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Abstract
This paper considers federated learning (FL) with constraints where the central server and all local
clients collectively minimize a sum of local objective functions subject to inequality constraints.
To train the model without moving local data at clients to the central server, we propose an FL
framework that each local client performs multiple updates using the local objective and local
constraints, while the central server handles the global constraints and performs aggregation based
on the updated local models. In particular, we develop a proximal augmented Lagrangian (AL)
based algorithm, where the subproblems are solved by an inexact alternating direction method
of multipliers (ADMM) in a federated fashion. Under mild assumptions, we establish the worst-
case complexity bounds of the proposed algorithm. Our numerical experiments demonstrate the
practical advantages of our algorithm in solving linearly constrained quadratic programming and
performing Neyman-Pearson classification in the context of FL.

1. Introduction

Federated learning (FL) has emerged as a prominent distributed machine learning paradigm, finding
extensive application across diverse domains. While FL has gained extensive adoption, there have
been few developments on FL algorithms capable of handling constraints that incorporate desired
properties and prior knowledge. This is despite the frequent occurrence of constrained optimization
problems in modern learning tasks (e.g., see [39]). In particular, Neyman-Pearson classification
[66] and learning with fairness constraints [2, 13, 49] are two important examples of constrained
machine learning problems. We defer a review of constrained optimization problems in modern
machine learning to the Appendix B, and associated algorithms in Appendix A.

In the FL literature, many efforts have been devoted to mitigating class imbalance [65] and
improving model fairness [15, 18, 19] through the application of constrained optimization mod-
els. Nevertheless, these algorithms are often specialized to particular use cases and suffer from a
lack of computational complexity guarantees for achieving consensus, optimality, and feasibility in
their solutions. The main goals of this paper are twofold: (1) to investigate a general optimization
problem with convex constraints in an FL setting; (2) to develop an FL algorithm with complex-
ity guarantees for finding its solution. Specifically, we consider the following general optimization
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formulation of FL problems with convex global and local constraints 1:

min
w

{
n∑

i=1

fi(w) + h(w)

}
s. t. c0(w) ≤ 0︸ ︷︷ ︸

global constraint

, ci(w) ≤ 0, 1 ≤ i ≤ n︸ ︷︷ ︸
local constraints

, (1)

where the functions fi : Rd → R, 1 ≤ i ≤ n, and the mappings ci : Rd → Rmi , 0 ≤ i ≤ n, are
convex and continuously differentiable, and h : Rd → (−∞,∞] is a simple closed convex function.
The convexity assumption is necessary for our initial theoretical exploration of FL with constraints.
We also explore the applicability of our FL algorithm to classification tasks with nonconvex fairness
constraints in Appendix F.3.

The global constraint in (1), namely c0(w) ≤ 0, refers to a constraint that can be directly
accessed by the central server. The local constraints in (1), namely ci(w) ≤ 0 for 1 ≤ i ≤ n, refer
to constraints that depend on the local data that clients used for training the model. Throughout this
paper, we assume that

for each 1 ≤ i ≤ n, the local objective fi and local constraint ci are handled solely by the local
client i, and the central server has access to the global constraint c0.

This assumption generalizes the one commonly imposed for unconstrained FL, where each local
objective function is solely handled by one local client. In addition, our model (1) is tailored for
scenarios where local clients have enough amount of reliable data points to establish their own
local constraints. Meanwhile, to enhance generalization property, the central server forms a global
constraint by incorporating certain public or external data points. Additionally, it is noteworthy
that solving an FL problem with n local constraints, such as ci(w) ≤ r, 1 ≤ i ≤ n, can yield
a feasible solution for the coupled constraints involving data points from all local clients, such as
1/n

∑n
i=1 ci(w) ≤ r.

Due to the sophistication of the constraints in problem (1), existing FL algorithms face chal-
lenges when attempting to apply or extend them directly to solve (1). For example, a natural
approach for this problem is to adopt existing FL algorithms to minimize the quadratic penalty
function associated with (1). However, to ensure global convergence to a solution for (1), it is often
necessary to minimize a sequence of penalty functions with sufficiently large penalty parameters,
rendering the solution process highly unstable and inefficient (e.g., see [54]). Moreover, in the cen-
tralized setting, Lagrangian methods are frequently employed for constrained optimization in deep
learning (e.g., see [16]). However, these methods often require careful tuning of initial multipliers
and step-sizes for the multipliers. In contrast, we propose an FL algorithm grounded in the proximal
augmented Lagrangian (AL) method. This algorithm efficiently and robustly finds an (ϵ1, ϵ2)-KKT
solution of (1) for its definition). At each iteration of this algorithm, a fixed penalty parameter is
employed, and an approximate solution to a proximal AL subproblem associated with (1) is com-
puted by an inexact alternating direction method of multipliers (ADMM) in a federated manner.
We study the worst-case complexity of this algorithm under a locally Lipschitz assumption on ∇fi,
1 ≤ i ≤ n, and ∇ci, 0 ≤ i ≤ n. Our main contributions are highlighted below.

• We propose a proximal AL based FL algorithm (Algorithm 1) for seeking an approximate
KKT solution of problem (1). The proposed algorithm naturally generalizes the current FL al-
gorithms designed for unconstrained finite-sum optimization (see problem (6) below). Under

1. Distributed optimization with global and local constraints has been studied before in the literature (e.g., see Nedic
et al. [53], Zhu and Martı́nez [78]).
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a locally Lipschitz condition and mild assumptions, we establish the worst-case complexity
for finding an (ϵ1, ϵ2)-KKT solution of problem (1). To the best of our knowledge, the pro-
posed algorithm is the first one for FL with global and local constraints, and its complexity
results are entirely new in the literature.

• We conduct numerical experiments by comparing our proximal AL based FL algorithm with
existing FL algorithms on several real-world constrained learning tasks including binary clas-
sification with specified recall and classification with nonconvex fairness constraints. Our
numerical results validate that our FL algorithm can achieve solution quality comparable to
the centralized algorithm.

• We propose an inexact ADMM based FL algorithm (Algorithm 2) for solving an uncon-
strained finite-sum optimization problem (see problem (5) below). Equipped with a newly
introduced verifiable termination criterion, Algorithm 2 serves as a subproblem solver for
Algorithm 1. We establish a global linear convergence rate for this algorithm under the as-
sumptions of strongly convex local objectives and locally Lipschitz continuous gradients.

2. A proximal AL based FL algorithm for solving problem (1)

In this section we propose a proximal AL based FL algorithm for solving (1). This algorithm follows
a similar framework to a proximal AL method. At each iteration, it applies the inexact ADMM
(Algorithm 2) to find an approximate solution wk+1 to the proximal AL subproblem associated
with problem (1):

min
w

{
ℓk(w) :=

n∑
i=1

fi(w)+h(w)+
1

2β

n∑
i=0

[∥[µk
i +βci(w)]+∥2−∥µk

i ∥2]+
1

2β
∥w−wk∥2

}
, (2)

where [·]+ denotes the nonnegative part of a vector. The multiplier estimates are updated according
to the classical scheme: µk+1

i = [µk
i + βci(w

k+1)]+ for each 0 ≤ i ≤ n.

Algorithm 1: A proximal AL algorithm for FL with constraints
Data: tolerances ϵ1, ϵ2 ∈ (0, 1), w0 ∈ dom(h), µ0

i ≥ 0 for 0 ≤ i ≤ n, s̄ > 0, and β > 0;
Result: A primal-dual solution pair (wk+1, µk+1);
for k = 0, 1, 2, . . . do

Set τk = s̄/(k + 1)2;
Call the inexact ADMM with (τ, w̃0) = (τk, w

k) to find an approximate solution wk+1 to
(3) in a federated manner such that dist∞(0, ∂ℓk(w

k+1)) ≤ τk.
Server update: The central server updates µk+1

0 = [µk
0 + βc0(w

k+1)]+;
Communication (broadcast): Each local client i receives wk+1 from the server.
Client update (local): Each local client i updates µk+1

i = [µk
i + βci(w

k+1)]+.
Termination: Output (wk+1, µk+1) and terminate the algorithm if

∥wk+1 − wk∥∞ + βτk ≤ βϵ1, ∥µk+1 − µk∥∞ ≤ βϵ2.

end
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Pi,k(w) := fi(w) +
1

2β
∥[µk

i + βci(w)]+∥2 +
1

2(n+ 1)β
∥w − wk∥2.

Notice that the subproblem (2) can be rewritten as

min
w

{
ℓk(w) =

n∑
i=0

Pi,k(w) + h(w)

}
, (3)

where Pi,k, 0 ≤ i ≤ n, are defined as

Pi,k(w) := fi(w) +
1

2β
[∥[µk

i + βci(w)]+∥2 − ∥µk
i ∥2] +

1

2(n+ 1)β
∥w − wk∥2, ∀i ≥ 0. (4)

When Algorithm 2 is applied to solve problem (3), the local merit function Pi,k, constructed from
the local objective fi and local constraint ci, is handled by the respective local client i, while the
merit function P0,k is handled by the central server. Hence, Algorithm 2 is well-suited for the FL
framework that the local objective fi and local constraint ci are handled by the local client i, and
the central server performs aggregation and handles the global constraint c0.

