
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Pruning Neural Networks with Velocity-Constrained Optimization

Donghyun Oh DONGHYUNOH@POSTECH.AC.KR
POSTECH

Jinseok Chung JINSEOKCHUNG@POSTECH.AC.KR
POSTECH

Namhoon Lee NAMHOONLEE@POSTECH.AC.KR

POSTECH

Abstract
Pruning has gained prominence as a way to compress over-parameterized neural networks. While
pruning can be understood as solving a sparsity-constrained optimization problem, pruning by di-
rectly solving this problem has been relatively underexplored. In this paper, we propose a method to
prune neural networks using the MJ algorithm, which interprets constrained optimization using the
framework of velocity-constrained optimization. The experimental results show that our method
can prune VGG19 and ResNet32 networks by more than 90% while preserving the high accuracy
of the dense network.

1. Introduction

Pruning a neural network [5, 6, 10] is to remove the parameters of the network while preserving its
performance. In recent years, pruning has gained much attention as a way to efficiently train and
deploy large-scale models by saving memory and computation costs. While pruning can be for-
mulated as an optimization problem with sparsity constraints, directly solving it can cause troubles
in large-scale problems due to difficulties in training a sparse neural network [3] and the discrete
nature of the sparsity constraint.

In this work, we propose an optimization-based method for pruning neural networks. We adopt
the MJ algorithm, which uses the framework of velocity-constrained optimization [13]. Specifically,
it relaxes the traditional constrained optimization problem by allowing the iterates to be infeasible
and considering only the local linear approximations of the possibly non-convex constraints. Our
preliminary results show that we can sparsify neural networks with competitive performance. Re-
sults on CIFAR-10/100 datasets show that the MJ algorithm can prune the neural network by more
than 90% while maintaining high levels of accuracy.

2. Velocity-Constrained Optimization and the MJ Algorithm

Consider the following inequality-constrained optimization problem:

min
x∈C

f(x), C = {x ∈ Rn : g(x) ≥ 0} , (1)

where f : Rn → R is the objective function, and g : Rn → Rng defines the inequality constraints.
The projected gradient method and the Frank-Wolfe method are the two most widely used methods

© D. Oh, J. Chung & N. Lee.

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

for solving (1) and involve solving a quadratic and linear program for each iteration respectively.
If C is non-linear and non-convex, solving linear and quadratic programs on C becomes computa-
tionally intractable. Velocity-constrained optimization views the constraint in terms of velocity or
feasible directions, which is the local approximation of the feasible set, involving only the active
constraints I(x) = {i ∈ {1, . . . , ng} : gi(x) ≤ 0}. Specifically, the constraint for each iteration is
defined by the set Vα defined as follows:

Vα(x) =
{
v ∈ Rn : ∇gi(x)⊤v ≥ −αgi(x) for all i ∈ I(x)

}
(2)

where α is a hyperparameter that balances between converging to a minimum and satisfying the
constraints. If x ∈ C, Vα(x) reduces to the tangent cone of C at x. Even if x is outside C, Vα(x) is
a convex polytope consisting of a small number of active constraints. This simple structure of Vα(x)
makes velocity-constrained optimization more computationally efficient instead of optimizing on a
possibly non-linear and non-convex positional constraint C.

MJ algorithm, named after the authors of Muehlebach and Jordan [13], is a novel algorithm for
solving constrained optimization problems under the framework of velocity-constrained optimiza-
tion. It finds the direction that is closest to the steepest descent direction −∇f(x) in the constraint
set Vα(x). An iteration of the MJ algorithm is given as{

xk+1 = xk + γkvk

vk = argminv∈Vα(xk)
1
2 ∥v +∇f (xk)∥

2
2

(3)

where (γk) is a sequence of step sizes. α > 0, as mentioned above, controls between converging to
a minimum and satisfying feasibility. If α is small, the focus is on converging to a minimum, and if
α is large, the focus is on satisfying the constraints.

