapting standard reductions
between MWU algorithms and (online) convex optimization [3, 13], we can use the more general
adversarial regret bound of Theorem 2.3 to derive the following result, proved in Appendix G:

Theorem 2.4 Given a convex function f : ∆m → R, consider the sequence {pt} induced by
running the β-softmax-compare or β-sigmoid-adopt protocol on a reward sequence {gt} generated
as in Assumption 1 with gradient bound G. Then for any c ≥ 1 and n ≥ 3c log n, assume that
T ≤ (12 − ϵ) log5 n = O

(
log
(

n
m2 logn

))
for some ϵ ∈ (0, 12), and set β:=

√
(logm)/T . Let

p̃ := 1
T

∑
t∈[T ] p

t denote the average arm distribution over T rounds. Then:

E[f(p̃)]− min
p∈∆m

f(p) ≤ O

(√
G2 logm

T

)
+ Õ

(
G ·
(
σm

nϵ
+

σm

nc

))
.

3. Conclusion

To conclude, we introduced several families of dynamics for the decentralized bandit problem,
whose regret in an adversarial reward setting grows sublinearly over rounds (so long as the total
number of rounds is at most logarithmic in the size of the population). In particular, note that
relative to prior related work [10, 25, 30], these are the first such dynamics that can tolerate re-
wards whose means are non-stationary. As an application, we showed how these dynamics can
approximately optimize convex functions over the simplex at a population level. It remains open to
establish optimal regret bounds in the general adversarial reward setting, and to also establish tighter
bounds for longer time horizons when the reward sequences have additional (non-adversarial) struc-
ture. Moreover, analyzing these dynamics over a non-complete communication graph (in particular,
understanding how mixing properties of the graph affect regret) is left as future work.
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timal algorithms for smooth and strongly convex distributed optimization in networks. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learning Research, pages 3027–3036. PMLR, 2017. URL
http://proceedings.mlr.press/v70/scaman17a.html.

8

http://proceedings.mlr.press/v97/koloskova19a.html
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1145/3366701
http://proceedings.mlr.press/v70/scaman17a.html


DECENTRALIZED LEARNING DYNAMICS IN THE GOSSIP MODEL

[27] Laura Schmid, Krishnendu Chatterjee, and Stefan Schmid. The evolutionary price of anar-
chy: Locally bounded agents in a dynamic virus game. In 23rd International Conference on
Principles of Distributed Systems (OPODIS 2019), volume 153, page 21. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019.

[28] Devavrat Shah et al. Gossip algorithms. Foundations and Trends® in Networking, 3(1):1–125,
2009.

[29] Aleksandrs Slivkins. Introduction to multi-armed bandits. Foundations and Trends® in Ma-
chine Learning, 12(1-2):1–286, 2019.

[30] Lili Su, Martin Zubeldia, and Nancy A. Lynch. Collaboratively learning the best option on
graphs, using bounded local memory. Proc. ACM Meas. Anal. Comput. Syst., 3(1):11:1–11:32,
2019. doi: 10.1145/3322205.3311082. URL https://doi.org/10.1145/3322205.
3311082.
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Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 7663–
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Appendix A. Details on Evolution of Local Dynamics in Conditional Expectation

In this appendix, we derive the conditionally expected evolution of the adoption and comparison
dynamics introduced in Section 2.

A.1. Evolution of Adoption Dyanmics

For adoption dynamics, we prove the following conditionally expected update rule:

Proposition A.1 Let {pt} be the sequence induced by running any adoption dynamics with adop-
tion function f and reward sequence {gt}. Then Et[p

t+1
j ] = ptj ·

(
1 + f(gtj) − ⟨pt, f(gt)⟩

)
, for

every t and j ∈ [m], where f(gt) ∈ [0, 1]m denotes the coordinate-wise application of f on gt.
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Proof First, letting ct+1
u ∈ [m] denote the arm adopted by node u ∈ [n] in round t+ 1, observe that

Et[p
t+1
j ] =

1

n

∑
u∈[n]

Pt[c
t+1
u = j] ,

which follows from the fact that pt+1
j is the average of the n indicators 1{ct+1

u = j}. By the local
symmetry of the dynamics, Pt[c

t+1
u = j] is equal for all nodes u. However, this value is dependent

on ctu (i.e., the adoption decision of u at the previous round t).
Thus using the law of total probability, for any node u we can write

Pt[c
t+1
u = j] = 1{ctu = j} · Pt[c

t+1
u = j|ctu = j]

+
∑

k ̸=j∈[m]

1{ctu = k} · Pt[c
t+1
u = j|ctu = k] .

Now fix node u, and let v ∈ [n] denote the node the u samples in round t. Now recall from the
definition of the dynamics that if ctu = k ̸= j, then ct+1

u = j with probability f(gtj) only if node v

adopted arm j in round t, i.e., ctv = j. On the other hand, if ctu = j, then ct+1
u = j either if ctv = j,

or if ctv = k ̸= j and node u rejects adopting arm k with probability 1− f(gtk).
Thus we have

Pt[c
t+1
u = j|ctu = j] = ptj +

∑
k ̸=j∈[m]

ptk · (1− f(gtk))

and Pt[c
t+1
u = j|ctu = k] = ptj · f(gtj) for k ̸= j .

Combining these cases, noting also that 1
n

∑
u∈[v] 1{ctu = k} = ptk for any k ∈ [m], and using the

fact that
∑

k∈[m] p
t
k = 1, we can then write

Et[p
t+1
j ] = ptj ·

(
ptj +

∑
k ̸=j∈[m]

ptk · (1− f(gtk))
)
+

∑
k ̸=j∈[m]

ptk ·
(
ptj · f(gtj)

)
= ptj ·

(
1 +

∑
k ̸=j∈[m]

ptk ·
(
f(gtj)− f(gtk)

))
= ptj ·

(
1 + f(gtj)−

〈
pt, f(gt)

〉)
,

which concludes the proof.

Importantly, we also verify that such multiplicative updates in every coordinate j still lead to a
proper distribution: for this, it is easy to check that∑

j∈[m]

Et[p
t+1
j ] =

∑
j∈[m]

ptj ·
(
1 + f(gtj)−

〈
pt, f(gt)

〉)
=

∑
j∈[m]

ptj +
〈
pt, f(gt)

〉
−
〈
pt, f(gt)

〉
= 1 ,

which holds since pt is a distribution.

Finally, recall from Section 2.1 that when the adoption function f is a sigmoid function with
parameter β we call the resulting protocol β-sigmoid-adopt. Stated formally:

10
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Local Protocol 1 (β-sigmoid-adoption) Let β-sigmoid-adopt be the adoption dynamics protocol
instantiated by the adoption function fβ(g) :=

1
1+exp(−β·g) for β ∈ [0, 1] and any g ∈ R.

A.2. Evolution of Comparison Dynamics

For comparison dynamics, we develop an update rule in conditional expectation whose form is
analogous to that of Proposition A.1. Specifically, we show:

Proposition A.2 Let {pt} be the sequence induced by running any comparison dynamics with
score function h and reward seqeunce {gt}. Furthermore, for any g ∈ Rm and j ∈ [m], let
H(g, j) ∈ [−1, 1]m be the m-dimensional vector whose k’th coordinate is given by ρj − ρk. Then

Et[p
t+1
j ] = ptj ·

(
1 + ⟨pt, H(gt, j)⟩

)
for every t ∈ [T ] and j ∈ [m].

Proof Fix j ∈ [m] and t ∈ [T ]. Again let cti ∈ [m] denote the arm adopted by node i ∈ [n] at round
t. Then observe that we can write

Et

[
pt+1
j

]
=

1

n

∑
i∈[n]

Pt

[
ct+1
i = j

]
=

1

n

∑
i∈[n]

(
1{cti = j} · Pt

[
ct+1
i = j | cti = j

]
+

∑
k ̸=j∈[m]

1{cti = k} · Pt

[
ct+1
i = j | cti = k

])
.

