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Abstract
This paper focuses on non-monotone stochastic variational inequalities (SVIs) that may not have
a unique solution. A commonly used efficient algorithm to solve VIs is the Popov method, which
is known to have the optimal convergence rate for VIs with Lipschitz continuous and strongly
monotone operators. We introduce a broader class of structured non-monotone operators, namely
p-quasi-sharp operators (p > 0), which allows tractably analyzing convergence behavior of algo-
rithms. We show that the stochastic Popov method converges almost surely to a solution for all
operators from this class under a linear growth. In addition, we obtain the last iterate convergence
rate (in expectation) for the method under a linear growth condition for 2-quasi-sharp operators.
Based on our analysis, we refine the results for smooth 2-quasi-sharp and p-quasi-sharp operators
(on a compact set), and obtain the optimal convergence rates.

1. Introduction

Recently, the framework of variational inequalities (VIs) has attracted much attention from re-
searchers due to the wide range of its applications. A VI problem results when generalizing a
variety of optimization problems, including those involving constraints, min-max optimization, and
more general non-zero sum games. The adversarial approach in machine learning (ML) is yet an-
other motivation behind the recent interest in stochastic VIs which allows modeling stochasticity in
training.

In ML applications, including optimization of deep neural networks or generative adversarial
networks (GANs), a large condition number associated with the operator is a key source of slower
convergence rates [13]. When the condition number of the operator, defined as the ratio of the Lips-
chitz constant to the strong monotonicity constant, is large, it has been observed that the projection
method is slower than Popov and EG algorithms [1]. Furthermore, while both Popov and EG meth-
ods have the same theoretical upper bound on the number of iterations for monotone operators ([3],
[7], the Popov method requires only one oracle call per iteration, while EG requires two. For these
reasons, we focus on the Popov method.

Most results on the last iterate convergence of first-order methods for the stochastic VI involve
strong monotonicity. Weak sharpness, a weaker condition than strong monotonicity, is widely used
to show convergences in optimization and monotone VI problems [11, 17]. But in many real-
life applications (e.g., GANs where both the discriminator and generator usually are nonconvex
deep neural networks), the resulting VI is not monotone. To address this issue, we present a broad
class of structured, non-monotone, constrained VIs with non-unique solutions, called p-quasi-sharp.
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Figure 1 visualizes the relationship between our newly introduced class of operators and the existing
ones. For this setting, we now summarize our contributions.

Figure 1: Relations between different operator classes and the new class of p-quasi-sharp operators.

1.1. Our contributions

We summarize our contributions on the last iterate convergence guarantees of stochastic Popov
method for constrained non-monotone stochastic VIs with non-unique solutions (see also Table 1).
A key feature of our analysis is the use of a new type of non-monotone VIs with special oper-
ators, termed quasi-sharp. The class of monotone and weak-sharp operators is contained in the
class of quasi-sharp operators (see Figure 1). Moreover, when the VI solution is not unique, the
quasi-sharpness is a weaker condition than that of quasi-strong monotonicity. Also, we presented
an example of an operator that satisfies p-quasi sharpness, is not monotone, and does not satisfy
previously considered assumptions.

Our main contribution is proving almost sure (a.s.) convergence when the operator is assumed
to have a linear growth and quasi-sharpness. The class of linear growth operators includes Lipschitz
continuous and bounded operators. We prove a.s. convergence of the iterates to a solution, which
is a new result for this setting in contrast with the existing results showing only the convergence of
the iterate distances to the solution set. To the best of our knowledge, this is the most general result
on a.s. convergence of the stochastic Popov method.

Our second main contribution is in deriving the first known last iterate sublinear convergence
rates for linear growth operators under the quasi-sharpness assumption with p = 2. Also, leveraging
results from [16] we obtained O

(
C2R0 exp

(
−µ2K/C2

)
/µ2 + σ2/µ2K

)
when the number K of

iterations is known in advance. We then refine the analysis to Lipschitz continuous operators and
obtain O

(
LR0 exp (−µK/L) /µ+ σ2/µ2K

)
convergence rates. This rate also holds for the quasi-

strongly monotone setting wherein we recover the result in [4] for unconstrained finite-sum VIs.
Finally, we focus on convergence rates under quasi-sharpness with p ≤ 2. We derive rate bounds

for the VIs with a compact constraint set and a continuous operator. In this setting, we can verify
a linear growth condition and thus obtain asymptotic convergence. We obtained the last iterate
convergence with O

(
R0 exp (−K) + (σ2 +D2)M

2(2−p)
U /µ2K

)
rates.