Solving the problem in (3) utilizes the fact that strong duality holds for the problem. The dual
problem is given as

λk = argmaxλ∈Dxk
L(xk, λ)−

1

2α
∥∇xk

L(xk, λ)∥22 (4)

whereDxk
= {λ ∈ Rng

+ : λi = 0,∀i /∈ I(xk)} and L(xk, λ) = f(xk)−λ⊤g(xk) is the Lagrangian.
By strong duality, vk and λk are related by the following equation:

vk = −∇xk
L(xk, λk) = −∇f(xk) +∇g(xk)λk. (5)

Therefore an iteration of the MJ algorithm can be rewritten as

xk+1 = xk − γk∇f(xk) + γk∇g(xk)λk. (6)

A striking feature of the MJ algorithm is that it allows iterates to be infeasible. Even if iterates move
outside C, the γk∇g(xk)λk term in (6) acts as a reaction force that pushes the iterates back to C.
Also note that if λk = 0, the MJ algorithm reduces to the standard gradient descent algorithm.

To calculate λk, we solve the dual problem (4) by iteratively finding the solution to the following
stationarity condition:

0 ∈ ∇g(xk)⊤∇g(xk)λk −∇g(xk)⊤∇f (xk) + αg (xk) + ∂ψDxk
(λk) (7)

where ψDwk
is the indicator function of Dwk

. Further details on finding λk using (7) is discussed in
Appendix A.

2

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

3. Problem

The problem of pruning a neural network is given as optimizing both the weight w and the mask m,
where the element of the mask mi is set to 0 if wi is pruned, and 1 if wi is not pruned.

min
w,m
RD(w,m) :=

1

N

N∑
i=1

R(h(xi;w ⊙m), yi) subject to w ∈ Rn, ∥m∥1 ≤ K,m ∈ {0, 1}n

(8)
whereR is the loss function, h(x; θ) is the neural network, n is the number of trainable parameters,
and K is the constraint on the number of remaining parameters of the sparse neural network. Since
problem (8) is combinatorial and we cannot directly apply first-order methods, we relax it into
minimizing the expected loss subject to expected L0 constraints [4, 11, 17].

min
w,s

f(w, s) := Em∼Bern(s)RD(w,m) subject to w ∈ Rn,
n∑

i=1

si ≤ K, s ∈ [0, 1]n (9)

by allowingm to follow a Bernoulli distribution with parameter s: mi ∼ Bern(si). We can calculate
the gradient estimator of ∇f by using the concrete distribution [8, 12] and the reparameterization
trick [9, 14]. The details are explained in Appendix B.

4. Method

The problem (9) can be simplified as

min
w,s

f(w, s) subject to w ∈ Rn, g(s) ≥ 0 (10)

where g : Rn → R2n+1 is defined as below:

g(s) =

(
K −

n∑
i=1

si; s1; · · · ; sn; 1− s1; · · · ; 1− sn

)
. (11)

Now an iteration of the MJ algorithm is given as

sk+1 = sk − γk∇sf(w
k, sk) + γk∇sg(s

k)λk, (12)

wk+1 = wk − γk∇wf(w
k, sk). (13)

Here we used the index of the iterates as wk and sk instead of wk and sk to avoid confusion from
the element si of vector s.

While we train the relaxed probability s, we have to test the model using the mask s. This is
done by sampling from a Bernoulli distribution with probability s.

4.1. Comparison with Previous Works

There are a few works that solve the problem (8) by optimizing both the weights and the mask.
Learning-Compression [1] algorithm divides the optimization into the learning step and the com-
pression step. The learning step optimizes the augmented Lagrangian with respect to the weights,
and the compression step performs projection, subjected to sparsity constraint on the mask.

3

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

Louizos et al. [11] performs unconstrained optimization by replacing the constraint with a regu-
larization term on the loss function. The L0 regularizer is relaxed using the reparameterization trick
with hard concrete distribution. While it was able to prune neural networks in small datasets, its
scalability to large-scale problems was questioned by Gale et al. [3]. Moreover, it required extensive
hyperparameter tuning to achieve the desired sparsity level, which is at odds with the constrained
optimization framework that explicitly sets the sparsity constraint.