We now make the following assumptions: (a) The proximal operator for h and the projection
onto Rm

+ can be exactly evaluated; (b) The functions fi, 1 ≤ i ≤ n, and mappings ci, 0 ≤ i ≤ n,
are continuously differentiable, and ∇fi, 1 ≤ i ≤ n, and ∇ci, 0 ≤ i ≤ n, are locally Lipschitz
continuous on Rd; (c) The strong duality holds for problems (1) and its dual problem

sup
µ≥0

inf
w

{f(w) + h(w) + ⟨µ, c(w)⟩} .

The following theorem states the worst-case complexity results of Algorithm 1, whose proof is
relegated to Appendix D.4.

Theorem 1 The number of outer iteration of Algorithm 1 is at most O(max{ϵ−2
1 , ϵ−2

2 }), and the
total number of inner iterations of Algorithm 1 is at most Õ(max{ϵ−2

1 , ϵ−2
2 }). In each iteration,

Algorithm 1 requires one communication round.

3. An inexact ADMM for FL

In this section we propose an inexact ADMM based FL algorithm for solving a class of finite-
sum optimization problems. This algorithm is used as a subproblem solver for the proximal AL
based FL algorithm proposed in Algorithm 1. In particular, we consider the following regularized
unconstrained finite-sum optimization problem:

min
w

{
Fh(w) :=

n∑
i=0

Fi(w) + h(w)

}
. (5)

where Fi : Rd → R, 0 ≤ i ≤ n, are continuously differentiable and convex functions. We
now make the following additional assumptions on problem (5) throughout this section: (a) The
functions Fi, 0 ≤ i ≤ n, are continuously differentiable, and moreover, ∇Fi, 0 ≤ i ≤ n, are locally
Lipschitz continuous on Rd; (b) The functions Fi, 0 ≤ i ≤ n, are strongly convex on Rd, that is,
there exists some σ > 0 such that ⟨∇Fi(u)−∇Fi(v), u− v⟩ ≥ σ∥u− v∥2 ∀u, v ∈ Rd, 0 ≤ i ≤ n.

The iteration complexity of Algorithm 2 is established in the following theorem, whose proof is
relegated to Appendix C.3.
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Theorem 2 Algorithm 2 terminates in at most O(| log τ |) iterations. Also, Algorithm 2 requires
one communication round at each iteration.

Algorithm 2: An inexact ADMM for finite-sum optimization
Data: tolerance τ ∈ (0, 1], q ∈ (0, 1), w̃0 ∈ dom(h), and ρi > 0 for 1 ≤ i ≤ n;
Result: A solution wt+1;
Set w0 = w̃0, and (u0i , λ

0
i , ũ

0
i ) = (w̃0,−∇Fi(w̃

0), w̃0 −∇Fi(w̃
0)/ρi) for 1 ≤ i ≤ n.

for t = 0, 1, 2, . . . do
Server update: The central server finds an approximate solution wt+1 to

min
w

{
φ0,t(w) = F0(w) + h(w) +

n∑
i=1

[ρi
2
∥ũti − w∥2

]}
.

Communication (broadcast): Each local client i receives wt+1 from the server.
Client update (local): Each local client i finds an approximate solution ut+1

i to

min
ui

{
φi,t(ui) = Fi(ui) + ⟨λt

i, ui − wt+1⟩+ ρi
2
∥ui − wt+1∥2

}
,

and then updates λt+1
i = λt

i + ρi(u
t+1
i − wt+1), ũt+1

i = ut+1
i + λt+1

i /ρi, and
ε̃i,t+1 = ∥∇φi,t(w

t+1)− ρi(w
t+1 − uti)∥∞.

Communication: Each local client i sends (ũt+1
i , ε̃i,t+1) back to the central server.

Termination: Output wt+1 and terminate this algorithm if εt+1 +
∑n

i=1 ε̃i,t+1 ≤ τ .
end

4. Numerical experiments

Linear equality constrained quadratic programming A description of the experiment setup is
deferred to Appendix F.1. The computational results of Algorithm 1 and the centralized proximal
AL method (abbreviated as cProx-AL) for solving the randomly generated instances are presented
in Table 1. One observes that: 1) both Algorithm 1 and the centralized proximal AL method are
capable of finding a solution of similar quality in terms of objective value and constraint violation; 2)
Algorithm 1 is as efficient as centralized proximal AL methods as measured by the number of outer
iterations; 3) Algorithm 1 can scale-up to a varied number of clients and constraints. To account for
all factors, the proposed methods can approximate high-quality solutions as the centralized method.

Neyman-Pearson classification A description of the experiment setup is relegated to Appendix F.2.
One can see from Table 2 that: 1) Algorithm 1 yields solutions with comparable quality to cProx-
AL, both concerning loss for class 0 and class 1, similar to what we observed in the previous
experiment. 2) when solving the Neyman-Pearson classification, we can effectively regulate the
loss value for the minority class (class 1) to remain below a predefined threshold across all local
clients, demonstrating the practical utility of applications such as detecting rare diseases where the
performance of minority class is critical. To provide further insights into the optimization progress,
we plot the feasibility violation (i.e., loss for class 0) of Algorithm 1 over its outer iterations in
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Table 1: Numerical results for linear equality constrained quadratic programming
objective value feasibility violation (×10−4) #outer iterations

d n m̃ Algorithm 1 cProx-AL Algorithm 1 cProx-AL Algorithm 1 cProx-AL
100 1 1 -6.1982 -6.1982 1.1986 3.0593 5.6 5.0
100 5 1 -5.4337 -5.4348 5.5226 7.6943 6.0 6.8
100 10 1 -0.8998 -0.9021 7.7720 6.9185 8.5 13.0
500 1 5 -33.0971 -33.0971 7.5226 0.9430 5.9 5.0
500 5 5 -30.8218 -30.8220 4.4055 4.5350 4.0 4.0
500 10 5 -24.7565 -24.7583 4.4589 6.8591 5.0 5.1

Table 2: Numerical results for Neyman-Pearson classification.

dataset #class 1/ class 0 m n
loss for class 0 loss for class 1 (≤ 0.2)

Algorithm 1 cProx-AL Unconstr ours cProx-AL Unconstr
mean max mean max mean max

breast-cancer-wisc 240/455 20

1 0.4340 0.4343 0.1388 0.2088 0.2088 0.2088 0.2088 0.3266 0.3266
5 0.6840 0.6846 0.1393 0.1826 0.2030 0.1825 0.2030 0.3280 0.4052
10 0.6481 0.6484 0.1409 0.1811 0.2067 0.1811 0.2067 0.3276 0.5337
20 0.7630 0.7633 0.1436 0.1647 0.2057 0.1647 0.2057 0.3256 0.5404

adult 7840/24715 21

1 0.8677 0.8643 0.2135 0.1991 0.1991 0.1991 0.1991 0.7886 0.7886
5 0.8475 0.8544 0.2136 0.1977 0.2019 0.1975 0.2018 0.7887 0.8178
10 0.8656 0.8668 0.2136 0.1914 0.2003 0.1905 0.1991 0.7885 0.8325
20 0.8688 0.8768 0.2137 0.1878 0.2028 0.1876 0.2025 0.7882 0.8418

monks-1 275/275 21

1 1.7794 1.7821 0.5332 0.1966 0.1966 0.1966 0.1966 0.6508 0.6508
5 1.8229 1.8278 0.5313 0.1909 0.2013 0.1908 0.2009 0.6516 0.7207
10 1.8457 1.8484 0.5297 0.1834 0.2059 0.1836 0.2064 0.6480 0.8964
20 2.0595 2.0743 0.5364 0.1560 0.2004 0.1551 0.2005 0.6461 0.9358

Figure 1. We can see that our proposed methods can converge to a feasible solution within a few
outer iterations, effectively enforcing consistency across all the clients.

Figure 1: Progression of feasibility violation over iterations on brease-cancer-wisc and monks-1
datasets. Each client’s feasibility violation progression is represented by a distinct color.
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Appendix A. Related works

FL algorithms for unconstrained optimization: Federated learning has emerged as a cornerstone
technique for privacy-preserved distributed learning since Google proposed the seminal work [48].
Unlike traditional centralized learning methods, FL enables the training of models with distributed
edge clients, ranging from small mobile devices like phones [50] to large data providers such as
hospitals and banks [42]. This inherent property of privacy preservation aligns seamlessly with
the principles upheld by various critical domains, including healthcare [58, 59, 62], finance [42],
IoT [50], and transportation [41], where safeguarding data privacy is essential.

FedAvg, introduced by [48], is the first and also the most widely applied FL algorithm. It was
proposed for solving the unconstrained finite-sum optimization problem:

min
w

f(w) =
n∑

i=1

fi(w). (6)

Since then, many variants have been proposed to tackle various practical issues, such as data het-
erogeneity [30, 37, 76], system heterogeneity [20, 35, 70], fairness [36], efficiency [31, 64], and
incentives [67]. For example, [35] proposed FedProx by adding a proximal term in the local ob-
jective to handle clients with different computation capabilities. [30] proposed Scallfold to address
the issue of date heterogeneity where local data is non-independent and identically distributed (non-
iid). Additionally, ADMM based FL algorithms have been proposed in [1, 20, 69, 76, 77], and these
methods have been shown to be inherently resilient to heterogeneity. [61] extended FedAvg by in-
troducing adaptive optimizers for server aggregation, significantly reducing communication costs
and improving FL scalability. [36] proposed Ditto, a personalized FL framework that demonstrates
improved client fairness and robustness. More variants of FL algorithms and their applications can
be found in the survey [34]. Despite the numerous FL algorithms proposed previously, they pri-
marily focus on unconstrained FL problems, leaving a gap between constrained optimization and
FL.