1.2. Related Work

There are many works on convergence results of first order method for monotone SVI, including[8–
11, 17]. Recently, quasi-strong monotonicity was introduced in [12] to establish last iterate conver-
gence rates of projection and consensus methods for unconstrained SVIs with unique solutions. For
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Assumptions on operator F (·) Rates
∥F (u)∥ ≤ C∥u∥+D, p ∈ (0,∞) Asymptotic Convergence (Our Thm 1)

∥F (u)∥ ≤ C∥u∥+D, p = 2 C2

µ2 R0 exp[− µ2

C2 K] + σ2

µ2K
(Our Thm 2)

Lipschitz continuous, p = 2 σ2

µ2K
[8]

L
µ
R0 exp[− µ

L
K] + σ2

µ2K
[4]

L
µ
R0 exp[− µ

L
K] + σ2

µ2K
(Our Thm 3)

∥F (u)∥ ≤ D, p ≤ 2 R0 exp[−K] +
(σ2+D2)M

2(2−p)
2

µ2K
(Our Thm 4)

Table 1: Summary of the best known and our results on convergence rates of stochastic Popov method for stochastic VIs under
p-quasi sharpness assumption (see Assumption 3). Convergence rates are obtained for the case when the number K of
iterations is given and fixed. When the number K of iterations is not given, then the uniform upper bounds on the error
after k iterations are O(1/k) in all cases. Paper [8] provides a convergence rate only for strongly-monotone unconstrained
SVIs, while [4] has a convergence rate for finite-sum unconstrained VIs.

the same setting, both [6] and [4] studied EG and Popov methods, respectively, under a quasi-strong
monotonicity condition and derived O(LR0 exp[−µK/L]/µ+ σ2/µ2K) convergence rates.

We consider constrained SVIs with non-monotone operators under linear growth; we also do
not assume uniqueness of the solution. The rest of the paper is organized as follows. In Section
2, we introduce a general VI problem and provide our assumptions. In Section 3, we present our
main results on the last iterate convergence and provide convergence rates. We present discussion
in Section 4. Also, we present experiments on Popov method for p-quasi sahrp operators with linear
growth in Appendix D.

2. Variational Inequality Problem

A variational inequality problem is specified by a (nonempty) set U ⊆ Rm and an operator F (·) :
U → Rm, and denoted by VI(U,F ). For U = Rm, we obtain an unconstrained VI. The variational
inequality problem VI(U,F ) consists of determining a point u∗ ∈ U such that

⟨F (u∗), u− u∗⟩ ≥ 0 for all u ∈ U. (1)

The solution set for the VI(U,F ) is U∗ = {u∗ ∈ U | ⟨F (u∗), u− u∗⟩ ≥ 0 for all u ∈ U}.
We focus on a stochastic variational inequality problem (SVI(U,F )), corresponding to the case

when the operator F (u) = E[Φ(u, ξ)] for all u ∈ U , where ξ is a random vector. For such a
problem, we consider a stochastic variant of the Popov method [15] defined by:

uk+1 = PU (uk − αkΦ(hk, ξk)), hk+1 = PU (uk+1 − αk+1Φ(hk, ξk)), (2)

where αk > 0 is a stepsize, and u0, h0 ∈ U are arbitrary deterministic points1.
Regarding the stochastic approximation error Φ(hk, ξk)−F (hk), we assume that it is unbiased

and with a finite variance, formalized as follows.

Assumption 1 The random sample sequence {ξk} is such that for some σ > 0 and for all k ≥ 0,

E[Φ(hk, ξk)− F (hk) | hk] = 0, E[∥Φ(hk, ξk)− F (hk)∥2 | hk] ≤ σ2.

1. The results easily extend to the case when the initial points are random as long as E[∥u0∥2] and E[∥h0∥2] are finite.
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Regarding the VI(U,F ), we will assume that the set U is closed and convex. We will also
assume that the solution set U∗ is nonempty and closed. Our first assumption is a linear growth
property defined below.

Assumption 2 The operator F (·) : U → Rm has a linear growth on the set U with C ≥ 0 and
D ≥ 0 :

∥F (u)∥ ≤ C∥u∥+D for all u ∈ U.

An operator F (·) is bounded on the set U if the preceding linear growth condition is satisfied
with C = 0. A continuous operator has a linear growth over a compact set U . Moreover, when
operator F (·) is Lipschitz continuous over the set U , then it has a linear growth on U . Additionally,
we consider the p-quasi sharpness property which captures the behavior of the operator with respect
to the solution set U∗.

Assumption 3 The operator F (·) : U → Rm has a p-quasi sharpness property over U relative to
the solution set U∗, i.e., for some p > 0, µ > 0, and for all u ∈ U and all u∗ ∈ U∗,

⟨F (u), u− u∗⟩ ≥ µdistp(u, U∗). (3)

When p = 1, quasi-sharpness property is weaker than weak-sharpness and monotonicity considered
in [17], [11]. When p = 2, the 2-quasi sharpness property includes the quasi-strongly monotone
property, which has been used in [12], [6] to analyze the convergence of stochastic gradient and
extra-gradient methods. We note that an operator can posses p-quasi sharpness property but need
not necessarily be monotone. Leveraging this property, we can show convergence results for non-
monotone SVIs (and VIs). Next, we present an example of operator that satisfies p-quasi sharpness
and does not satisfy previously considered conditions. We rigorously prove the below observations
in Appendix A.