ProbMask [17] is the closest work to ours, as it shares the same problem (reparameterized
with concrete distribution, not the hard concrete distribution), and uses a constrained optimization
method for pruning. Specifically, it optimizes the probabilitym with the projected gradient method,
following the observation that solving the projection onto the constraint on m can be efficiently
computed. While ProbMask shows state-of-the-art performance on various datasets, it also relies
on several tricks such as using the gradual pruning schedule [18]. Our work shows that we can
achieve competitive results without such tricks.

Gallego-Posada et al. [4] solves a similar problem, although the problem is reparameterized
using the hard concrete distribution as in Louizos et al. [11]. It finds the optimal weights and mask
by solving the min-max problem on the Lagrangian with the gradient descent-ascent method. In
the process, it adopts an auxiliary variable, the Lagrange multiplier, that is also trained and adopts a
heuristic schedule on the multiplier to achieve good performance. Our work, which can be viewed
as an extension of SGD to constrained problems, uses a simpler algorithm to find sparse neural
networks with competitive performance.

5. Experiment

5.1. Settings

Our experiments follow the settings of Zhou et al. [17], using ProbMask as the baseline. We apply
the MJ algorithm to this setting to explore improvements brought about by our proposed method.
The experiments utilized VGG19 [15] and ResNet32 [7] architectures on the CIFAR-10 and CIFAR-
100 datasets. In the testing phase, we sample a binary mask to evaluate the performance of the
pruned networks. For further details on hyperparameter settings, refer to Appendix C.

5.2. Experiments on CIFAR-10/100

The results for CIFAR-10/100 datasets are shown in Table 1 and Table 2. Across various sparsity
ratios, MJ algorithm performed on par with ProbMask, and had a negligible accuracy decrease
compared to the dense network, even outperforming the dense network on low sparsity levels.

Dataset
Sparsity

CIFAR-10 CIFAR-100
30% 50% 70% 80% 90% 95% 30% 50% 70% 80% 90% 95%

VGG19 93.84 72.56
ProbMask 93.85 93.76 93.51 93.58 93.52 93.3 74.03 73.67 73.29 73.25 72.96 70.35

Ours 93.93 93.92 93.5 93.69 93.35 93.29 73.66 73.69 72.74 73.01 73.0 72.15

Table 1: The test accuracy of VGG19 on ProbMask and the proposed method on the CIFAR-10 and
CIFAR-100 datasets at various levels of sparsity.

4

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

Dataset
Sparsity

CIFAR-10 CIFAR-100
30% 50% 70% 80% 90% 95% 30% 50% 70% 80% 90% 95%

ResNet32 93.84 72.56
ProbMask 94.79 94.39 94.22 94.59 94.37 91.94 74.21 72.73 72.18 72.04 70.74 68.02

Ours 94.91 94.73 94.51 94.2 93.68 93.2 73.9 73.8 73.55 73.06 72.74 71.81

Table 2: The test accuracy of ResNet32 on ProbMask and the proposed method on the CIFAR-10
and CIFAR-100 datasets at various levels of sparsity.

5.3. Limitations

Our proposed method exhibits some limitations:

• Behavior of Probability Parameter: While it is desirable to have the probability parameter
s to have a bimodal distribution with each parameter converging to either 0 or 1, parameters
training by the MJ algorithm do not exactly exhibit this behavior. Some parameters even
become infeasible (smaller than 0 or larger than 1), or have values that are not close to 0 or 1
and we currently lack a method to induce a bimodal distribution for s. For additional details,
see Appendix D.

• Computational Cost: The employment of an iterative method (in our experiments, we used
5 iterations) to determine the solution of Equation (7) incurs a computational cost. However,
finding the optimal number of iterations that balances the tradeoff between computational
efficiency and the accuracy of estimated λk remains to be explored.