Centralized algorithms for constrained optimization: Recent years have witnessed fruit-
ful algorithmic developments for constrained optimization in the centralized setting. In particular,
there has been a rich literature on inexact AL methods for solving convex constrained optimiza-
tion problems (e.g., see Aybat and Iyengar [6], Lan and Monteiro [33], Lu and Mei [45], Lu and
Zhou [46], Necoara et al. [52], Patrascu et al. [57], Xu [73]). In addition, AL methods and variants
have also been extended to solve nonconvex constrained optimization problems (e.g., see Birgin and
Martı́nez [7], Grapiglia and Yuan [22], He et al. [26, 27], Hong et al. [28], Kong et al. [32], Li et al.
[38], Lu [43]). Moreover, sequential quadratic programming methods [8, 17], trust-region methods
[9, 60], interior point method [68], and extra-point method [29] have also been proposed for solving
constrained optimization problems. Furthermore, there have been many recent works on algorithms
for finding second-order stationary points of nonconvex constrained optimization problems (e.g.,
see [3, 10–12, 23, 25–27, 44, 51, 55, 56, 72]).

Distributed algorithms for constrained optimization: In another line of research, many algo-
rithms have been developed for distributed optimization with global and local constraints. An early
work [53] introduced a distributed projected subgradient algorithm for distributed optimization with
local constraints. This work has been extended to handle scenarios involving time-varying directed
graphs in [40, 71]. Yet, these methods require each node to compute a projection on the local con-
straint set, which is applicable only to relatively simple constraints. To address more complicated
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constraints, distributed primal-dual algorithms were developed in [4, 5] for distributed convex opti-
mization with conic constraints. In addition, primal-dual projected subgradient algorithms [75, 78]
have been developed for distributed optimization with global and local constraints. For an overview
of algorithmic developments in distributed optimization with constraints, we refer to [74]. We
emphasize that the existing algorithms for constrained distributed optimization do not follow the
common FL framework where clients perform multiple local updates before aggregating the global
model. The algorithm development in this paper follows a distinct trajectory compared to them.

FL algorithms for constrained learning problems: Some studies have combined constrained
optimization techniques with FL algorithms to tackle complex learning tasks, such as addressing
label imbalances and promoting model fairness. For example, [65] proposes an FL algorithm aimed
at handling class imbalances, using primal-dual updates through the Lagrangian function. Simi-
larly, [15, 18] propose FL algorithms designed for fairness-constrained learning, also incorporating
primal-dual updates using the Lagrangian function. In addition, [19] proposes an FL algorithm for
fairness-constrained learning, implementing primal-dual updates with the augmented Lagrangian
function. Nonetheless, these studies are tailored to specific applications and do not establish con-
vergence guarantees regarding constraint feasibility, stationarity, or consensus.

Appendix B. Constrained optimization problems in modern machine learning

In recent years, there has been a growing prominence in solving constrained optimization problems
arising in machine learning. Especially, when moving to trustworthy AI and efficient AI, we can see
an overwhelming number of problems where explicit constraints have to be enforced and computed
during the learning process. For example, robustness evaluation [21], learning with fairness [2, 13,
49], learning with label imbalance [63], neural architecture search [79], topology optimization [14],
knowledge-aware machine learning [47] can be formulated as optimization problems with hard
constraints. We next present Neyman-Pearson classification and learning with fairness:

Neyman-Pearson classification: Consider a binary classification problem, where one is more
concerned with the risk of misclassifying one specific class than the other one, as often occurs in
medical diagnosis. To address this problem, Neyman-Pearson classification model is proposed as
follows (e.g., see [66]):

min
w

1

n0

n0∑
i=1

φ(w, zi,0) s. t.
1

n1

n1∑
i=1

φ(w, zi,1) ≤ r, (7)

where w is the weight parameter, φ is a loss function, {zi,0}n0
i=1 and {zi,1}n1

i=1 are the training data
from two separate classes 0 and 1, respectively, and r > 0 controls the training error for class 1. The
Neyman-Pearson classification model (7) is introduced as a statistical learning model for handling
asymmetric training error priorities.

Learning with fairness: Incorporating fairness constraints into the training of machine learning
models is widely recognized as an important approach to ensure the models’ trustworthiness [2, 13,
49]. Training a model with fairness constraints is usually formulated as follows:

min
w

1

n

n∑
i=1

φ(w, zi) s. t. min
1≤i≤k

pj(w, {zi}ni=1) ≥ ρ max
1≤j≤k

pj(w, {zi}ni=1), (8)

where w is the weight parameter, φ is a loss function, pj , 1 ≤ j ≤ k, are performance metrics,
ρ ∈ [0, 1] is the targeted fairness level, and {zi} is the training data set.
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Appendix C. Proof of Theorem 2

We first derive the following equivalent consensus reformulation of problem (5):

min
w,ui

{
n∑

i=1

Fi(ui) + F0(w) + h(w)

}
s. t. ui = w, 1 ≤ i ≤ n, (9)

Throughout this section, we let (w̃∗, u∗) be the optimal solution of (9), and λ∗ be the associated
Lagrangian multiplier. Recall from the definition of ũti in Algorithm 2 that

ũti = uti + λt
i/ρi, ∀1 ≤ i ≤ n, t ≥ 0. (10)

C.1. Output of Algorithm 2

Theorem 3 If Algorithm 2 terminates at iteration t, its output wt+1 satisfies

dist∞(0, ∂Fh(w
t+1)) ≤ τ.

Proof By the definition of Fh in (5), one has that

∂Fh(w
t+1) =

n∑
i=0

∇Fi(w
t+1) + ∂h(wt+1). (11)

In addition, notice from (2), (2), and (10) that

∂φ0,t(w
t+1) =∇F0(w

t+1) +

n∑
i=1

ρi(w
t+1 − ũti) + ∂h(wt+1)

= ∇F0(w
t+1) +

n∑
i=1

[ρi(w
t+1 − uti)− λt

i] + ∂h(wt+1),

∇φi,t(w
t+1) =∇Fi(w

t+1) + λt
i, ∀1 ≤ i ≤ n.

Combining these with (11), we obtain that

∂Fh(w
t+1) = ∂φ0,t(w

t+1) +
n∑

i=1

[∇φi,t(w
t+1)− ρi(w

t+1 − uti)],

which together with dist∞(0, ∂φ0,t(w
t+1)) ≤ εt+1 (see Algorithm 2) implies that

dist∞(0, ∂Fh(w
t+1)) ≤ dist∞(0, ∂φ0,t(w

t+1)) +

n∑
i=1

∥∇φi,t(w
t+1)− ρi(w

t+1 − uti)∥∞

≤ εt+1 +
n∑

i=1

ε̃i,t+1.

Using this and the termination criterion, we obtain that dist∞(0, ∂Fh(w
t+1)) ≤ τ holds as desired.
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C.2. Bounded iterates of Algorithm 2

Lemma 4 Let {ut+1
i }1≤i≤n,t∈T and {wt+1}t∈T be all the iterates generated by Algorithm 2, where

T is a subset of consecutive nonnegative integers starting from 0. Then we have wt+1 ∈ Q and
ut+1
i ∈ Q for all 1 ≤ i ≤ n and t ∈ T, where

Q =

{
v : ∥v − w̃∗∥2 ≤ n+ 1

σ2(1− q2)
+

1

σ

n∑
i=1

(
ρi∥w̃∗ − w̃0∥2 + 1

ρi
∥∇Fi(w̃

∗)−∇Fi(w̃
0)∥2

)}
.

(12)

Proof [Proof of Lemma 4]
Recall from that Fi, 0 ≤ i ≤ n, are strongly convex with modulus σ > 0. In addition, by

(10) and the fact that dist∞(0, ∂φ0,t(w
t+1)) ≤ εt+1, one can obtain that there exist some ht+1 ∈

∂h(wt+1) and ∥et+1
0 ∥∞ ≤ εt+1 such that

et+1
0 =∇F0(w

t+1) + ht+1 +

n∑
i=1

ρi(w
t+1 − ũti)

(10)
= ∇F0(w

t+1) + ht+1 +

n∑
i=1

[ρi(w
t+1 − uti)− λt

i]

=∇F0(w
t+1) + ht+1 +

n∑
i=1

[ρi(u
t+1
i − uti)− λt+1

i ]. (13)

Using the fact that ∥∇φi,t(u
t+1
i )∥∞ ≤ εt+1, one can see that there exists ∥et+1

i ∥∞ ≤ εt+1 such that

et+1
i = ∇φi,t(u

t+1
i )

(2)
= ∇Fi(u

t+1
i ) + λt

i + ρi(u
t+1
i − wt+1) = ∇Fi(u

t+1
i ) + λt+1

i , ∀1 ≤ i ≤ n,
(14)

Recall that w̃∗ and u∗ are the optimal solution of (9), and λ∗ ∈ Rm is the associated Lagrangian
multiplier. Then there exists h∗ ∈ ∂h(w̃∗) such that