In the case that cti = j, note that ct+1 = j with probability 1 if node i samples a neighbor u that
also pulled arm j in round t. Otherwise, if u pulled some arm k ̸= j, then node i adopts j with
probability 1− h(gtk)/

(
h(gtj) + h(gtk)

)
. Together, this means that

Pt

[
ct+1
i = j | cti = j

]
= ptj +

∑
k ̸=j∈[m]

ptk

(
1−

h(gtk)

h(gtj) + h(gtk)

)

= 1−
∑

k ̸=j∈[m]

ptk ·
h(gtk)

h(gtj) + h(gtk)
. (7)

In the other case when cti = k ̸= j, then ct+1 = j only when node i samples a neighbor that pulled
arm j in round t, and thus

Pt

[
ct+1
i = j | cti = k

]
= ptj ·

h(gtj)

h(gtj) + h(gtk)
. (8)

11
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Now observe that for any k ∈ [m], 1
n

∑
i∈[n] 1{cti = k} = ptk by definition. Then together with

expression (7) and (8), we have

Et

[
pt+1
j

]
= ptj

(
1−

∑
k ̸=j∈[m]

ptk ·
h(gtk)

h(gtj) + h(gtk)

)
+

∑
k ̸=j∈[m]

ptk · ptj
h(gtj)

h(gtj) + h(gtk)

= ptj ·

[
1 +

∑
k ̸=j∈[m]

ptk ·
h(gtj)− h(gtk)

h(gtj) + h(gtk)

]

= ptj ·
[
1 +

〈
pt, H(gt, j)

〉]
,

which concludes the proof.

Again, we also verify that for any p ∈ ∆m and g ∈ [0, 1]m, the family of functions {⟨p, H(g, j)⟩}j∈[m]

satisfies the zero-sum property
∑

j∈[m] pj · ⟨p, H(g, j)⟩ = 0. To see this, observe that

∑
j∈[m]

pj · ⟨p, H(g, j)⟩ =
∑
j∈[m]

pj ·
∑
k∈[m]

pk ·
h(gtj)− h(gtk)

h(gtj) + h(gtk)

=
∑

(j,k)∈[m]×[m]

pj · pk ·

(
h(gtj)− h(gtk)

h(gtj) + h(gtk)
+

h(gtk)− h(gtj)

h(gtj) + h(gtk)

)
= 0 .

Finally, recall that when the score function h is an exponential with parameter β, we call the result-
ing protocol β-softmax-compare. Defined formally:

Local Protocol 2 (β-softmax-comparison) Let β-softmax-compare denote the comparison dy-
namics protocol instantiated with the score function hβ(g) := exp(β · g) for some β ∈ [0, 1].

Appendix B. Details on Analysis Framework

In this section, we provide more details on the analysis framework from Section 2.2, and specif-
ically on approximating the regret R(T ) in the context of the coupling from Definition 2.2. For
convenenience, we first restate this coupling definition:

Definition 2.2 (Coupled Trajectories) Let F = {Fj} be a family of zero-sum functions as in Defi-
nition 2.1. Then given a reward sequence {gt}, consider the sequences of distributions {pt}, {p̂t},
and {qt}, each initialized at p0 ∈ ∆m, such that for all j ∈ [m]:

qt+1
j := qtj ·

(
1 + Fj(q

t,gt)
)
, (4)

p̂t+1
j := Et[p

t+1
j ] = ptj ·

(
1 + Fj(p

t,gt)
)
, (5)

and where ptj is the average of n i.i.d. indicator random variables, each with conditional mean p̂tj .
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Now recall from expressions (1) and (6) that we define

R(T ) := max
j∈[m]

∑
t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨pt,gt⟩]

and R̂(T ) := max
j∈[m]

∑
t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨qt,gt⟩] +
∑
t∈[T ]

σ · E∥pt − qt∥1 ,

where we assume {pt} and {qt} are specified by the coupling from Definition 2.2. Here, we show
that R(T ) ≤ R̂(T ), which was stated without proof in expression (6) in Section 2.2.

Proposition B.1 For any sequences {pt} and {qt} as in Definition 2.2. Then R(T ) ≤ R̂(T ) with
respect to any reward sequence {gt} where each gt ∈ [−σ, σ]m.

Proof First, observe that for every t ∈ [T ], we can write

E[⟨pt,gt⟩] = E[⟨qt,gt⟩]− E[⟨qt − pt,gt⟩] .

Now recall from the definition of the problem setting that the randomness of gt is independent from
that of both qt and pt. Thus together with Hölder’s inequality, it follows that

R(T ) = max
j∈[m]

∑
t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨qt,gt⟩] +
∑
t∈[T ]

E[⟨qt − pt,gt⟩]

≤ max
j∈[m]

∑
t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨qt,gt⟩] +
∑
t∈[T ]

E
[
∥qt − pt∥1 · ∥gt∥∞

]
.

Now by the assumption that for each t ∈ [T ], every coordinate gtj of gt is drawn from a distribution
whose support is bounded in [−σ, σ], we have ∥gt∥∞ ≤ σ. Thus we conclude

R(T ) ≤ max
j∈[m]

∑
t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨qt,gt⟩] +
∑
t∈[T ]

σ · E∥qt − pt∥1 =: R̂(T ) ,

which conludes the proof.

B.1. Overview of Analysis Framework

We now give an overview of our framework for bounding the quantity R̂(T ). Our approach has two
steps: first, bounding the regret of the zero-sum MWU process (i.e., the difference of the first two
summations of R̂(T )), and second, bounding the error terms induced by the coupling (i.e., the third
summation in R̂(T )).

Regret Bounds for the Zero-Sum MWU Process To analyze the regret of the zero-sum MWU
process using a family F , the key step is to relate the the function value Fj(q,g) in conditional
expectation to the difference µj − ⟨q,µt⟩, which measures the relative magnitude of the j’th arm’s
mean to the globally-weighted average. To this end we make the following assumptions on F :
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Assumption 2 Let F = {Fj} be a family of potential functions satisfying the zero-sum condition
from Definition 2.1, and let {gt} be a sequence of rewards. Then we assume there exist constants
0 < α1 ≤ α2 < 1/4, δ ∈ [0, 1], and L > 0 such that for all j and gt:

(i) for all q ∈ ∆m: α1
3

∣∣µt
j − ⟨q,µt⟩ − δ

∣∣ ≤
∣∣Eq

[
Fj(q,g

t)
]∣∣ ≤ α2

3

∣∣µt
j − ⟨q,µt⟩+ δ

∣∣
(ii) for all p,q ∈ ∆m: |Fj(q,g

t)− Fj(p,g
t)| ≤ L · ∥p− q∥1 .

Under this assumption, we prove (in Appendix C) the following bound on the expected regret
of a zero-sum MWU process, which is parameterized with respect to constants α1, α2, and δ:

Theorem B.2 Consider a T ≥ 1 round zero-sum MWU process {qt} from Definition 2.1 with
reward sequence {gt} and using a family F that satisfies Assumption 2 with parameters α1, α2 and
δ, and assume that q0j ≥ ρ > 0. Then for every j ∈ [m]:∑

t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨qt,gt⟩] ≤ 3 log(1/ρ)

α1
+ 2

(
α2
2

α1
+

α2 − α1

α1
+

δα2

α1

)
· T .

Intuitively, condition (i) of Assumption 2 specifies a two-sided multiplicative correlation be-
tween Eq[Fj(q,g

t)] and µt
j −⟨q,µt⟩, while also allowing for some additive slack δ. The sharpness

of Theorem B.2 depends on the tightness of this correlation. In particular, if α1 = α2 = α and
δ = 0, and supposing that q0j = 1/m deterministically, then the right hand side in the theorem
recovers the standard (and optimal) MWU regret bounds [3]. We thus generally wish that the fam-
ily F induced by our local dynamics satisfies condition (i) of the assumption with α1 = α2, and
δ = O(α1), where α1 has some dependence on a free, tunable parameter. For the β-sigmoid-adopt
and β-softmax-compare protocols introduced earlier, we show this is exactly the case, and we pro-
vide the formal statements and proofs in Appendix D.

Controlling the Coupling Error The second step in the general analysis framework is to bound
the error

∑
t∈[T ] E∥pt − qt∥1 of the coupled trajectories. For this, we control the growth of each

term in the sum by leveraging property (ii) of Assumption 2, and by applying standard concentration
bounds. In Appendix E, we describe this approach in more details and prove the following lemma:

Lemma B.3 Consider the sequences {pt}, {p̂t}, and {qt} from Definition 2.2 with a reward
sequence {gt} and using a family F that satisfies Assumption 2 with parameter L. Let κ := (3+L),
and assume n ≥ 3c log n for some c ≥ 1. Then for any T ≥ 1:∑

t∈[T ]

E∥qt+1 − pt+1∥1 ≤ Õ

(
m · κT√

n
+

m · T
nc

)
.