6. Conclusion and Future Work

In this work, we proposed applying the MJ algorithm towards pruning a neural network. Exper-
iments showed that a simple first-order method expanding SGD that utilizes the gradient of the
loss and the constraint can prune neural networks with high levels of sparsity while maintaining
accuracy.

While the MJ algorithm showed promising results, there are several unresolved issues, which we
leave for future work. First, this paper only explored global sparsity constraint, but pruning neural
networks with additional conditions such as more fine-grained sparsity conditions or conditions that
are orthogonal to sparsity, can also be solved with the MJ algorithm. Also, as the MJ algorithm can
be seen as the generalization of the SGD algorithm with additional term for satisfying constraints,
we can also consider other training heuristics such as learning rate scheduling, and check how
these affect training neural networks under sparsity constraints. Finally, the MJ algorithm should
be evaluated on large-scale problems such as on ImageNet classification task [2], and fine-tuning or
training large language models.

Acknowledgement

This work was supported by the Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-01906, Artificial
Intelligence Graduate School Program(POSTECH)) and the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (RS-2023-00210466).

5

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

References

[1] Miguel A Carreira-Perpinán and Yerlan Idelbayev. “learning-compression” algorithms for
neural net pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8532–8541, 2018.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[3] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks.
arXiv preprint arXiv:1902.09574, 2019.

[4] Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, and Simon Lacoste-
Julien. Controlled sparsity via constrained optimization or: How i learned to stop tuning
penalties and love constraints. Advances in Neural Information Processing Systems, 35:1253–
1266, 2022.

[5] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. Advances in neural information processing systems, 28, 2015.

[6] Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[8] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations, 2017.

[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[10] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural infor-
mation processing systems, 2, 1989.

[11] Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks
through l 0 regularization. In International Conference on Learning Representations, 2018.

[12] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representa-
tions, 2017.

[13] Michael Muehlebach and Michael I Jordan. On constraints in first-order optimization: A view
from non-smooth dynamical systems. Journal of Machine Learning Research, 23(256):1–47,
2022.

[14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278–1286. PMLR, 2014.

6

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

[15] K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recog-
nition. In 3rd International Conference on Learning Representations (ICLR 2015). Computa-
tional and Biological Learning Society, 2015.

[16] David Young. Iterative methods for solving partial difference equations of elliptic type. Trans-
actions of the American Mathematical Society, 76(1):92–111, 1954.

[17] Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural
networks with global sparsity constraint. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3599–3608, 2021.

[18] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878, 2017.

7

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

Appendix A. Details on Implementing the MJ Algorithm

We will discuss how to find the solution to the following problem:

λk = argmaxλ∈Dxk
L(xk, λ)−

1

2α
∥∇xk

L(xk, λ)∥22 (14)

where Dxk
= {λ ∈ Rng

+ : λi = 0,∀i /∈ I(xk)} and L(xk, λ) = f(xk)− λ⊤g(xk). If we have only
one constraint (ng = 1) then λk is expressed in the following closed form:

λk =

{
∇g(xk)

⊤∇f(xk)−αg(xk)
|∇g(xk)|2

for g(xk) ≤ 0,∇g(xk)⊤∇f(xk)− αg(xk) ≥ 0,

0 otherwise.
(15)

For the general case, finding λk requires solving the stationarity condition:

0 ∈ ∇g(xk)⊤∇g(xk)λk −∇g(xk)⊤∇f (xk) + αg (xk) + ∂ψDxk
(λk) (16)

where ψDwk
is the indicator function of Dwk

. It suffices to calculate non-zero elements of λk
corresponding to active constraints, so we can assume λk ∈ R|I(xk)|

+ . Now, defining Wk =(
∇gi1 (xk) ;∇gi2 (xk) ; · · · ;∇g|I(xk)| (xk)

)
and ḡk =

(
gi1 (xk) ; gi2 (xk) ; · · · ; g|I(xk)| (xk)

)
where

ij ∈ I(xk), the stationarity condition can be written as

0 ∈W⊤
k Wkλk −W⊤

k ∇f(xk) + αḡk + ∂ψDxk
(λk) (17)