∇Fi(u
∗
i ) + λ∗

i = 0, ∇F0(w̃
∗) + h∗ −

n∑
i=1

λ∗
i = 0, u∗i = w̃∗, ∀1 ≤ i ≤ n. (15)

In view of this, (14), and the strong convexity of Fi, one can deduce that

σ∥ut+1
i − w̃∗∥2 ≤ ⟨ut+1

i − w̃∗,∇Fi(u
t+1
i )−∇Fi(w̃

∗)⟩ = ⟨ut+1
i − w̃∗,−λt+1

i + λ∗
i + et+1

i ⟩

≤ ⟨ut+1
i − w̃∗,−λt+1

i + λ∗
i ⟩+

σ

2
∥ut+1

i − w̃∗∥2 + 1

2σ
∥et+1

i ∥2,

where the equality is due to w̃∗ = u∗i , ∇Fi(u
∗
i ) = λ∗

i , and (14), and the last inequality follows from
⟨a, b⟩ ≤ t/2∥a∥2 + 1/(2t)∥b∥2 for all a, b ∈ Rd and t > 0. By (13), (15), and the strong convexity
of F0, one has that

σ∥wt+1 − w̃∗∥2 ≤ ⟨wt+1 − w̃∗,∇F0(w
t+1) + ht+1 −∇F0(w̃

∗)− h∗⟩

= ⟨wt+1 − w̃∗,

n∑
i=1

[λt+1
i − λ∗

i − ρi(u
t+1
i − uti)] + et+1

0 ⟩,

≤ ⟨wt+1 − w̃∗,
n∑

i=1

[λt+1
i − λ∗

i − ρi(u
t+1
i − uti)]⟩+

σ

2
∥wt+1 − w̃∗∥2 + 1

2σ
∥et+1

0 ∥2,
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where the first inequality is due to the strong convexity of F0 and the convexity of h, the equality is
due to (13) and the second relation in (15), and the last inequality follows from ⟨a, b⟩ ≤ t/2∥a∥2 +
1/(2t)∥b∥2 for all a, b ∈ Rd and t > 0. Summing up these inequalities and rearranging the terms,
we obtain that

σ

2
(∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2)

≤ ⟨wt+1 − w̃∗,
n∑

i=1

[λt+1
i − λ∗

i − ρi(u
t+1
i − uti)]⟩+

1

2σ
∥et+1

0 ∥2 +
n∑

i=1

(⟨ut+1
i − w̃∗,−λt+1

i + λ∗
i ⟩+

1

2σ
∥et+1

i ∥2)

≤
n∑

i=1

⟨wt+1 − ut+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi⟨wt+1 − w̃∗, uti − ut+1
i ⟩+ n+ 1

2σ
ε2t+1

=
n∑

i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi⟨wt+1 − w̃∗, uti − ut+1
i ⟩+ n+ 1

2σ
ε2t+1, (16)

where the second inequality is due to ∥et+1
i ∥ ≤ εt+1 for all 0 ≤ i ≤ n and t ≥ 0. Notice that the

following well-known identities hold:

⟨wt+1 − w̃∗, uti − ut+1
i ⟩ = 1

2
(∥wt+1 − ut+1

i ∥2 − ∥wt+1 − uti∥2 + ∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1
i ∥2),

(17)

⟨λt
i − λt+1

i , λt+1
i − λ∗

i ⟩ =
1

2
(∥λ∗

i − λt
i∥2 − ∥λ∗

i − λt+1
i ∥2 − ∥λt

i − λt+1
i ∥2). (18)

These along with (16) imply that

σ

2
(∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2) +

n∑
i=1

ρi
2
∥wt+1 − uti∥2 −

n+ 1

2σ
ε2t+1

(16)

≤
n∑

i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi⟨wt+1 − w̃∗, uti − ut+1
i ⟩+

n∑
i=1

ρi
2
∥wt+1 − uti∥2

(17)

≤
n∑

i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

ρi
2
(∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1

i ∥2 + ∥wt+1 − ut+1
i ∥2)

=
n∑

i=1

1

ρi
⟨λt

i − λt+1
i , λt+1

i − λ∗
i ⟩+

n∑
i=1

1

2ρi
∥λt+1

i − λt
i∥2 +

n∑
i=1

ρi
2
(∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1

i ∥2)

(18)
=

n∑
i=1

1

2ρi
(∥λ∗

i − λt
i∥2 − ∥λ∗

i − λt+1
i ∥2) +

n∑
i=1

ρi
2
(∥w̃∗ − uti∥2 − ∥w̃∗ − ut+1

i ∥2)

=

n∑
i=1

[(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2)− (

ρi
2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2)]. (19)
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Summing up this inequality over t = 0, . . . , t̄, we obtain that

t̄∑
t=0

[
σ

2

(
∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2

)
+

n∑
i=1

ρi
2
∥wt+1 − uti∥2 −

n+ 1

2σ
ε2t+1

]

≤
n∑

i=1

[(
ρi
2
∥w̃∗ − u0i ∥2 +

1

2ρi
∥λ∗

i − λ0
i ∥2
)
−
(
ρi
2
∥w̃∗ − ut̄+1

i ∥2 + 1

2ρi
∥λ∗

i − λt̄+1
i ∥2

)]
.

(20)

Recall from Algorithm 2 that εt+1 = qt, u0i = w̃0, and λ0
i = −∇Fi(w̃

0). Also, notice from (15)
that w̃∗ = u∗i and λ∗

i = −∇Fi(u
∗
i ). By these and (20), one can deduce that

σ

2
(∥wt+1 − w̃∗∥2 +

n∑
i=1

∥ut+1
i − w̃∗∥2) ≤ n+ 1

2σ

∞∑
t=0

q2t +
n∑

i=1

(
ρi
2
∥w̃∗ − u0i ∥2 +

1

2ρi
∥λ∗

i − λ0
i ∥2
)

≤ n+ 1

2σ(1− q2)
+

n∑
i=1

(
ρi
2
∥w̃∗ − u0i ∥2 +

1

2ρi
∥λ∗

i − λ0
i ∥2
)

=
n+ 1

2σ(1− q2)
+

n∑
i=1

(
ρi
2
∥w̃∗ − w̃0∥2 + 1

2ρi
∥∇Fi(w̃

∗)−∇Fi(w̃
0)∥2

)
.

In view of this and the definition of Q in (12), we can observe that wt+1 ∈ Q and ut+1
i ∈ Q for all

t ∈ T and 1 ≤ i ≤ n. Hence, the conclusion of this lemma holds as desired.

C.3. Proof of Theorem 2

Lemma 5 Assume that r, c > 0 and q ∈ (0, 1). Let {at}t≥0 be a sequence satisfying

(1 + r)at+1 ≤ at + cq2t, ∀t ≥ 0. (21)

Then we have

at+1 ≤ max

{
q,

1

1 + r

}t+1(
a0 +

c

1− q

)
, ∀t ≥ 0. (22)

Proof It follows from (21) that

at+1 ≤
1

1 + r
at +

1

1 + r
cq2t ≤ 1

(1 + r)2
at−1 +

cq2(t−1)

(1 + r)2
+

cq2t

1 + r

≤ · · · ≤ 1

(1 + r)t+1
a0 +

t∑
i=0

cq2i

(1 + r)t+1−i
=

1

(1 + r)t+1
a0 + c

t∑
i=0

qi

(1 + r)t+1−i
qi

≤ 1

(1 + r)t+1
a0 + cmax

{
q,

1

1 + r

}t+1 t∑
i=0

qi

≤ 1

(1 + r)t+1
a0 +

c

1− q
max

{
q,

1

1 + r

}t+1

≤ max

{
q,

1

1 + r

}t+1(
a0 +

c

1− q

)
,

where the fifth inequality is due to qi ≤ max{q, 1/(1 + r)}i and 1/(1 + r)t+1−i ≤ max{q, 1/(1 +
r)}t+1−i. Hence, the relation (22) holds as desired.
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Lemma 6 Let Q be defined in (12). Then there exists some L∇F > 0 such that

∥∇Fi(u)−∇Fi(v)∥ ≤ L∇F ∥u− v∥, ∀u, v ∈ Q, 0 ≤ i ≤ n. (23)

Proof Notice from (12) that the set Q is convex and compact. By this and the local Lipschitz
continuity of ∇Fi on Rd, one can verify that there exists some constant L∇F > 0 such that (23)
holds (see also Lemma 1 in [45]).