Appendix C. Details on Zero-Sum Multiplicative Weight Updates

In this section, we prove the regret bound on the zero-sum MWU process from Theorem B.2, which
is restated here:

Theorem B.2 Consider a T ≥ 1 round zero-sum MWU process {qt} from Definition 2.1 with
reward sequence {gt} and using a family F that satisfies Assumption 2 with parameters α1, α2 and
δ, and assume that q0j ≥ ρ > 0. Then for every j ∈ [m]:∑

t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨qt,gt⟩] ≤ 3 log(1/ρ)

α1
+ 2

(
α2
2

α1
+

α2 − α1

α1
+

δα2

α1

)
· T .
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For convenience, we also restate Assumption 2:

Assumption 2 Let F = {Fj} be a family of potential functions satisfying the zero-sum condition
from Definition 2.1, and let {gt} be a sequence of rewards. Then we assume there exist constants
0 < α1 ≤ α2 < 1/4, δ ∈ [0, 1], and L > 0 such that for all j and gt:

(i) for all q ∈ ∆m: α1
3

∣∣µt
j − ⟨q,µt⟩ − δ

∣∣ ≤
∣∣Eq

[
Fj(q,g

t)
]∣∣ ≤ α2

3

∣∣µt
j − ⟨q,µt⟩+ δ

∣∣
(ii) for all p,q ∈ ∆m: |Fj(q,g

t)− Fj(p,g
t)| ≤ L · ∥p− q∥1 .

Roughly speaking, condition (i) of the assumption allows us to relate each Fj(q,g) to gj in
(conditional) expectation. From there, we can leverage standard approaches to proving MWU re-
gret bounds (i.e., in the spirit of Arora et al. [3]), but with some additional bookkeeping to account
for the α1, α2, and δ parameters. We also allow for a probabilistic lower bound on the initial mass
at the j’th coordinate, which is useful for deriving the epoch-based regret bounds from Section 2.3.

Proof (of Theorem B.2) Fix j ∈ [m] and t ∈ [T ]. Recall that in round t, both qt and gt are random
variables, where qt depends on the randomness in both {qt−1} and {gt−1}. Then conditioning on
both of these sequences (which is captured in the notation Et−1[·]), we can use the definition of the
update rule in expression (3) to write

Et−1

[
qtj
]
= Et−1

[
qtj ·
(
1 + Fj(q

t,gt)
) ]

= qtj · Et−1

[
1 + Fj(q

t,gt)
]
= qtj ·

(
1 + Et−1

[
Fj(q

t,gt)
])

.

Here, the second equality comes from the fact that qt is a constant when conditioning on {qt−1}
and {gt−1}, and thus Et−1[q

t
j ] = qtj . Now for readability, let us define

mt
j := Et−1

[
Fj(q

t,gt)
]
,

and that mt
j is deterministic (meaning E[mt

j ] = mt
j), since the only remaining randomness after

the conditioning is with respect to gt. Thus using the law of iterated expectation, we can ultimately
write

E
[
qt+1
j

]
= E

[
Et−1

[
qt+1
j

] ]
= E

[
qtj
]
·
(
1 +mt

j

)
.

By repeating the preceding argument for each of E[qt−1
j ], . . . ,E[q1j ], and setting T = t+ 1, we find

that
E
[
qTj
]
= q0j ·

∏
t∈[T−1]

(
1 +mt

j

)
. (9)

From here, we roughly follow a standard multiplicative weights analysis: first, define the sets M+
j

and M−
j as

M+
j = {t ∈ [T − 1] : mt

j ≥ 0}
and M−

j = {t ∈ [T − 1] : mt
j < 0} ,

where clearly M+
j ∪M−

j = [T ]. Then we can rewrite expression (9) as

E[qTj ] = q0j ·
∏

t∈M+
j

(
1 +mt

j

)
·
∏

t∈M−
j

(
1 +mt

j

)
.
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Now for each t, define ∆t
j := µt

j − ⟨qt,µt⟩ ∈ [−2, 2]. Using this notation, observe that Assump-
tion 2 implies

mt
j ≥ α1

3
· (∆t

j − δ) when mt
j ≥ 0

and mt
j ≥ α2

3
· (∆t

j − δ) when mt
j < 0 .

Note that when mt
j < 0, the latter inequality implies that ∆t

j − δ < 0. On the other hand, when
mt

j ≥ 0, the first inequality provides no further information on the sign of ∆t
j − δ. Thus we define

the additional two sets G+
j and G−

j as

G+
j = {t ∈ [T − 1] : ∆t

j − δ ≥ 0}
and G−

j = {t ∈ [T − 1] : ∆t
j − δ < 0} .

Combining the pieces above, it follows that

E[qTj ] ≥ q0j ·
∏

t∈M+
j

(
1 + α1

(∆t
j−δ)

3

)
·
∏

t∈M−
j

(
1 + α2

(∆t
j−δ)

3

)
= q0j ·

∏
t∈M+

j ∩G+
j

(
1 + α1

(∆t
j−δ)

3

)
·

∏
t∈M+

j ∩G−
j

(
1 + α1

(∆t
j−δ)

3

)
·
∏

t∈M−
j

(
1 + α2

(∆t
j−δ)

3

)
.

Observe also that each |∆t
j − δ| ∈ [−3, 3] by the definition of ∆t

j and by the assumption that
δ ∈ [0, 1]. Thus we can then use the facts that (1 + αx) ≥ (1 + α)x for x ∈ [0, 1], and that
(1 + αx) ≥ (1− α)−x for x ∈ [−1, 0], which allows us to further simplify and write

E[qTj ] ≥ q0j ·
∏

t∈M+
j ∩G+

j

(1 + α1)
(∆t

j−δ)

3 ·
∏

t∈M+
j ∩G−

j

(1− α1)
−

(∆t
j−δ)

3 ·
∏

t∈M−
j

(1− α2)
−

(∆t
j−δ)

3 .

Now using the fact that qTj ≤ 1, taking logarithms, and multiplying through by 3, we find

0 ≥ 3 log q0j +
∑

t∈M+
j ∩G+

j

log(1 + α1)(∆
t
j − δ)

−
∑

t∈M+
j ∩G−

j

log(1− α1)(∆
t
j − δ) −

∑
t∈M−

j

log(1− α2)(∆
t
j − δ) . (10)

By definition, recall that (δtj − δ) is non-negative for t ∈ M+
j ∩G+

j , and negative for t ∈ M+
j ∩G−

j

and t ∈ M−
j . Thus using the identities log(1 + x) ≥ x − x2 and − log(1− x) ≤ x + x2, which
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both hold for all x ∈ [0, 12 ], we can further bound expression (10) and rearrange to find

3 log
(
1/q0j

)
≥

∑
t∈M+

j ∩G+
j

(α1 − α2
1)(∆

t
j − δ) +

∑
t∈M+

j ∩G−
j

(α1 + α2
1)(∆

t
j − δ) +

∑
t∈M−

j

(α2 + α2
2)(∆

t
j − δ)

=
∑

t∈M+
j ∩G+

j

∆t
jα1 −

∑
t∈M+

j ∩G+
j

∆t
jα

2
1 −

∑
t∈M+

j ∩G+
j

δ(α1 − α2
1)

+
∑

t∈M+
j ∩G−

j

∆t
jα1 +

∑
t∈M+

j ∩G−
j

∆t
jα

2
1 −

∑
t∈M+

j ∩G−
j

δ(α1 + α2
1)

+
∑

t∈M−
j

∆t
jα1 +

∑
t∈M−

j

∆t
j(α2 − α1) +

∑
t∈M−

j

∆t
jα

2
2 −

∑
t∈M−

j

δ(α2 + α2
2) . (11)

Now in expression (11), there are seven summations which we collect into four groups, bound, and
simplify as follows:

(i)
∑

t∈M+
j ∩G+

j

∆t
jα1 +

∑
t∈M+

j ∩G−
j

∆t
jα1 +

∑
t∈M−

j

∆t
jα1 = α1

∑
t∈[T ]

∆t
j

(ii) −
∑

t∈M+
j ∩G+

j

∆t
jα

2
1 +

∑
t∈M+

j ∩G−
j

∆t
jα

2
1 +

∑
t∈M−

j

∆t
jα

2
2 ≥ −α2

2

∑
t∈[T ]

|∆t
j |

(iii) +
∑

t∈M−
j

∆t
j(α2 − α1) ≥ −(α2 − α1)

∑
t∈[T ]

|∆t
j |

(iv) −
∑

t∈M+
j ∩G+

j

δ(α1 − α2
1) −

∑
t∈M+

j ∩G−
j

δ(α1 + α2
1) −

∑
t∈M−

j

δ(α2 + α2
2) ≥ −2α2

∑
t∈[T ]

δ .