Example 1 Consider operator F (u) = c

[
sign(u1)|u1|p−1 + u2
sign(u2)|u2|p−1 − u1

]
, c =

{
2, ∥u∥ ≤ 1
1, ∥u∥ ≥ 1

with p > 0.

Then F is p-quasi monotone with µ = 22−p and has a linear growth for p ≥ 2. However, F
is not monotone and, for any p ∈ [1, 2) ∪ (2,∞), it does not satisfy positive co-monotonicity or
quasi-strong monotonicity conditions. In addition, operator F is not Lipschitz continuous.

3. Last Iterate Convergence Analysis

In this section, we present our convergence analysis of stochastic Popov method for solving for
SVI(U,F ).

3.1. Almost Sure and in-Expectation Convergence

In this section, we establish almost sure (a.s.) convergence of the stochastic Popov method for
SVI(U,F ) assuming that the stepsize is diminishing.

Assumption 4 The positive sequence {αk} is such that

αk > 0 for all k,
∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞. (4)
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The following theorem shows a.s. convergence of the method when the operator F (·) has a
linear growth and the p-quasi sharpness property. Unlike [17] and [11], our result neither requires
monotonicity of the operator F (·) nor compactness of the set U . Instead, it relies on the linear
growth condition and the p-sharpness property of the operator.

Theorem 1 Let Assumptions 1, 2, 3, and 4 hold. Then, the following statements hold the iterate
sequences {uk} and {hk} generated by the stochastic Popov method (2):

(a) The sequence {uk} and {hk} converge almost surely to some ū ∈ U , where ū is a solution
a.s., i.e. P (ū ∈ U∗) = 1.

(b) The sequences {E[∥uk∥2]} and {E[∥hk∥2]} are bounded.

(c) If the solution set U∗ is bounded, then the sequences {uk} and {hk} also converge in expec-
tation, i.e.,

lim
k→∞

E[∥uk − ū∥2] = 0, lim
k→∞

E[∥hk − ū∥2] = 0,

In the existing works on the stochastic first-order methods, such as EG and projection methods
for quasi-strongly monotone operators [6], [12], there are no results on a.s. convergence of the
iterates to a solution, except for the case when the solution set U∗ is a singleton. Our Theorem 1
shows that such a.s. convergence results are possible even when the solution set U∗ is not necessarily
a singleton.

3.2. Convergence Rates

Here, we present convergence rate results for the stochastic Popov method when the operator F (·)
has p-quasi sharpness property with p ≤ 2.

Operator F (·) with 2-quasi Sharpness Property
To achieve exponential decay in stochastic part of the convergence rate and sublinear rate in

stochastic part we use Lemma 3 of [16] and the stepize choice given in the proof of that lemma,
namely, for any given K ≥ 0, the stepsize αk, 0 ≤ k ≤ K is given by

αk =
1

d
if K ≤ d

a
or
(
K >

d

a
and k < k0

)
,

αk =
2

a
(
2d
a + k − k0

) if K >
d

a
and k ≥ k0,

(5)

where k0 = ⌈K2 ⌉ and d ≥ a > 0. Our convergence rate estimate with such a stepsize selection is
obtained assuming that the solution set U∗ is compact.

Theorem 2 Let Assumptions 1, 2, and 3 with p = 2 hold. For a given K ≥ 1, let the stepsize αk be
given as in (5) with a = µ

2 and d satisfying d−1 ≤ min
{

µ
288C2 ,

4
9µ

}
, where the constant C > 0 is

from the linear growth condition (Assumption 2). Then, the following relation holds for the iterate
sequence {uk} generated by the stochastic Popov method (2) for all K ≥ 1,

E[dist2(uK+1, U
∗)] ≤64d

µ
r1e

−µ(K−1)
4d +

144c

µ2(K − 1)
,

where r1 = E[dist2(u1, U∗) + ∥h0 − u1∥2], c = 12σ2 + 2D2 + 12M2
1 , and M1 is an upper bound

for the norms of solutions u∗ ∈ U∗, i.e., ∥u∗∥ ≤ M1 for all u∗ ∈ U∗.
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As noted earlier, a Lipschitz continuous operator F (·) on the set U with a Lipschitz constant
L satisfies a linear growth condition with C = L and D = L∥u′∥ + ∥F (u′)∥ where u′ ∈ U is an
arbitrary but fixed point. Thus, Theorem 2 applies with C = L to such an operator. By directly
applying Theorem 2 to a Lipschitz continuous operator, we would obtain a convergence rate estimate

of the form L2

µ2 C̃1r1e
− µ2

L2K + L2C̃2
µ2K

for some positive constants C̃1 and C̃2 independent of L and µ.