Lemma 7 Let {wt+1}t∈T and {ut+1
i }1≤i≤n,t∈T be all the iterates generated by Algorithm 2, where

T is defined in Lemma 4. Then we have

St ≤ qtr

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)]
, ∀t ≥ 0, (24)

where σ and L∇F are given in the assumptions in Section 3 and Lemma 6, respectively, q and ρi,
1 ≤ i ≤ n, are inputs of Algorithm 2, and

qr = max

{
q,

1

1 + r

}
, r = min

1≤i≤n

{
σρi

ρ2i + 2L2
∇F

}
, (25)

St =

n∑
i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2
)
, ∀t ≥ 0. (26)

Proof Recall from (19) that

n∑
i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2
)

≥
n∑

i=1

(
ρi + σ

2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2 + ρi

2
∥wt+1 − uti∥2

)
+

σ

2
∥wt+1 − w̃∗∥2 − n+ 1

2σ
ε2t+1

≥
n∑

i=1

(
ρi + σ

2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2

)
− n+ 1

2σ
ε2t+1. (27)

Also, notice from (14), (15), and (23) that

∥λ∗
i − λt+1

i ∥2
(14)(15)

≤ (∥∇Fi(w̃
∗)−∇Fi(u

t+1
i )∥+ ∥et+1

i ∥)2
(23)

≤ 2L2
∇F ∥w̃∗ − ut+1

i ∥2 + 2ε2t+1,

which implies that

∥w̃∗ − ut+1
i ∥2 ≥ 2ρi

ρ2i + 2L2
∇F

(
ρi
2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2

)
−

2ε2t+1

ρ2i + 2L2
∇F

. (28)
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By this, the definition of St in (26), and (27), one has that

St +

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)
q2t

=

n∑
i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2
)
+

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)
ε2t+1

(27)

≥
n∑

i=1

(
ρi
2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2

)
+

σ

2

n∑
i=1

∥w̃∗ − ut+1
i ∥2 +

n∑
i=1

σ

ρ2i + 2L2
∇F

ε2t+1

(28)

≥
n∑

i=1

(
1 +

σρi
ρ2i + 2L2

∇F

)(
ρi
2
∥w̃∗ − ut+1

i ∥2 + 1

2ρi
∥λ∗

i − λt+1
i ∥2

)
≥ (1 + r)St+1.

When t = 0, (24) holds clearly. When t ≥ 1, by the above inequality, (25), and Lemma 5 with
(at, c) = (St,

n+1
2σ +

∑n
i=1

σ
ρ2i+2L2

∇F
), we obtain that

St ≤ max

{
q,

1

1 + r

}t
[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)]

= qtr

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)]
.

Hence, the conclusion of this lemma holds as desired.

Proof [Proof of Theorem 2] By the definition of φi,t in (2), one has that for each 1 ≤ i ≤ n,

∥∇φi,t(w
t+1)−∇φi,t(u

t+1
i )∥ ≤ ∥∇Fi(w

t+1)−∇Fi(u
t+1
i )∥+ρi∥wt+1−ut+1

i ∥ ≤ (L∇F + ρi) ∥wt+1−ut+1
i ∥,

where the second inequality is due to (23) and the fact that wt+1 ∈ Q and ut+1
i ∈ Q for all

1 ≤ i ≤ n (see Lemma 4). By the above inequality and the fact that ∥∇φi,t(u
t+1
i )∥∞ ≤ εt+1 (see

Algorithm 2), one can obtain that

εt+1 +
n∑

i=1

ε̃i,t+1 = εt+1 +
n∑

i=1

∥[∇φi,t(w
t+1)− ρi(w

t+1 − uti)]∥∞

≤ εt+1 +
n∑

i=1

∥∇φi,t(u
t+1
i )∥∞ +

n∑
i=1

∥∇φi,t(w
t+1)−∇φi,t(u

t+1
i )∥+

n∑
i=1

ρi∥wt+1 − uti∥

≤ (n+ 1)εt+1 +
n∑

i=1

(L∇F + ρi)∥wt+1 − ut+1
i ∥+

n∑
i=1

ρi∥wt+1 − uti∥, (29)

where the first inequality is due to ∥u∥∞ ≤ ∥u∥ for all u ∈ Rd and the triangle inequality. Also, by
(19), (24), and (26), one can see that

σ

4
∥wt+1 − ut+1

i ∥2 ≤ σ

2
∥wt+1 − w̃∗∥2 + σ

2
∥ut+1

i − w̃∗∥2
(19)

≤
n∑

i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2)

(26)
= St

(24)

≤ qtr

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)]
. (30)
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Using again (19), (24), and (26), we obtain that

1

2
(

n∑
i=1

ρi∥wt+1 − uti∥)2 ≤ (
n∑

i=1

ρi)(
n∑

i=1

ρi
2
∥wt+1 − uti∥2)

(19)

≤ (
n∑

i=1

ρi)
n∑

i=1

(
ρi
2
∥w̃∗ − uti∥2 +

1

2ρi
∥λ∗

i − λt
i∥2)

(26)
= (

n∑
i=1

ρi)St

(24)

≤ (

n∑
i=1

ρi)q
t
r

[
S0 +

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)]
,

(31)

where the first inequality is due to the Cauchy-Schwarz inequality. Combining (29) with (30) and
(31), we obtain that

εt+1 +

n∑
i=1

ε̃i,t+1

≤ (n+ 1)qt +

 2√
σ

n∑
i=1

(L∇F + ρi) +

√√√√2
n∑

i=1

ρi

[S0 +
1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)]1/2
qt/2r .

(32)

Recall from Algorithm 2 and (15) that (u0i , λ
0
i ) = (w̃0,−∇Fi(w̃

0)) and λ∗
i = −∇Fi(w̃

∗). By these
and (26), one has

S0 =

n∑
i=1

(
ρi
2
∥w̃∗ − w̃0∥2 + 1

2ρi
∥∇Fi(w̃

∗)−∇Fi(w̃
0)∥2

)
. (33)

For convenience, denote

b =

 2√
σ

n∑
i=1

(L∇F + ρi) +

√√√√2

n∑
i=1

ρi


×

[
n∑

i=1

(
ρi
2
∥w̃∗ − w̃0∥2 + 1

2ρi
∥∇Fi(w̃

∗)−∇Fi(w̃
0)∥2

)
+

1

1− q

(
n+ 1

2σ
+

n∑
i=1

σ

ρ2i + 2L2
∇F

)]1/2
.

Using this, (32), and (33), we obtain that

εt+1 +

n∑
i=1

ε̃i,t+1 ≤ (n+ 1)qt + bqt/2r ≤ (n+ 1 + b)qt/2r .

where the last inequality is due to q ≤ qr < 1. This along with the termination criterion implies
that the number of iterations of Algorithm 2 is bounded above by⌈

2 log(τ/(n+ 1 + b))

log qr

⌉
+ 1 = O(| log τ |). (34)

Hence, the conclusion of this theorem holds as desired.

We observe from the proof of Theorem 2 that the number of iterations of Algorithm 2 is bounded
by the quantity in (34).
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Appendix D. Proof of Theorem 1

We define the Lagrangian function associated with problem (1) as

l(w, µ) =


f(w) + h(w) + ⟨µ, c(w)⟩ if w ∈ dom(h) and µ ≥ 0,
−∞ if w ∈ dom(h) and µ ̸≥ 0,
∞ if w ̸∈ dom(h),

Then one can verify that (e.g., see equation (17) in Lu and Zhou [46])

∂l(w, µ) =


(
∇f(w) + ∂h(w) +∇c(w)µ

c(w)−NRm
+
(µ)

)
if w ∈ dom(h) and µ ≥ 0,

∅ otherwise.
(35)

We also define the set-valued operator associated with problems (1) as

T l : (w, µ) → {(u, ν) ∈ Rd×Rm : (u,−ν) ∈ ∂l(w, µ)}, ∀(w, µ) ∈ Rd×Rm . (36)

In view of (35), (36), and the definition of KKT solution, we observe that finding an KKT solution
of problems (1) is equivalent to solving the inclusion problem (see ([46])):

Find (w, µ) ∈ Rd×Rm such that (0, 0) ∈ T l(w, µ). (37)

Let f0(w) ≡ 0 throughout this section. From Lemma 1 in [46], one can observe that

∇Pi,k(w) = ∇fi(w) +∇ci(w)[µ
k
i + βci(w)]+ +

1

(n+ 1)β
(w − wk), ∀0 ≤ i ≤ n. (38)

D.1. Local Lipschitz continuity of ∇Pi,k

Lemma 8 The gradients ∇Pi,k, 0 ≤ i ≤ n, are locally Lipschitz continuous on Rd.

Proof Fix an arbitrary w ∈ Rd and a bounded open set Uw containing w. We suppose that ∇fi is
Lw,1-Lipschitz continuous on Uw, and ∇ci is Lw,2-Lipschitz continuous on Uw. Also, let Uw,1 =
supw∈Uw

∥ci(w)∥ and Uw,2 = supw∈Uw
∥∇ci(w)∥. By (4), and (38) one has for each 0 ≤ i ≤ n

and u, v ∈ Uw that

∥∇Pi,k(u)−∇Pi,k(v)∥
(38)

≤ ∥∇fi(u)−∇fi(v)∥+ ∥∇ci(u)−∇ci(v)∥∥[µk
i + βci(u)]+∥

+ ∥[µk
i + βci(u)]+ − [µk

i + βci(v)]+∥∥∇ci(v)∥+
1

(n+ 1)β
∥u− v∥

≤ Lw,1∥u− v∥+ (∥µk
i ∥+ βUw,1)Lw,2∥u− v∥

+ β∥ci(u)− ci(v)∥∥∇ci(v)∥+
1

(n+ 1)β
∥u− v∥

≤
[
Lw,1 + (∥µk

i ∥+ βUw,1)Lw,2 + βU2
w,2 +

1

(n+ 1)β

]
∥u− v∥.

Therefore, ∇Pi,k(u) is locally Lipschitz continuous on Rd, and the conclusion holds as desired.
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D.2. Output of Algorithm 1

Theorem 9 If Algorithm 1 successfully terminates, its output (wk+1, µk+1) is an (ϵ1, ϵ2)-KKT
solution of problem (1).