Now we use the method of successive over-relaxation [16]. We decompose the matrix W⊤
k Wk into

W⊤
k Wk = U⊤ +D + U =

(
U⊤ + ω−1D

)
+
(
U +

(
1− ω−1D

))
(18)

where U is upper triangular, D is a diagonal matrix with diagonal elements ∥∇gi(xk)∥2 for i ∈
I(xk), and ω ∈ (0, 2) is a relaxation factor of the method of successive over-relaxation. Denote λj

as the estimate of λk at j-th iteration of solving the stationarity condition. Then the iteration step
for solving (17) becomes

0 ∈
(
U⊤ + ω−1D

)
λj+1 + ∂ψDxk

(
λj+1

)
+
(
U + (1− ω−1)D

)
λj −W⊤∇f(xk) + αḡk (19)

which can be rewritten as

λj+1 = proxDxk

(
λj − ωD−1

(
U⊤λj+1 + (D + U)λj −W⊤∇f(x) + αḡk

))
(20)

where proxDxk
: R|I(xk)| → R|I(xk)|

+ is defined as(
proxDxk

(x)
)
i
= max{xi, 0}, i = 1, · · · , |I(xk)|. (21)

In the equation (20), we can show λj → λk as j →∞. Equation (20) can be simplified as

λj+1 = proxDxk

(
λj − ωD−1

(
W⊤

k Wkλ
j −W⊤

k ∇f(xk) + αḡk

))
(22)

which can now be easily implemented. The MJ algorithm can be summarized as the following
Algorithm 1.

8

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

Algorithm 1: Implementation of the MJ Algorithm
Input : objective function f , constraint function g, learning rate η, relaxation factor ω,

initialization x0 ∈ Rn.
Output: approximate optimum to the inequality constrained problem.
while k < MaxIter do

Compute the active set I(xk) = {i : gi (xk) ≤ 0}
Define Wk =

(
∇gi1 (xk) ;∇gi2 (xk) ; · · · ;∇g|Ik| (xk)

)
where ij ∈ I(xk)

Define ḡk =
(
gi1 (xk) ; gi2 (xk) ; · · · ; g|I(xk)| (xk)

)
where ij ∈ I(xk)

while j < MaxProxIter do
λj+1 = prox

R|Ik|+

(
λj − ωD−1

(
W⊤Wλj −W⊤∇f(x) + αḡk

))
j ← j + 1

end
λk = λj

Perform the update xk+1 = xk − η∇f (xk) + ηWkλk
k ← k + 1

end

Appendix B. Reparameterization Trick with Concrete Distribution

Consider a model with a stochastic nodeX that involves sampling from a distribution parameterized
by ϕ : X ∼ pϕ(x). Suppose we want to optimize expected objective L(θ, ϕ) = EX∼pϕ(x)fθ(X)
for deterministic objective function fθ(x). Optimizing such a model using gradient-based methods
necessitates estimating the gradient of L(θ, ϕ) with respect to ϕ. However, the gradient

∇ϕL(θ, ϕ) = ∇ϕ

∫
pϕ(x)fθ(x)dx =

∫
fθ(x)∇ϕpϕ(x)dx (23)

is not an expectation with respect to x and does not give a straightforward Monte Carlo gradient
estimator.

The reparameterization trick enables us to estimate the gradient by reparameterizing the expec-
tation with respect to fixed, ϕ-free distribution. Specifically, if sampling from pϕ(x) is equivalent
to first sampling from a fixed, ϕ-free distribution q(z) and transforming that sample with function
gϕ(z), we can reformulate the expected loss function as

L(θ, ϕ) = EX∼pϕ(x)fθ(x) = EZ∼q(z)fθ(gϕ(Z)) (24)

Now its gradient ∇ϕL(θ, ϕ) = EZ∼q(z)f
′(gϕ(Z))∇ϕgϕ(Z) can be estimated by the Monte Carlo

method.
Concrete distribution, also known as Gumbel-Softmax distribution, was introduced to backprop-

agate stochastic nodes that involve sampling from a discrete categorical distribution. The idea is to
“smooth” the categorical distribution into a continuous concrete distribution and use the concrete
distribution for training. The concrete random variable X on the simplex ∆n−1 = {x ∈ Rn : xk ∈
[0, 1],