In the above, we use the fact that α1 ≤ α2 =⇒ α2
1 ≤ α2

2 (for (ii) and (iv)) and that ∆t
j ≥ −|∆t

j |
for any t (for (ii), (iii), and (iv)).

Substituting these groups back into expression (11), we ultimately find that

3 log
(
1/q0j

)
≥ α1

∑
t∈[T ]

∆t
j −

(
(α2

2 + (α2 − α1))
∑
t∈[T ]

|∆t
j |+ 2α2

∑
t∈[T ]

δ
)

≥ α1

∑
t∈[T ]

∆t
j −

(
(α2

2 + (α2 − α1)) + δα2

)
· 2T ,

where the final inequality comes from the fact that |∆t
j | ≤ 2 and the assumption that δ ≤ 1. Thus

using the definition ∆t
j = µt

j − ⟨qt,µt⟩, we can rearrange to write

α1

∑
t∈[T ]

(
µt
j − ⟨qt,µt⟩

)
≤ 3 log

(
1/q0j

)
+ 2(α2

2 + (α2 − α1) + δα2) · T .

Finally, observe for each t ∈ [T ] that ⟨qt,µt⟩ = ⟨qt,E[gt]⟩ = Eqt [⟨qt,gt⟩] , and recall also by
assumption that q0j ≥ ρ > 0, for every j, with probability at least 1− γ. Thus we find

∑
t∈[T ]

µt
j −

∑
t∈[T ]

Eqt [⟨qt,gt⟩] ≤ 3 log(1/ρ)

α1
+ 2

(
α2
2

α1
+

α2 − α1

α1
+

δα2

α1

)
· T ,

17



DECENTRALIZED LEARNING DYNAMICS IN THE GOSSIP MODEL

which concludes the proof.

Appendix D. Details on (α, δ, L) Parameters for Local Dynamics

In this section, we derive estimates of the parameter values α1, α2, δ, and L for our local dynamics
β-softmax-compare and β-sigmoid-adopt that are needed to satisfy Assumption 2. Recall that this
assumption says the following:

Assumption 2 Let F = {Fj} be a family of potential functions satisfying the zero-sum condition
from Definition 2.1, and let {gt} be a sequence of rewards. Then we assume there exist constants
0 < α1 ≤ α2 < 1/4, δ ∈ [0, 1], and L > 0 such that for all j and gt:

(i) for all q ∈ ∆m: α1
3

∣∣µt
j − ⟨q,µt⟩ − δ

∣∣ ≤
∣∣Eq

[
Fj(q,g

t)
]∣∣ ≤ α2

3

∣∣µt
j − ⟨q,µt⟩+ δ

∣∣
(ii) for all p,q ∈ ∆m: |Fj(q,g

t)− Fj(p,g
t)| ≤ L · ∥p− q∥1 .

We derive such satisfying constants for β-softmax-compare and β-sigmoid-adopt in Sections D.1
and D.2 respectively.

D.1. Parameters for β-softmax-compare

Recall β-softmax-compare (Local Protocol 2) is the instatiation of the comparison dynamics where
h is the following exponential function:

hβ(g) = exp(β · g) for all g ∈ R,

for some β ∈ (0, 1]. Then for each j ∈ [m], we can define (for a given β):

Fj(q,g) :=
∑
k∈[m]

qk ·

(
eβgj − eβgk

eβgj + eβgk

)
. (12)

We will now develop the proof of the following lemma, which gives parameter values that are
sufficient for satisfying Assumption 2.

Lemma D.1 Let F = {Fj}j∈[m] be the zero-sum family induced by the β-softmax-compare proto-
col. Then for a reward sequence {gt} with each gt ∈ [−σ, σ]m, the family F satisfies Assumption 2
with parameters α1 = α2 =

3
2β, δ = 4βσ, and L = 2, for any 0 < β ≤ 1/(4σ).

To start, we will first develop the proof the the following lemma, which gives the α1, α2, and
δ estimates for β-softmax-compare. Note that throughout, the function Fj refers specfically to the
one induced by the β-softmax-compare dynamics from expression (12).

Lemma D.2 For any q ∈ ∆m and g ∈ [−σ, σ]m, where E[g] = µ and σ ∈ [1, 10], it holds for all
β ∈ (0, 14 ] that

β

2
·
∣∣µj − ⟨q,µ⟩ − 4βσ

∣∣ ≤
∣∣Eq

[
Fj(q,g)

]∣∣ ≤ β

2
·
∣∣µj − ⟨q,µ⟩+ 4βσ

∣∣ .
18
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Note that in the above, and as mentioned in the problem setting from Section 1, we assume
σ ∈ [1, 10] for simplicity (and given that the means µ are all bounded in [−1, 1]). Our technique
yields similar bounds for larger σ at the expense of worse constants, and we omit the details.

The key step in proving Lemma D.2 is to first derive almost sure bounds on each term in Fj .
Specifically, we first prove the following proposition, which “linearizes” the exponential differences.

Proposition D.3 For any β ≤ 1
4 and for all gj , gk ∈ [−10, 10]:

(1
2
− 2β

)
β · |gj − gk| ≤

∣∣∣∣∣eβgj − eβgk

eβgj + eβgk

∣∣∣∣∣ ≤ 1

2
β · |gj − gk| .

In the proof, we leverage concavity (and convexity) properties of the exponential differences to
derive linear approximations that have the appropriate upper or lower bound property.
Proof We begin by proving the upper bound (right hand inequality). For readability, let x = gj ,
y = gk, and define

Φ(x, y) :=
eβx − eβy

eβx + eβy

Our goal is to show that |Φ(x, y)| ≤ 1
2β|x − y|, and by symmetry, it suffices to prove Φ(x, y) ≤

1
2β(x− y) for all x ≥ y when x ∈ [−10, 10].

Fixing y, we reduce this task to a one-dimensional argument in x. Differentiating, we find

∂Φ

∂x
=

2βeβ(x+y)

(eβx + eβy)2
and

∂2Φ

∂x2
=

−2β2eβ(x+y)(eβx − eβy)

(eβx + eβy)3
.

Now observe that for x ≥ y, this second derivative is always non-positive, meaning that Φ(x, y) is
concave as a function of x. Then by concavity, the tangent line (with respect to x) through x = y
is an upper bound on Φ for all x ≥ y. To define this tangent line, we can evaluate ∂Φ/∂x at
x = y, which gives a slope of β/2. Passing the line through the point (y,Φ(y, y)) = (y, 0) gives an
intercept at −(β/2)y. Together, this implies the line β

2 (x− y) is an upper bound on Φ(x, y) for all
x ≥ y. Since this bound holds uniformly for any fixed y, it holds in general for all pairs x ≥ y.

We now prove the lower bound (left hand inequality) from the lemma statement. For this, we
start with the case when Φ(x, y) ≥ 0 (meaning x ≥ y) and again fix some y ∈ [−10, 10]. Then
recall from the proof of the right hand inequality above that Φ(x, y) is concave with respect to x
in this domain. Thus when x ≥ y, it follows by concavity that any secant line (with respect to x)
passing through (y, 0) and (z,Φ(z, y)) (for z ≥ y) is a lower bound on Φ.

Now consider the line f(x, y) = ((1/2)−2β)·β(x−y), which is one such secant through (y, 0).
To show that f(x, y) is a lower bound on Φ(x, y) when −10 ≤ y ≤ x ≤ 10, it suffices to show
that Φ(10, y) ≥ f(10, y) for any β ≥ 0, as this would imply (by concavity) that the intersection of
f(x, y) and Φ(x, y) occurs at some x ≥ 10. For this, we can take the difference

Φ(10, y)− f(10, y) =
eβ·10 − eβy

eβ·10 + eβy
−
(
1
2 − 2β

)
· β(10− y)

and differentiate with respect to β to find that for any −10 ≤ y ≤ x, this difference is increasing for
all 0 ≤ β ≤ 1/4. Moreover, we observe that for all y, setting β = 0 yields Φ(10, y)−f(10, y) = 0.

19



DECENTRALIZED LEARNING DYNAMICS IN THE GOSSIP MODEL

Together, this implies that the difference is non-negative for all −10 ≤ y ≤ x ≤ 10 and 0 ≤ β ≤
1/4, and the bound holds uniformly over all such x and y.