Proof Notice from (2) that

ℓk(w) = f(w) + h(w) +
1

2β
[[µk + βc(w)]2+ − ∥µk∥2] + 1

2β
∥w − wk∥2.

By this, (35), and the fact that µk+1 = ΠK∗(µk + βc(wk+1)), one has

∂ℓk(w
k+1)− 1

β
(wk+1 − wk) =∇f(wk+1) + ∂h(wk+1) +∇c(wk+1)[µk + βc(w)]+

=∇f(wk+1) + ∂h(wk+1) +∇c(wk+1)µk+1 = ∂wl(w
k+1, µk+1).

(39)

Using similar arguments as for the second relation of equation (52) in [46], we obtain that

1

β
(µk+1 − µk) ∈ ∂µl(w

k+1, µk+1). (40)

In view of this and (39), one can see that

dist∞(0, ∂wl(w
k+1, µk+1))

(39)

≤ dist∞(0, ∂ℓk(w
k+1)) +

1

β
∥wk+1 − wk∥∞≤τk +

1

β
∥wk+1 − wk∥∞≤ϵ1,

dist∞(0, ∂µl(w
k+1, µk+1))≤ 1

β
∥µk+1 − µk∥∞≤ϵ2.

These along with (35) imply that (wk+1, µk+1) is an (ϵ1, ϵ2)-KKT solution of problem (1), which
proves this theorem as desired.

D.3. Bounded iterates of Algorithm 1

Lemma 10 (Bounded iterates of Algorithm 1) Let {wk}k∈K be all the iterates generated by Al-
gorithm 1, where K is a subset of consecutive nonnegative integers starting from 0. Then we have
wk ∈ Q1 for all k ∈ K, where

Q1 = {w ∈ Rd : ∥w − w∗∥ ≤ r0 + 2s̄β}, r0 = ∥(w0, µ0)− (w∗, µ∗)∥, (41)

and w0, µ0, s̄, and β are inputs of Algorithm 1.

We define K−1 = {k − 1 : k ∈ K}, and for any 0 ≤ k ∈ K−1, define

wk
∗ = argmin

w
ℓk(w), µk

∗ = ΠK∗(µk + βc(wk
∗)). (42)

The following lemma shows that the update from (wk, µk) to (wk+1, µk+1) can be viewed as ap-
plying an inexact proximal point algorithm (PPA) to the inclusion problem (37). Its proof can be
found in Lemma 5 in [46].
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Lemma 11 Let {(wk, µk)}k∈K be generated by Algorithm 1. Then for any k ∈ K, we have

∥(wk+1, µk+1)− J β(w
k, µk)∥ ≤ βτk,

where J β = (I +β T l)
−1, I is the identity mapping, and T l is defined in (36).

The following lemma establishes some properties of (wk, µk) and (wk
∗ , µ

k
∗). Its proof can be

found in Lemma 14 in [45].

Lemma 12 Let {(wk, µk)}k∈K be generated by Algorithm 1, where K is defined in Lemma 10. Let
(wk

∗ , µ
k
∗) be defined in (42) for all 0 ≤ k ≤ K−1. Then the following relations hold.

∥(wk, µk)− (wk
∗ , µ

k
∗)∥2 + ∥(wk

∗ , µ
k
∗)− (w∗, µ∗)∥2 ≤ ∥(wk, µk)− (w∗, µ∗)∥2, ∀0 ≤ k ≤ K−1,

∥(wk, µk)− (w∗, µ∗)∥ ≤ ∥(w0, µ0)− (w∗, µ∗)∥+ β

k−1∑
j=0

τj , ∀0 ≤ k ∈ K .

Notice from Algorithm 1 that τk = s̄/(k + 1)2 for all k ≥ 0. Therefore, one has
∑∞

j=0 τj ≤ 2s̄. In
view of this and Lemma 12, we observe that

∥wk − w∗∥ ≤ r0 + 2s̄β, ∥µk − µ∗∥ ≤ r0 + 2s̄β, ∀0 ≤ k ∈ K, (43)

∥wk − wk
∗∥ ≤ r0 + 2s̄β, ∥wk

∗ − w∗∥ ≤ r0 + 2s̄β, ∀0 ≤ k ∈ K−1. (44)

where r0 is defined in (41), and β and s̄ are inputs of Algorithm 1. The first relation in (43) leads to
the conclusion that wk ∈ Q1 for all k ∈ K, which immediately implies that Lemma 10 holds.

D.4. Proof of Theorem 1

We provide a technical lemma concerning the convergence rate of an inexact PPA applied to a
monotone inclusion problem. Its proof can be found in Lemma 3 in [46].

Lemma 13 Let T : Rp ⇒ Rq be a maximally monotone operator and z∗ ∈ Rp such that 0 ∈
T (z∗). Let {zk} be a sequence generated by an inexact PPA, starting with z0 and obtaining zk+1

be approximately evaluating J β(z
k) such that

∥zk+1 − J β(z
k)∥ ≤ ek

for some β > 0 and ek ≥ 0, where J β = (I +β T )−1 and I is the identity operator. Then, for any
K ≥ 1, we have

min
K≤k≤2K

∥zk+1 − zk∥ ≤

√
2
(
∥z0 − z∗∥+ 2

∑2K
k=0 ek

)
√
K + 1

.

Recall from (41) that Q1 is a compact set. We let

U∇f = sup
w∈Q1

max
1≤i≤n

∥∇fi(w)∥, U∇c = sup
w∈Q1

max
0≤i≤n

∥∇ci(w)∥, Uc = sup
w∈Q1

max
0≤i≤n

∥ci(w)∥.

(45)
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Lemma 14 Let {wk,t+1}t∈Tk
and {uk,t+1

i }1≤i≤n,t∈Tk
be all the iterates generated by Algorithm 2

for solving the subproblem (3) at the kth iteration of Algorithm 1, where Tk is a consecutive non-
negative integers starting from 0. Then we have wk,t+1 ∈ Q2 and uk,t+1

i ∈ Q2 for all t ∈ Tk and
1 ≤ i ≤ n, where

Q2 =

{
v : ∥v − u∥2 ≤ (n+ 1)3β2

(1− q2)
+ (n+ 1)β

n∑
i=1

[
ρi(r0 + 2s̄β)2 +

4

ρi
U2
∇P

]
, u ∈ Q1

}
,

(46)

U∇P = U∇f +
2(r0 + 2s̄β)

(n+ 1)β
+ U∇c (∥µ∗∥+ r0 + 2s̄β + βUc) . (47)

Proof By (38) and the definition of Pi,k in (4), one has for all w ∈ Q1 and 1 ≤ i ≤ n that

∥∇Pi,k(w)∥
(38)
= ∥∇fi(w) +∇ci(w)ΠK∗

i
(µk

i + βci(w)) +
1

(n+ 1)β
(w − wk)∥

≤ ∥∇fi(w)∥+ ∥∇ci(w)∥∥ΠK∗
i
(µk

i + βci(w))∥+
1

(n+ 1)β
∥w − wk∥

(45)

≤ U∇f + U∇c(∥µ∗
i ∥+ ∥µk

i − µ∗
i ∥+ βUc) +

1

(n+ 1)β
(∥w − w∗∥+ ∥wk − w∗∥)

(41)(43)

≤ U∇f + U∇c (∥µ∗∥+ r0 + 2s̄β + βUc) +
2(r0 + 2s̄β)

(n+ 1)β

(47)
= U∇P . (48)

Recall that Algorithm 2 with (w̃0, τ) = (wk, τk) is applicable to the subproblem (3). In addition,
recall that the subproblem (3) has an optimal solution wk

∗ (see (42)), Pi,k, 0 ≤ i ≤ n, are strongly
convex with modulus 1/[(n + 1)β]. By Lemma 4 with (Fi, w̃

∗, w̃0, σ) = (Pi,k, w
k
∗ , w

k, 1/[(n +

1)β]), we obtain that wk,t+1 ∈ Q̃ and uk,t+1
i ∈ Q̃ for all t ∈ Tk and 1 ≤ i ≤ n, where

Q̃ =

{
v : ∥v − wk

∗∥2 ≤
(n+ 1)3β2

(1− q2)
+ (n+ 1)β

n∑
i=1

(
ρi∥wk

∗ − wk∥2 + 1

ρi
∥∇Pi,k(w

k
∗)−∇Pi,k(w

k)∥2
)}

.

(49)
Notice from (44) that ∥wk

∗−wk∥ ≤ r0+2s̄β. It follows from (41), (43), and (44) that wk, wk
∗ ∈ Q1.

By these, (48), and (49), one has that

Q̃ ⊆

{
v : ∥v − wk

∗∥2 ≤
(n+ 1)3β2

(1− q2)
+ (n+ 1)β

n∑
i=1

[
ρi(r0 + 2s̄β)2 +

4

ρi
U2
∇P

]}
.

This along with (46) and the fact that wk
∗ ∈ Q1 implies that the conclusion of this lemma holds as

desired.