∑n
k=1 xk = 1} with parameters α ∈ ∆n−1 and temperature β ∈ (0,∞) is defined as

Xk =
exp((logαk +Gk)/β∑n
i=1 exp((logαi +Gi)/β

, k = 1, · · · , n. (25)

9

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

where Gk’s are i.i.d and follows Gumbel(0, 1).
For binary case (k = 2), the concrete distribution smooths the Bernoulli distribution and be-

comes

X2 = σ

(
1

β
log

α2

1− α2
+G2 −G1

)
(26)

= σ

(
1

β
log

α2

1− α2
+ log

U

1− U

)
(27)

= σ

(
1

β
log

ϕU

1− U

)
(28)

and X1 = 1 − X2 where σ is the sigmoid function, U ∼ Uniform(0, 1) and parameter α =
(α1, α2) is replaced by ϕ = α2

1−α2
∈ (0,∞). We can apply the reparameterization trick to transform

expectation with respect to concrete distribution with parameter ϕ to expectation with respect to
uniform distribution between 0 and 1.

Although the binary concrete distribution is a good proxy of the Bernoulli distribution, Louizos
et al. [11] propose a variant of it, called the hard concrete distribution, which is obtained by stretch-
ing and clamping the concrete distribution. Formally, given a concrete random variable X , the hard
concrete random variable Y , with additional parameter ζ > 1 and γ < 0, is given as

Y = min(1,max(0, (ζ − γ)X + γ)) (29)

Compared to concrete random variable, hard concrete random variable has larger support [0, 1] with
non-zero probability at 0 and 1. This feature is claimed to better approximate the discrete nature of
the Bernoulli distribution. However, it was pointed out by Zhou et al. [17], that the stretching and
clamping cause the gradient vanishing problem, hindering training on large-scale problems. For our
method, we use the concrete distribution instead of the hard concrete distribution to calculate the
gradients.

Appendix C. Experiment Details

The table below summarizes the specific settings used for the experiments conducted on the CI-
FAR10 and CIFAR100 datasets.

Dataset CIFAR10/100
Batch Size 256

Epochs 300
Finetune Epochs 30

Optimizer Adam
LR 0.001
α 0.01

Temperature Annealing ✓

The calculation of log si and log(1 − si) terms while sampling from the concrete distribution can
cause errors if s does not satisfy feasibility, which is allowed in the MJ algorithm. To enable feasible
sampling, we clamp s to have values between 0 and 1. At the end of the training, we sample the
final binary masks to create a pruned network, which is fine-tuned for 20 epochs, following Zhou
et al. [17].

10

PRUNING NEURAL NETWORKS WITH VELOCITY-CONSTRAINED OPTIMIZATION

Appendix D. Details on the Distribution of the Probability Parameter

Figure 1: Histograms for ProbMask(Left), ours(Right)

Figure 1 shows the distribution of the probability parameter for the proposed method and Prob-
Mask. Unlike ProbMask, it is evident that the probability parameters in the proposed method are not
almost separated into 0 and 1, indicating the non-deterministic behavior of the proposed method.
As mentioned in [17], there is a potential for improvement through the adjustment of temperature
parameter β. This technique could help in mitigating the non-deterministic behavior observed in the
proposed method, leading to enhanced performance and reliability. The exploration of temperature
annealing as a means to enhance the proposed method is considered as a part of future work.

11

	Introduction
	Velocity-Constrained Optimization and the MJ Algorithm
	Problem
	Method
	Comparison with Previous Works

	Experiment
	Settings
	Experiments on CIFAR-10/100
	Limitations

	Conclusion and Future Work
	Details on Implementing the MJ Algorithm
	Reparameterization Trick with Concrete Distribution
	Experiment Details
	Details on the Distribution of the Probability Parameter