Now in the case that Φ(x, y) is negative (meaning x < y), our goal is to show Φ(x, y) ≤
((1/2)− 2β) · β(y− x). This can be accomplished by an identical argument as in the non-negative
case, but instead leveraging the convexity (rather than concavity) of Φ(x, y) with respect to x in
the domain x < y. We thus omit these repeated steps. Combining both cases, we conclude that
|Φ(x, y)| ≥

(
1
2 − 2β

)
· β · |x− y| for all x, y ∈ [−10, 10].

Using the bounds in Proposition D.3, we can now prove Lemma D.2.

Proof (of Lemma D.2) We begin with the upper bound (right-hand side inequality). For this, fix
q ∈ ∆m, g ∈ [−σ, σ]m, j ∈ [m], and β ≤ 1/4, and again define

Φ(x, y) :=
eβx − eβy

eβx + eβy
.

To start, assume Fj(q,g) ≥ 0 and define the sets

C+ = {k ∈ [m] : Φ(gj , gk) ≥ 0}
C− = {k ∈ [m] : Φ(gj , gk) < 0} .

Then we can write

Fj(q,g) =
∑
k∈[m]

qk · Φ(gj , gk) =
∑
k∈C+

qk · Φ(gj , gk)−
∑
k∈C−

qk · Φ(gk, gj) .

Now recall by definition that for any x, y ∈ R, Φ ≥ 0 iff x ≥ y. Then using the bounds on Φ from
Proposition D.3 (which hold for |gj |, |gk| ≤ σ ≤ 10), observe that

Φ(gj , gk) ≤ β
2 (gj − gk) for k ∈ C+

and Φ(gk, gj) ≥ β
2 (1− 4β)(gk − gj) for k ∈ C− .

It follows that we can bound Fj and rearrange to find

Fj(q,g) ≤
∑
k∈C+

qk · β
2 (gj − gk)−

∑
k∈C−

qk · β
2 (1− 4β)(gk − gj)

= gj

( ∑
k∈C+

qk
β
2 +

∑
k∈C−

qk
β
2 (1− 4β)

)
−
( ∑

k∈C+

qkgk · β
2 +

∑
k∈C−

qkgk
β
2 (1− 4β)

)
≤ β

2 · gj − β
2 (1− 4β) · ⟨q,g⟩ ,

where in the final inequality we use the fact that 1 − 4β ≤ 1. Then simplifying further and using
Hölder’s inequality gives

Fj(q,g) ≤ β

2
·
(
gj − ⟨q,g⟩+ 4β · ∥g∥∞

)
,

which holds (almost surely) for g ∈ [−σ, σ]m for σ ∈ [1, 10]. Then taking expectation conditioned
on q, we conclude

Eq

[
Fj(q,g)

]
≤ β

2
·
(
µj − ⟨q,µ⟩+ 4βσ

)
.
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In the case where Fj(q,g) is negative, we can apply the same argument to −Fj(q,g), which then
proves the right-hand (upper bound) inequality of the lemma statement.

To prove the left-hand (lower bound) inequality of the lemma, a similar strategy as above will
find (almost surely) that

Fj(q,g) ≥ β

2
·
(
gj − ⟨q,g⟩ − 4β · |gj |

)
when Fj(q,g) ≥ 0

and Fj(q,g) ≤ −β

2
·
(
gj − ⟨q,g⟩ − 4β · |gj |

)
when Fj(q,g) < 0 ,

for all j ∈ [m] under the assumptions on g and β from the lemma statement. Then taking expecta-
tion conditioned on q and noting that all |gj | ≤ σ yields the desired left-hand bound.

With Proposition D.2 in hand, we can now prove Lemma D.1:
Proof [Proof (of Lemma D.1)] Let F = {Fj}j∈[m] be the family induced by the β-softmax-compare
dynamics, where each Fj is as defined in expression (12). Then using Lemma D.2, we can factor
out a 3 to find that condition (i) of Assumption 2 is satisfied with α1 = α2 = (3/2)β, and δ = 4σβ.
We assume that β ≤ 1/6 and β ≤ 1/(4σ), which ensures that both α1 = α2 ≤ 1/4, and that δ ≤ 1.

For part (ii) of the assumption, observe that the range of each exponential difference, as defined
in expression (12), is bounded in [−2, 2], and thus |Fj(q,g) − Fj(p,g)| ≤ 2∥q − p∥1 for any
q,p ∈ ∆m and each j ∈ [m]. Thus setting L = 2 allows the assumption to be satisfied.

D.2. Parameters for β-sigmoid-adopt

Recall that β-sigmoid-adopt (Local Protocol 1) is the instantiation of an adoption dynamics with
the following sigmoid adoption function fβ(g) = 1

1+exp(−β·g) , where β ∈ (0, 1]. Then for each
j ∈ [m], we have from Proposition A.1 that

Fj(q,g) :=
∑
k∈[m]

qk ·
(

1

1 + e−β·gj
− 1

1 + e−β·gk

)
. (13)

Then the following lemma establishes the parameter values under which β-sigmoid-adopt sat-
isfies Assumption 2.

Lemma D.4 Let F = {Fj}j∈[m] be the zero-sum family induced by the β-sigmoid-adopt protocol.
Then for a reward sequence {gt} with each gt ∈ [−σ, σ]m, the family F satisfies Assumption 2 with
parameters α1 = α2 :=

3
4β, δ := 4βσ, and L := 2, for any β ≤ min{ 1

4σ ,
1
3}.

We start by deriving the parameters α1, α2 and δ. For this, in the following proposition, we
establish (almost surely) two-sided bounds on the sigmoid function that are linear in gj (analogous
to the linear bounds on the softmax differences from Proposition D.3).

Proposition D.5 For any β ∈ (0, 14 ]:

1
2 +

(
β
4 − β2

)
· x ≤ 1

1 + e−β·x ≤ 1
2 + β

4 · x for x ∈ [0, 10]

1
2 +

(
β
4 − β2

)
· x ≥ 1

1 + e−β·x ≥ 1
2 + β

4 · x for x ∈ [−10, 0) .
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Proof The proof technique is similar to that of Proposition D.3. We will verify the bounds for
x ∈ [0, 10] as the bounds for x ∈ [−10, 0) will follow by symmetry.

Thus consider x ∈ [0, 10]. For the upper bound, it suffices to show that

1
2 + β

4x− 1

1 + e−βx
≥ 0

for all β ∈ (0, 14 ]. Observe that the difference is exactly 0 when β = 0, and by differentiating with
respect to β, one can verify that the difference is increasing for β ≤ 1

4 when x ≥ 0. This establishes
the upper bound.

For the lower bound, we apply the same reasoning to the difference

1

1 + e−βx
− 1

2 − β
4x+ β2x ≥ 0

for all β ∈ (0, 14 ], when 0 ≤ x ≤ 10. Again observe that the difference is 0 when β = 0, and we can
differentiate with respect to β to find that the difference is increasing for all β ≤ 1

4 when x ≤ 10.

Using Proposition D.5, we can then state the following inequalities with respect to |Eq[Fj(q,g)]|:

Lemma D.6 Consider the family F = {Fj}j∈[m], where each Fj is defined as in expression (13)
with parameter β. Then for any q ∈ ∆m and g ∈ [−σ, σ]m, where E[g] = µ and σ ∈ [1, 10], it
holds for all β ∈ (0, 14 ] that

β

4
·
∣∣µj − ⟨q,µ⟩ − 4βσ| ≤

∣∣Eq

[
Fj(q,g)

]∣∣ ≤ β

4
·
∣∣µj − ⟨q,µ⟩+ 4βσ| .

The key step in the proof is to observe that for fixed β any −σ ≤ gj ≤ gk ≤ σ:

1

1 + e−βgj
− 1

1 + e−βgk
≤ β

4
(gj − gk) + β2σ

and
1

1 + e−βgj
− 1

1 + e−βgk
≥ β

4
(gj − gk)− β2σ ,

which follows (almost surely) from Proposition D.5. From here, we use an identical strategy as in
Lemma D.2 to account for the positive and negative terms in the summation in Fj , and then take
conditional expectations to derive the final bounds. As the remainder of the proof follows identically
to that of Lemma D.2, we omit these details.

Proof of Lemma D.4 With Lemma D.6 in hand, the proof of Lemma D.4 follows identically to
that of Lemma D.1: First, we use the inequalities of Lemma D.6 and factor out a 3 to establish
the α1 = α2 and δ parameters. Then, we again use the observation that the range of each sigmoid
difference is bounded in [−2, 2], and thus setting L = 2 suffices to satify condition (ii) of the
assumption.