Let L∇f,2 be the Lipschitz constant of ∇fi, 1 ≤ i ≤ n, on Q2, and L∇c,2 be the Lipschitz
constant of ∇ci, 0 ≤ i ≤ n, on Q2. Also, we let

U∇c,2 = sup
w∈Q2

max
0≤i≤n

∥∇ci(w)∥, Uc,2 = sup
w∈Q2

max
0≤i≤n

∥ci(w)∥. (50)
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We define

L∇P,2 = L∇f,2 + (∥µ∗∥+ r0 + 2s̄β + βUc,2)L∇c,2 + βU2
∇c,2 +

1

(n+ 1)β
. (51)

By the local Lipschitz continuity of ∇fi, 1 ≤ i ≤ n, and ∇ci, 0 ≤ i ≤ n, and a similar argument
as in the proof of Lemma 6, one can observe that L∇f,2, L∇c,2, and L∇P,2 are well-defined.

To proceed, we next show that ∇Pi,k, 0 ≤ i ≤ n, are L∇P,2-Lipschitz continuous on Q2. By
the definitions of L∇f,2 and L∇c,2, (4), (38), (43), (50), and (51), one has that for all u, v ∈ Q2 and
0 ≤ i ≤ n,

∥∇Pi,k(u)−∇Pi,k(v)∥
(38)

≤ ∥∇fi(u)−∇fi(v)∥+ ∥[µk
i + βci(w)]+∥∥∇ci(u)−∇ci(v)∥

+ ∥[µk
i + βci(u)]+ − [µk

i + βci(v)]+∥∥∇ci(v)∥+
1

(n+ 1)β
∥u− v∥

(50)

≤ L∇f,2∥u− v∥+ (∥µ∗
i ∥+ ∥µk

i − µ∗
i ∥+ βUc,2)L∇c,2∥u− v∥

+ βU2
∇c,2∥u− v∥+ 1

(n+ 1)β
∥u− v∥

(43)

≤
[
L∇f,2 + (∥µ∗∥+ r0 + 2s̄β + βUc,2)L∇c,2 + βU2

∇c,2 +
1

(n+ 1)β

]
∥u− v∥

(51)
= L∇P,2∥u− v∥. (52)

Proof [Proof of Theorem 1] We first derive an upper bound for the number of outer iterations of
Algorithm 1. Recall that

∑∞
j=0 τj = 2s̄. It follows from Lemmas 11 and 13 that

min
K≤k≤2K

1

β
∥(wk+1, µk+1)− (wk, µk)∥ ≤

√
2
(
∥(w0, µ0)− (w∗, µ∗)∥+ 2β

∑∞
j=0 τj

)
β
√
K + 1

≤
√
2
(
∥(w0, µ0)− (w∗, µ∗)∥+ 4s̄β

)
β
√
K + 1

=

√
2 (r0 + 4s̄β)

β
√
K + 1

,

which then implies that

min
K≤k≤2K

{
τk +

1

β
∥wk+1 − wk∥∞

}
≤ s̄

(K + 1)2
+

√
2 (r0 + 4s̄β)

β
√
K + 1

≤

[
s̄+

√
2 (r0 + 4s̄β)

β

]
1√

K + 1
,

min
K≤k≤2K

1

β
∥µk+1 − µk∥∞ ≤

√
2 (r0 + 4s̄β)

β
√
K + 1

.

We see from these and the termination criterion that the number of outer iterations of Algorithm 1
is at most

Kϵ1,ϵ2 = 2

[
s̄+

√
2(r0 + 4s̄β)

β

]2
max{ϵ−2

1 , ϵ−2
2 } = O(max{ϵ−2

1 , ϵ−2
2 }).

We next derive an upper bound for the total number of inner iterations of Algorithm 1. Recall
from (4) that Pi,k, 0 ≤ i ≤ n, are strongly convex with modulus 1/[(n + 1)β]. In addition, notice
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from Lemma 8 that Pi,k, 0 ≤ i ≤ n, are locally Lipschitz continuous on Rd. Therefore, Algorithm 2
is applicable to the subproblem (3).

From Lemma 14, we see that all iterates generated by Algorithm 2 for solving (3) lie in Q2.
Also, in view of (52), we see that ∇Pi,k, 1 ≤ i ≤ n, are L∇P,2-Lipschitz continuous on Q2.
Therefore, by Theorem 2 with (τ, Fi, σ, L∇F , w̃

∗, w̃0) = (τk, Pi,k, 1/[(n+1)β], L∇P,2, w
k
∗ , w

k) and
the discussion at the end of Appendix C.3, one can see that the number of iterations of Algorithm 2
for solving (3) is no more than

Tk =

⌈
2 log(τk/(n+ 1 + bk))

log q̃r

⌉
+ 1 (53)

where

q̃r = max

{
q,

1

1 + r̃

}
, r̃ = min

1≤i≤n

{
ρi

(n+ 1)β(ρ2i + 2L2
∇P,2)

}
,

bk =

2
√
(n+ 1)β

n∑
i=1

(L∇P,2 + ρi) +

√√√√2(

n∑
i=1

ρi)


×

[
n∑

i=1

(
ρi
2
∥wk

∗ − wk∥2 + 1

2ρi
∥∇Pi,k(w

k
∗)−∇Pi,k(w

k)∥2
)
+

1

1− q

(
(n+ 1)2β

2
+

1

(n+ 1)β

n∑
i=1

1

ρ2i + 2L2
∇P,2

)]1/2
.

Recall from (43), (44), and the definitions of Q1 and Q2 that wk
∗ , w

k ∈ Q1 ⊆ Q2. It then follows
that

ρi
2
∥wk

∗−wk∥2+ 1

2ρi
∥∇Pi,k(w

k
∗)−∇Pi,k(w

k)∥2
(52)

≤
ρ2i + L2

∇P,2

2ρi
∥wk

∗−wk∥2
(44)

≤
ρ2i + L2

∇P,2

2ρi
(r0+2s̄β)2.

Then one has bk ≤ b̄, where

b̄ =

2
√

(n+ 1)β
n∑

i=1

(L∇P,2 + ρi) +

√√√√2(
n∑

i=1

ρi)


×

[
n∑

i=1

ρ2i + L2
∇P,2

2ρi
(r0 + 2s̄β)2 +

1

1− q

(
(n+ 1)2β

2
+

1

(n+ 1)β

n∑
i=1

1

ρ2i + 2L2
∇P,2

)]1/2
.

By bk ≤ b̄, τk = s̄/(k + 1)2, k ≤ Kϵ1,ϵ2 , and (53), one has that

Tk ≤
⌈
2 log((n+ 1 + b̄)(Kϵ1,ϵ2 + 1)2/s̄)

log(q̃−1
r )

⌉
+ 1.

Therefore, by Kϵ1,ϵ2 = O(max{ϵ−2
1 , ϵ−2

2 }), one can see that the total number of inner iterations of
Algorithm 1 is at most

Kϵ,ϵ2∑
k=0

Tk ≤ (Kϵ1,ϵ2 + 1)

(⌈
2 log((n+ 1 + b̄)(Kϵ1,ϵ2 + 1)2/s̄)

log(q̃−1
r )

⌉
+ 1

)
= Õ(max{ϵ−2

1 , ϵ−2
2 }).

This completes the proof as desired.
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Appendix E. A centralized proximal AL method

In this part, we present a centralized proximal AL method (see Algorithm 2 in [46]) for solving the
convex constrained optimization problem:

min
w

f(w) + h(w) s. t. c(w) ≤ 0, (54)

where the function f : Rd → R and the mapping c : Rd → Rm are continuous differentiable and
convex.

Algorithm 3: A centralized proximal AL method for solving problem (54)

Input: tolerances ϵ1, ϵ2 ∈ (0, 1), w0 ∈ dom(h), µ0 ≥ 0, and β > 0. for k = 0, 1, 2, . . . do
Find an approximate solution wk+1 to the proximal AL subproblem:

min
w

{
ℓk(w) = f(w) + h(w) +

1

2β

(
∥[µk + βc(w)]+∥2 − ∥µk∥2

)
+

1

2β
∥w − wk∥2

}
such that

dist∞(0, ∂ℓk(w
k+1)) ≤ τk.

Update the Lagrangian multiplier:

µk+1 = [µk + βc(wk+1)]+.

Output (wk+1, µk+1) and terminate the algorithm if

∥wk+1 − wk∥∞ + βτk ≤ βϵ1, ∥µk+1 − µk∥∞ ≤ βϵ2.

end

Appendix F. Experiment description

F.1. Linear equality constrained quadratic programming

In this subsection we consider the linear equality constrained quadratic programming problem:

min
w

n∑
i=1

(
1

2
wTAiw + bTi w

)
s. t. Ciw + di = 0, 0 ≤ i ≤ n, (55)

where Ai ∈ Rd×d, 1 ≤ i ≤ n, are positive semidefinite, bi ∈ Rd, 1 ≤ i ≤ n, Ci ∈ Rm̃×d,
0 ≤ i ≤ n, and di ∈ Rm̃, 0 ≤ i ≤ n.