Appendix E. Details on Coupling Error Anlaysis

In this appendix, we develop the proof of Lemma B.3 (restated below) which bounds the error on
the coupling from Definition 2.2:
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Lemma B.3 Consider the sequences {pt}, {p̂t}, and {qt} from Definition 2.2 with a reward se-
quence {gt} and using a family F that satisfies Assumption 2 with parameter L. Let κ := (3 + L),
and assume n ≥ 3c log n for some c ≥ 1. Then for any T ≥ 1:

∑
t∈[T ]

E∥qt+1 − pt+1∥1 ≤ Õ

(
m · κT√

n
+

m · T
nc

)
.

We start by sketching an overview of the argument. First, recall by the law of iterated expecta-
tion that for each t ∈ [T ]:

E∥qt+1 − pt+1∥1 = E
[
Et∥qt+1 − pt+1∥1

]
.

Then by the triangle inequality and linearity of expectation, it follows that∑
t∈[T ]

E∥qt+1 − pt+1∥1 ≤ E
[ ∑

t∈[T ]

Et∥qt+1 − p̂t+1∥1 + Et∥p̂t+1 − pt+1∥1
]

= E
[ ∑

t∈[T ]

Et∥qt+1 − p̂t+1∥1 + ∥p̂t+1 − pt+1∥1
]
. (14)

Here, the final equality is due to the fact that both p̂t+1 and pt+1 are functions of {pt} and {gt},
which means Et∥p̂t+1 − pt+1∥1 = ∥p̂t+1 − pt+1∥1 for each t.

Thus in expression (14), we have decomposed the error (in conditional expectation) at each
round t as the sum of the distances between qt and p̂t and p̂t and pt. For the former, recall that
qt and p̂t are related under the randomness of gt and the same zero-sum family F = {Fj}j∈[m].
Thus if qt−1 and pt−1 are close, we intuitively expect qt and p̂t to also be close. For the latter,
oberseve that this distance is simply the deviation of pt from its (conditional) mean p̂t, which
can be controlled using a Chernoff bound. We make this intuition precise via the following two
propositions:

Proposition E.1 For every t ≥ 1: Et

∥∥p̂t+1 − qt+1
∥∥
1
≤ (2 + L) · Et−1

∥∥pt − qt
∥∥
1
.

Proposition E.2 For any c ≥ 1 and n ≥ 3c log n, it holds for every t ∈ [T ] simultaneously that

∥∥pt − p̂t
∥∥
1
≤ m ·

√
3c log n

n

with probability at least 1− 2mT
nc .

Granting both propositions true for now, we can then prove the main lemma:
Proof (of Lemma B.3) Fix c ≥ 1 and assume n ≥ 3c log n. By substituting the bound of Proposi-
tion E.2 into expression (14), we find that

Et∥qt+1 − pt+1∥1 ≤ Et

∥∥qt+1 − p̂t+1
∥∥
1
+
∥∥p̂t+1 − pt+1

∥∥
1

≤ Et

∥∥qt+1 − p̂t+1
∥∥
1
+

m
√
3c log n√
n

(15)
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for all t ∈ [T ] simultaneously with probability at least 1 − 2(T+1)
nc . Then substituting the bound of

Proposition E.1 into expression (15), for each t we find∑
t∈[T ]

Et∥qt+1 − pt+1∥1 ≤ (2 + L) · Et−1∥qt − pt∥1 +
m
√
3c log n√
n

simultaneously with probability at least 1 − 2(T+1)
nc . Now recall by definition that p0 = q0, which

implies E0[q
1] = E0[p̂

1]. Then unrolling the recurrence yields

Et∥qt+1 − pt+1∥1 ≤ (3 + L)t · m
√
3c log n√
n

for each t ∈ [T ], again with probability at least 1 − 2(T+1)
nc . Reindexing and summing over all t

yields with probability at least 1− 2T
nc :∑

t∈[T ]

Et−1∥qt − pt∥1 ≤
∑
t∈[T ]

(3 + L)t−1 · m
√
3c log n√
n

≤ (3 + L)T · m
√
3c log n√
n

.

Finally, taking expectations, we conclude∑
t∈[T ]

E∥qt − pt∥1 ≤ (3 + L)T · m
√
3c log n√
n

+
2mT

nc
.

Hiding the leading constants and logarithmic dependence on n in the Õ(·) expression completes the
proof of the lemma.

It now remains to prove Propositions E.1 and E.2, which we do in the following subsections.

E.1. Proof of Proposition E.1

For convenience, we restate the proposition:

Proposition E.1 For every t ≥ 1: Et

∥∥p̂t+1 − qt+1
∥∥
1
≤ (2 + L) · Et−1

∥∥pt − qt
∥∥
1
.

Proof Recall by definition that

qt+1
j = qtj ·

(
1 + Fj(q

t,gt)
)

and p̂t+1
j = ptj ·

(
1 + Fj(p

t,gt)
)

for all j ∈ [m]. For readability we will write p̂′,p′,q′ for p̂t+1, pt+1, qt+1, and p, q, g for pt, qt,
gt, respectively. It follows that

Et

∥∥p̂′ − q′∥∥
1
=

∑
j∈[m]

Et

∣∣pj − qj + pj · Fj(p,g)− qj · Fj(q,g)
∣∣

≤
∑
j∈[m]

Et|pj − qj |+ Et|(pj − qj) · Fj(p,g)|+ Et|qj · (Fj(p,g)− Fj(q,g))|

≤ Et∥p− q∥1 +
∑
j∈[m]

Et|pj − qj |+ qj
(
L · Et∥p− q∥1

)
= (2 + L) · Et∥p− q∥1 .
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Here, the first line follows from two applications of the triangle inequality, and the second line
comes from applying the boundedness and L-Lipschitz property of each Fj from Definition 2.1 and
part (ii) of Assumption 2.

Finally, because pt = p and qt = q are functions only of {pt−1} and {gt−1}, it follows that
Et∥p− q∥1 = Et−1∥p− q∥. Thus we conclude that Et∥p̂′ − q′∥1 ≤ (2 + L) · Et−1∥p− q∥1.

E.2. Proof of Proposition E.2

For convenience, we restate the proposition:

Proposition E.2 For any c ≥ 1 and n ≥ 3c log n, it holds for every t ∈ [T ] simultaneously that

∥∥pt − p̂t
∥∥
1
≤ m ·

√
3c log n

n

with probability at least 1− 2mT
nc .

Proof Using a standard multiplicative Chernoff bound [24, Corollary 4.6], we have for each j ∈ [m]
and t ∈ [T ] that

Pt−1

( ∣∣∣ ptj − Et−1[p
t
j ]
∣∣∣ ≥ Et−1[p

t
j ] · δ

)
≤ 2 · exp

(
− n

3
· Et−1[p

t
j ] · δ2

)
,

for any 0 < δ ≤ 1. Fix c ≥ 1, and consider the case when
√

3c logn
n ≤ Et−1[p

t
j ] ≤ 1. Then setting

δ = 1
Et−1[ptj ]

·
√

3c logn
n ≤ 1 implies

Pt−1

( ∣∣∣ ptj − Et−1[p
t
j ]
∣∣∣ ≥√3c logn

n

)
≤ 2 · exp

(
−c logn
Et−1[ptj ]

)
≤ 2

nc
.

On the other hand, when 0 ≤ Et−1[p
t
j ] <

√
3c logn

n , setting δ = 1 implies

Pt−1

( ∣∣∣ ptj − Et−1[p
t
j ]
∣∣∣ ≥√3c logn

n

)
≤ 2 · exp

(
− 1

3 ·
√

3cn log n
)

≤ 2

nc
,

where the final inequality holds for all n ≥ 3c log n.
Summing over all m coordinates, T rounds, and taking a union bound concludes the proof.

Appendix F. Details on Instantiated Regret Bounds

In this section, we provide details on the instantiated regret bounds from Section 2.3. Specifi-
cally, we develop the proof of Theorem 2.3 (restated below), which gives a regret bound for the
β-softmax-compare and β-sigmoid-adopt dynamics:
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Theorem 2.3 Consider the sequence {pt} induced by running the β-softmax-compare or β-sigmoid-adopt
protocol on an (adversarial) reward sequence {gt} intialized from p0 = 1/m. Then for any c ≥ 1
and n ≥ 3c log n, and assuming that T ≤ (12 − ϵ) log5 n = O

(
log
(

n
m2 logn

))
for some ϵ ∈ (0, 12),

setting β:=
√

(logm)/T yields average regret of:

1

T
·R(T ) ≤ O

(√
logm

T

)
+ Õ

(
σm

nϵ
+

σm

nc

)
.

To develop the proof of the theorem, we start by establishing a general T -step regret that stems
from the framework introduced in Section 2.2. We then derive a bound on the worst-case mass
decay of any arm, which establishes a bound on the time horizon T for which sub-linear regret
bounds in this adversarial setting can be obtained.

F.1. General T -step Regret Bound

First, recall from Section 2.2 that for a sequence {pt} as defined in the coupling of Definition 2.2,
we can use the zero-sum MWU regret bound of Theorem B.2 and the coupling error bound of
Lemma B.3 to derive an overall T -round regret bound. We state this bound more formally, which
leverages the fact (expression (6) and Proposition B.1) that R(T ) ≤ R̂(T ):

Proposition F.1 Consider the sequence {pt} as defined in the coupling of Definition 2.2 and using
a family F that satisfies Assumption 2 with parameters α1, α2, and δ. Moreover, assume that α =
α2 = α, and that δ = O(α), and that the reward sequence {gt} is such that each gt ∈ [−σ, σ]m.
Then intialized from p0 = 1/m, for any T ≥ 1:

R(T ) ≤ O

(
logm

α
+ αT

)
+ Õ

(
σmκT√

n
+

σmT

nc

)
.

The proof of the proposition follows directly from applying the zero-sum MWU regret bound
of Theorem B.2 and the coupling error bound of Lemma B.3 to expression (6). We also make the
following remarks:

Remark F.2 In the statement of the proposition, the dependence on σ comes from the regret de-
composition in expression (6), and that the Õ(·) notation hides only a

√
log n in the first term, and

a
√
logm dependence in the second term, both of which we assume are dominated by their respec-

tive denominators. Additionally, while we assume the (α, δ) parameters of F have certain “nice”
properties (which are satisfied by the corresponding families induced by our local dynamics), one
can derive similar T -round regret bounds using this framework for any zero-sum family F , but with
different (larger) dependencies on α1, α2, and δ. Thus given some family F , if one can establish
tighter two-sided bounds on the magnitude of each Eq[Fj(q,g)] with respect to µj − ⟨q,µ⟩ (i.e.,
showing α2 − α1 = 0 and that δ is small), then tighter regret bounds can be obtained.

Remark F.3 (Applying the Bound to j’th Arm Regret) We remark that the T -round regret bound
in Proposition F.1 (as well as the zero-sum MWU regret bound of Theorem B.2) can also be stated
more generally with respect to any arm j that initially satisfies the requisite mass lower bound con-
straint (i.e., ptj ≥ 1/ρ). To see this, observe that the only dependence on j in the decomposition of
R̂(T ) (i.e., from Proposition B.1) comes from the zero-sum MWU bound on {qt}, which requires a
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lower bound ρ on the initial mass q0j . Thus if ρ is a (probabilistic) uniform lower bound on the mass
of every coordinate j at round 0, then it follows that the bound in Proposition F.1 also applies more
generally to the “j’th-arm regret” of

∑
t∈[T ] µ

t
j −

∑
t∈[T ] E[⟨pt,gt⟩].

F.2. Worst Case Mass Decay for any Arm

As mentioned in Section 2.3, in this adversarial reward setting, we require establishing how quickly
the adoption mass of any arm can decay. This translates into a constraint on how large (with high
probability) the number of rounds T can grow while still ensuring that every arm has at least 1/n
adoption mass at every round. Thus we start by bounding this worst-case mass decay in the adver-
sarial reward setting.

For this, note that when we have no additional assumptions about how the reward sequence is
generated, we can only make a very pessimistic estimate about the size of the adoption mass of
any arm j. In particular, even for the arm c maximizing maxj∈[m]

∑
t∈[T ] µ

t
j , the weight pt+1

c can
be maximally decreasing with respect to ptc at any given round. Thus in the following lemma, we
quantify this worst-case decay at any coordinate after t iterations.

Proposition F.4 Consider the trajectory {pt} from Definition 2.2 with an arbitrary reward se-
quence {gt} running with a family F = {Fj}j∈[m] that satisfies Assumption 2 with parameters
α1, α2, and δ. Then for any t ≥ 1 and c ≥ 1 it holds for any j ∈ [m] that

pt+1
j ≥ p0j ·

(
3

4

)t

− 4

3

√
3c log n

n
t

with probability at least 1− 2t
nc when n ≥ 3c log n.

Proof Fix j ∈ [m]. To start, we use the update rule of Et[p
t+1
j ] and take expectation with respect to

gt to write

Ept [pt+1
j ] = ptj ·

(
1 + Et

p

[
Fj(p

t,gt)
])

≥ ptj ·
(
1− α2

3

∣∣µt
j − ⟨p,µ⟩+ δ

∣∣) ,

where the inequality follows from the (worst-case) assumption that Et
p[Fj(p

t,gt)] < 0 and applying
the bound from Assumption 2. Now under the assumptions that |µt

j | ≤ 1 and δ ≤ 1, it follows that
|µt

j − ⟨pt,gt⟩ + δ| ≤ 3 for any pt and gt. Together with the fact that α2 ≤ 1
4 by assumption, we

can write
Ept [pt+1

j ] ≥ ptj ·
(
1− α2

)
≥ 3

4
· ptj ,

and by a Chernoff bound argument (i.e., applying the argument of Proposition E.2 at a single coor-
dinate), we find that

pt+1
j ≥ 3

4
· ptj −

√
3c log n

n

with probability at least 1− 2
nc for any c ≥ 1 when n ≥ 3c log n. Then starting from the vector p0

at round t = 0, we can repeat this argument t times to find

pt+1
j ≥ p0j ·

(
3

4

)t

−
√

3c log n

n
·

(∑
i∈[t]

(
3

4

)i−1
)

≥ p0j ·
(
3

4

)t

− 4

3

√
3c log n

n
,
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with probability at least 1− 2t
nc , where the second inequality follows by underestimating the negative

term by an infinite geometric series.

Using this worst-case decay, we can derive a (pessismistic) upper bound on the number of
rounds T for which, with high probability, pTj ≥ 1

n (i.e., at least one node adopts every arm):

Proposition F.5 Consider the trajectory {pt} from Definition 2.2 with an arbitrary reward se-
quence {gt} running with a family F = {Fj}j∈[m] that satisfies Assumption 2 with parameters

α1, α2, and δ. Assume that p0 = 1
m1 with probability 1. Then for any T ≤ log

(
3n

64cm2 logn

)
, it

holds for every j ∈ [m] and t ∈ [T ] that pt+1
j ≥ 1

n with probability at least 1− 2tm
nc , for any c ≥ 1

and n ≥ 3c log n.

Proof Using Proposition F.4, we have for any j ∈ [m] that

pt+1
j ≥ 1

m
·
(
3

4

)t

− 4

3

√
3c log n

n
. (16)

Now suppose that we have t, n, and m satisfying

4

3

√
3c log n

n
≤ 1

m
·
(
3

4

)t

. (17)

Then it follows from expression (16) that pt+1
j ≥ 1

n with probability at least 1 − 2t
nc as long as

t ≤ log
(

n
2m

)
/ log(4/3) =: Ta. Now checking the constraint induced by (17), we find that

t ≤ log

(
3n

64cm2 log n

)
=: Tb

is sufficient to ensure this inequality holds. Thus observing that Tb ≤ Ta for all n,m, c ≥ 1, it
follows that constraining t ≤ Tb is sufficient to ensure that pt+1

j ≥ 1
n with probability at least

1− (2t/nc). Taking a union bound over all m coordinates yields the statement of the lemma.

F.3. Deriving the Final Regret Bound

Now using the time horizon constraint from Proposition F.5, we can prove Theorem 2.3. For
this, we note that following analysis tradeoff: on the one hand, Proposition F.5 establishes a uni-
form lower bound of 1/n on every arm j so long as the constraint on T is satisfied. In partic-
ular, we specify that T ≤ (12 − ϵ) logκ n, where ϵ ∈ (0, 12) is a tunable parameter satisfying
(12 − ϵ) logκ n = O(log

(
n/(m2 log n)

)
) (i.e., the constraint from Proposition F.5). Thus in the

proof of Theorem 2.3, we simply apply the T -step regret bound of Proposition F.1 using this con-
straint on T , and we then tune the free parameter of our protocols accordingly:

Proof (of Theorem 2.3) We use the T round regret bound from Proposition F.1. First, recall by
Lemmas D.1 and D.4 that the family F induced by these protocols each satisfy Assumption 2 with
the following parameters:

- For β-softmax-compare, α1 = α2 =
3
2β, δ = 4βσ, and L = 2.
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- For β-sigmoid-adopt, α1 = α2 =
3
4β, δ = 4βσ, and L = 2.