For each (d, n, m̃), we randomly generate 10 instances of problem (55). In particular, for each
1 ≤ i ≤ n, we first randomly generate matrix Ai by letting Ai = UiDiU

T
i , where Di ∈ Rd×d is

a diagonal matrix, whose diagonal entries are randomly generated according to the uniform distri-
bution over [5, 10] and Ui ∈ Rd×d is a randomly generated orthogonal matrix. We then randomly
generate bi, 1 ≤ i ≤ n, Ci, 0 ≤ i ≤ n, and di, 0 ≤ i ≤ n, with all entries chosen from the standard
normal distribution.
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The computational results of Algorithm 1 and the centralized proximal AL method (abbreviated
as cProx-AL) for solving the randomly generated instances are presented in Table 1. Our aim is
to apply Algorithm 1 and a centralized proximal AL method to find a (10−3, 10−3)-KKT solution
of problem (55), and compare their performances. In particular, we solve the convex quadratic
programming subproblems (2) and (2) arising in Algorithm 1 by seeking a root to the linear equation
derived from equating the gradient to zero. In addition, the centralized proximal AL method follows
the same framework as Algorithm 1 except that the wk+1 is obtained by directly seeking a root to the
linear equation derived from equating the gradient of (3) to zero. We set parameters for Algorithm 1
and the centralized proximal AL method as w0 = (1, . . . , 1)T , µ0

i = (0, . . . , 0)T ∀0 ≤ i ≤ n,
s̄ = 0.01 and β = 1. We also set ρi = 1 ∀1 ≤ i ≤ n for Algorithm 2.

In detail, the value of d, n, and m̃ is listed in the first three columns, respectively. For each triple
(d, n, m̃), the average objective value, the average feasibility violation, the average number of outer
iterations, and the average total number of iterations over 10 random instances are given in the rest
columns.

F.2. Neyman-pearson classification

We consider the Neyman-Pearson binary classification problem:

min
w

1

n

n∑
i=1

ϕ(w; {x(i0)j }1≤j≤mi0) s. t. ϕ(w; {x(i1)j }1≤j≤mi1) ≤ ri, 1 ≤ i ≤ n, (56)

where {x(i0)j }1≤j≤mi0 and {x(i1)j }1≤j≤mi1 are the sets of samples in client i associated with labels
0 and 1, respectively, and ϕ is the binary logistic loss (see Section 4.4.1 in Hastie et al. [24])

ϕ(w; {x(is)j }1≤j≤mis) =
1

mis

mis∑
j=1

[
−swTx

(is)
j + log(1 + ew

T x
(is)
j )

]
, s ∈ {0, 1}.

We consider three real-world datasets, namely ‘breast-cancer-wisc’, ‘adult’, and ‘monks-1’,
from the UCI repository. For each dataset, we conducted an imbalanced classification task that
minimizes the binary classification loss while ensuring the loss for class 1 (minority) less than a
threshold r = 0.2. To simulate the FL setting, we divided each dataset into n folds, mimicking
distributed clients each holding the same amount of data with equal imbalanced ratios. Each exper-
iment is repeated three times to account for randomness.

We compare Algorithm 1 for solving the Neyman-Pearson classification model (56) and Algo-
rithm 2 for directly minimizing the unconstrained binary classification model:

min
w

1

n

n∑
i=1

[
ϕ(w; {x(i0)j }1≤j≤mi0) + ϕ(w; {x(i1)j }1≤j≤mi1)

]
. (57)

In particular, we apply Algorithm 1 to find an (10−2, 10−2)-KKT solution of problem (56). In
addition, we apply Algorithm 2 to find an approximate solution of (57) such that the gradient of
the objective is less than 10−2. We set the parameters for Algorithms 2 and 1 the same as the
experiments for linearly constrained quadratic programming.

The computational results for solving the Neyman-Pearson classification and unconstrained lo-
gistic regression using three real-world datasets are presented in Table 2. In detail, the first four

29



FEDERATED LEARNING WITH CONVEX GLOBAL AND LOCAL CONSTRAINTS

columns of Table 2 represent the names of the dataset, numbers of samples in class 1 and 0, number
of features, and number of clients. In the last two columns, we present the losses for class 0 and
class 1, respectively, which include results computed from the Neyman-Pearson classification and
the unconstrained logistic regression. We include the mean and max loss values for class 1 among
all local clients.

F.3. Classification with fairness constraints

In this subsection we consider the classification with global and local fairness constraints:

min
w

1

n

n∑
i=1

1

mi

mi∑
j=1

ϕ(w; (x
(i)
j , y

(i)
j )) (58a)

s. t. − ri ≤
1

m̃i

m̃i∑
j=1

ϕ(w; (x̃
(i)
j , ỹ

(i)
j ))− 1

m̂i

m̂i∑
j=1

ϕ(w; (x̂
(i)
j , ŷ

(i)
j )) ≤ ri, 0 ≤ i ≤ n. (58b)

where ϕ is the logistic loss defined as in (F.2), (x(i)j , y
(i)
j ) ∈ Rd×{0, 1}, 1 ≤ j ≤ mi, are the

feature-label pairs at client i. For each client i, the local dataset {(x(i)j , y
(i)
j )}1≤j≤mi is divided into

two sensitive groups {(x̃(i)j , ỹ
(i)
j )}1≤j≤m̃i and {(x̂(i)j , ŷ

(i)
j )}1≤j≤m̂i

. The global dataset at the central

server also includes two sensitive groups of samples {(x̃(0)j , ỹ
(0)
j )}1≤j≤m̃0 and {(x̂(0)j , ŷ

(0)
j )}1≤j≤m̂0 .

We consider the real-world dataset named ‘adult-b’ consisting of a training set and a testing set.2

Each sample in this dataset has 39 features and a binary label. We conducted a binary classification
task with fairness constraints that control the loss disparity between two sensitive groups of samples.
We allocate 22,654 samples from the training set to the local dataset at clients, and 5,659 samples
from the testing set to form the global dataset at the central server. To simulate an FL setting, we
partitioned each dataset into n folds, ensuring an equal number of samples at each client.

We apply Algorithm 1 and cProx-AL to find an (10−3, 10−3)-KKT solution of problem (58).
cProx-AL is presented in Algorithm 3, where wk+1 is obtained by applying L-BFGS method built
in scipy.optimize.minimize to solve the subproblem. We run 10 trials of Algorithm 1 and cProx-
AL, where for each run, both algorithms have the same initial point w0, randomly chosen from the
unit Euclidean sphere. We set the other parameters for Algorithm 1 and the cProx-AL method as
µ0
i = (0, . . . , 0)T ∀0 ≤ i ≤ n, s̄ = 0.001 and β = 10. We also set ρi = 108 ∀1 ≤ i ≤ n for

Algorithm 2.
The computational results for solving problems (58) are presented in Table 3. In detail, the first

column of Table 3 represents the number of clients. In the last two columns, we present the classi-
fication loss and loss disparity, respectively, which include results computed from the classification
model with fairness constraints in (58). By computing the average of 10 random trials, we include
the relative difference of the objective value between Algorithm 1 and cProx-AL, and also the mean
and max loss disparity (absolute difference of losses for two sensitive groups) among all clients
and the central server. The respective standard deviations are listed in parentheses. Comparing the
classification loss and loss disparity of Algorithm 1 and cProx-AL in Table 3 reveals that both Al-
gorithm 1 and cProx-AL can yield solutions of similar quality. Given the small standard deviation,

2. This dataset can be found in https://github.com/heyaudace/ml-bias-fairness/tree/master/
data/adult.
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Table 3: Numerical results for problem (58).

n
objective value loss disparity (≤ 0.1)

Algorithm 1 cProx-AL relative difference Algorithm 1 cProx-AL
mean max mean max

1 0.37 (9.83e-05) 0.37 (4.14e-05) 1.97e-03 (2.53e-04) 0.10 (1.14e-04) 0.10 (1.36e-04) 0.10 (3.69e-06) 0.10 (5.38e-06)
5 0.37 (3.99e-03) 0.37 (4.05e-03) 1.86e-03 (4.69e-04) 0.09 (5.34e-05) 0.10 (7.51e-05) 0.09 (3.68e-05) 0.10 (4.36e-06)
10 0.37 (6.39e-03) 0.37 (6.52e-03) 2.39e-03 (8.40e-04) 0.08 (1.68e-04) 0.10 (2.15e-05) 0.08 (1.52e-04) 0.10 (6.56e-06)
20 0.38 (9.46e-03) 0.37 (9.86e-03) 4.61e-03 (2.43e-03) 0.08 (9.75e-05) 0.10 (1.01e-04) 0.08 (4.90e-05) 0.10 (6.06e-06)

we observe that the convergence behavior of Algorithm 1 remains stable across 10 trial runs. These
observations demonstrate the ability of Algorithm 1 to solve the problem in an FL framework stably
without compromising solution quality, and it also implies the potential of our algorithm in solving
FL problems with particular nonconvex constraints.

Figure 2: Convergence behavior of loss disparity and classification loss across all local clients in
one random trial, over the outer iterations of Algorithm 1 on the adult dataset. The solid
blue and brown lines indicate the convergence behavior of the average loss disparity and
classification loss over all clients, respectively. The blue and brown shaded areas indicate
thregions between the maximum value and minimum value of loss disparity and classifi-
cation loss over all clients, respectively. The blue dashdot line indicates the convergence
behavior of the global loss disparity in the central server.

Figure 2 shows the convergence behavior of loss disparity and classification loss across all local
clients in one random trial, over the outer iterations of Algorithm 1. From this figure, we see that our
proposed method consistently relegates the loss disparities (local/global constraints) on all clients
and the central server to a level below a threshold (≤ 0.1) while also consistently minimizing the
classification losses (local objectives) on all local clients.
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