Thus the parameters associated with each protocol satisfy Assumption 2 with parameters α1 =
α2 = O(β), δ = O(β), and L = 2. Thus applying the bound from Lemma F.1 with α = O(β) and
dividing by T shows that

1

T
·R(T ) ≤ O

(
logm

T · β
+ β

)
+ Õ

(
σmκT

T
√
n

+
σm

nc

)
≤ O

(
logm

T · β
+ β

)
+ Õ

(
σm

nϵ
+

σm

nc

)
.

Here, the final line comes from the assumption that T ≤ ((1/2) − ϵ) logκ n for some ϵ ∈ (0, 12)

and for κ = 3 + L = 5, and thus κT /(T
√
n) ≤ O(1/nϵ). Finally setting β :=

√
(logm)/T and

simplifying the first term yields

1

T
·R(T ) ≤ O

(√
logm

T

)
+ Õ

(
σm

nϵ
+

σm

nc

)
,

which concludes the proof.

Appendix G. Details on Convex Optimization Application

Here, we develop the proof of Theorem 2.4, which gives an error rate on the regret obtained using
our comparison and adoption dynamics to approximately optimize a convex function f : ∆m →
R when the reward sequence {gt} is generated using a stochastic gradient oracle as specified in
Assumption 1. For convenience, we restate the theorem here:

Theorem 2.4 Given a convex function f : ∆m → R, consider the sequence {pt} induced by
running the β-softmax-compare or β-sigmoid-adopt protocol on a reward sequence {gt} generated
as in Assumption 1 with gradient bound G. Then for any c ≥ 1 and n ≥ 3c log n, assume that
T ≤ (12 − ϵ) log5 n = O

(
log
(

n
m2 logn

))
for some ϵ ∈ (0, 12), and set β:=

√
(logm)/T . Let

p̃ := 1
T

∑
t∈[T ] p

t denote the average arm distribution over T rounds. Then:

E[f(p̃)]− min
p∈∆m

f(p) ≤ O

(√
G2 logm

T

)
+ Õ

(
G ·
(
σm

nϵ
+

σm

nc

))
.

First, we note that this error rate is equivalent to our regret bound from the adversarial setting
up to the factor G, which is a standard dependence. Note also that the optimization error is defined
implicitly: the function f is being minimized with respect to the distribution pt induced by the local
dynamics. This is contrast to other settings of gossip-based, decentralized optimization (e.g., [16,
26, 32]), where each node i ∈ [n] has first-order gradient access to an individual local function fi,
and the population seeks to perform empirical risk minimization over the n functions.

Now in order to prove the theorem, we first require relating the regret of the trajectory {pt} to
the expected primal gap E[f(pt) − f(p⋆)] where p⋆ ∈ ∆m is a function minimizer of f . For this,
we give the following lemma, which follows similarly to that of Arora et al. [3, Theorem 3.11], but
is adapted to handle stochastic rewards.
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Lemma G.1 Let {pt} be a sequence of distributions, and let {gt} be a sequence of rewards gen-
erated as in Assumption 1 with respect to a convex function f and gradient bound G. Then for any
T ≥ 1, letting p̂ := 1

T

∑
t∈[T ] p

t and p⋆ := arg maxp∈∆m
f(p):

E[f(p̃)]− f(p⋆) ≤ G
∑
j∈[m]

p⋆j ·
( ∑

t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨pt,gt⟩]
)
.

Proof First, recall by the first-order definition of of convexity that for any pt ∈ ∆m:

f(p⋆) ≥ f(pt) +
〈
∇f(pt),p⋆ − pt

〉
.

Rearranging and summing over all t gives∑
t∈[T ]

f(pt)− f(p⋆) ≤
∑
t∈[T ]

〈
∇f(pt),pt − p⋆

〉
.

Now taking expectations on both sides, we can write∑
t∈[T ]

E[f(pt)− f(p⋆)] ≤
∑
t∈[T ]

E
[〈
∇f(pt),pt − p⋆

〉]
=
∑
t∈[T ]

E
[
Ept

[〈
∇f(pt),pt − p⋆

〉]]
=
∑
t∈[T ]

E
[〈
Ept [∇f(pt)],pt − p⋆

〉]
,

where we applied the law of iterated expectation. Now recall that under Assumption 1, each reward
gt if of the form: gt = −(∇f(pt)/G)+bt, where bt is a zero-mean random vector. Thus for every
t, it follows that Ept [∇f(pt)] = −G · E[gt]. This allows us to further simplify and write∑

t∈[T ]

E[f(pt)− f(p⋆)] ≤
∑
t∈[T ]

−G · E[⟨gt,pt − p⋆]

= G
∑
t∈[T ]

E[⟨p⋆ − pt,gt⟩] = G
∑
t∈[T ]

E[⟨p⋆,gt⟩]−
∑
t∈[T ]

E[⟨pt,gt⟩] .

(18)

Given that p⋆ is fixed, observe for every t that E[⟨p⋆,gt⟩] = ⟨p⋆,µt⟩ =
∑

j∈[m] p
⋆
j · µt

j , and
substituting this back into (18) gives∑

t∈[T ]

E[f(pt)− f(p⋆)] ≤ G
∑
t∈[T ]

( ∑
j∈[m]

p⋆j · µt
j

)
−
∑
t∈[T ]

E[⟨pt,gt⟩]

= G
∑
j∈[m]

p⋆j ·
( ∑

t∈[T ]

µt
j −

∑
t∈[T ]

E[⟨pt,gt⟩]
)
. (19)

Here, the last line follows from the fact that
∑

j∈[m] p
⋆
j = 1 and that E[⟨pt,gt⟩] has no dependence

on j. Now on the other hand, given that f is convex, observe also by Jensen’s inequality that

1

T

∑
t∈[T ]

f(pt) ≥ f

(
1

T

∑
t∈[t]

pt

)
= f(p̃) ,
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which holds given that p̃ is a convex combination of points. Thus taking expectation, we have

E[f(p̃)]− f(p⋆) ≤ 1

T

∑
t∈[T ]

E[f(pt)]− f(p⋆) . (20)

Finally, multiplying expression (19) by 1
T and combining it with expression (20) yields the statement

of the lemma.

Proof of Theorem 2.4

Given the sequence {pt}, observe that Lemma G.1 allows us to upper bound the minimization
error at the point p̃ by a convex combination of the “arm-j regret,” i.e., the quantity

∑
t∈[T ] µ

t
j −∑

t∈[T ] E[⟨pt,gt⟩]. Now recall from the points made in Remark F.3 that if we have an initial uniform
lower bound on the adoption mass ptj at every arm j, then the regret bound from Proposition F.1 can
also be used to bound the quantity

∑
t∈[T ] µ

t
j −

∑
t∈[T ] E[⟨pt,gt⟩] for each j.

Nnote that in the context of Assumption 1, we assume that the reward generation sequence {gt}
is adversarial in the sense that the means µt will vary with time. In general, we can thus make only
pessimistic uniform assumptions about the adoption mass across all coordinates. For this reason, we
require the same set of constraints on T as in Theorem 2.3 for the general, adversarial reward setting
(i.e., T can grow at most logarithmically in n). Then we can similarly apply the regret bound from
Proposition F.1 with T constrained as in Theorem 2.3, and starting from the uniform distribution
p0 = 1/m.

Thus using a similar calculation as in Theorem 2.3, using the arguments above from Remark F.3,
and subject to the constraints on T , we have for each j ∈ [m]:

1

T
·
∑
t∈[T ]

µt
j − E[⟨pt,gt⟩] ≤ O

(√
logm

T

)
+ Õ

(
σm

nϵ
+

σmT

nc

)
.

where {pt} is the sequence induced using the β-softmax-compare or β-sigmoid-adopt protocols
with appropriately tuned β (in particular, the same settings as in Theorem 2.3).

Now because the right hand side of this expression is uniform over all j ∈ [m], taking a convex
combination of this inequality with respect to p⋆, multiplying both sides by G, and applying the
reduction from Lemma G.1 yields the statement of Theorem 2.3.
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