However, a better convergence rate result can be obtained of the form L
µ Ĉ1e

− µ
L
K + σ2Ĉ2

µ2K
, where the

positive constants Ĉ and Ĉ are independent of L and µ. We establish such an estimate by directly
exploiting the Lipschitz continuity of the operator, which also allows us to relax the boundedness
assumption for the solution set U∗ imposed in Theorem 2, as seen in the following theorem.

Theorem 3 Let Assumption 1 hold, and assume that the operator F (·) is Lipschitz continuous
over U with a constant L > 0 and satisfies Assumption 3 with p = 2. For any given K ≥ 1, let the
stepsizes αk be defined by (5) with a = µ and d ≥ max

{
2
√
3L, µ

}
. Then, the iterate sequence

{uk} generated by the stochastic Popov method (2) satisfies the following inequality for all K ≥ 1,

E
[
dist2(uK+1, U

∗)
]
≤ 32d

µ
r1e

−µ(K−1)
2d +

432σ2

µ2(K − 1)
,

where r1 = E
[
dist2(u1, U

∗) + ∥h0 − u1∥2
]
.

Operator F (·) with p-quasi Sharpness Property Here, we establish a convergence rate result
for the SVI(U, , F (·)) with the operator F (·) that has p-quasi-sharpness property with p ≤ 2. For
this result, we assume that the set U is compact.

Theorem 4 Let U be a compact convex set, and the constants MU > 0 and D > 0 be such that
∥u−u′∥ ≤ MU for all u, u′ ∈ U and ∥F (u)∥ ≤ D for all u ∈ U . Also, let Assumptions 1 and 3 with
p ≤ 2 hold. Then, for the iterate sequence {uk} generated by the stochastic Popov method (2) the
following statements are valid. For any K ≥ 1, let the stepsizes αk be given by (5) with a = µ

M2−p
U

,

and d = 2µ

M2−p
U

. Then, we have for all K ≥ 1,

E[dist2(uK+1, U
∗)] ≤ 64E[dist2(u1, U∗)]e−

(K−1)
4 +

432(σ2 + 2D2)M
2(2−p)
U

µ2(K − 1)
.

4. Discussion

We have considered non-monotone SVIs under linear growth condition on operators when the solu-
tion set is not necessarily a singleton. The class of operators with linear growth includes Lipschitz
continuous and bounded operators. Focusing on the convergence of the stochastic Popov method,
we have proposed a broad class of structured non-monotone VIs called p-quasi-sharp, which gener-
alizes the weak-sharpness condition for monotone VIs. We have proved the a.s. last iterate conver-
gence to a solution for the Popov method under p-quasi-sharpness condition for all p > 0. Among
all existing results on a.s. convergence of the Popov method, ours is the most extensive. More-
over, we showed the optimal convergence rate of the Popov method for Lipschitz continuous and
2-quasi-sharp operators.
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Appendix A. On p-Quasi Sharpness

We provide proof that operator from the Example 1 is p-quasi sharp and has linear growth. More-
over, such operator does not satisfy assumptions typically studied in the existing literature.
Proof Firstly, we find solution set of variational inequality VI(R2, F ). Since U = R2, a solution u∗

of VI(R2, F ) must satisfy F (u∗) = 0. Let u∗ be an arbitrary solution, then sign(u∗1)|u∗1|p−1+u∗2 = 0
and sign(u∗2)|u∗2|p−1 − u∗1 = 0. From the first equality it follows that sign(u∗1) = −sign(u∗2), while
from the second inequality it follows that sign(u∗2) = sign(u∗1). Hence u∗1 = u∗2 = 0, and VI(R2, F )
has a unique solution u∗ = (0, 0).

Moreover, this operator has p-quasi sharpness property with p ≥ 1 and µ = 21−p. To see this,
let ∥u∥ > 1. Then, we have:

⟨F (u), u− u∗⟩ =
〈[

sign(u1)|u1|p−1 + u2
sign(u2)|u2|p−1 − u1

]
,

[
u1
u2

]
−
[
0
0

]〉
= |u1|p + |u2|p

≥ 21−p (|u1|+ |u2|)p Jensen inequality for a convex function | · |p since p ≥ 1

≥ 21−p

(√
u21 + u22

)p

due to ∥ · ∥1 ≥ ∥ · ∥2 and monotonicity of | · |p

= 21−pdistp(u, U∗).
(6)

In case when ∥u∥ ≤ 1, the arguments are the same and we get ⟨F (u), u− u∗⟩ ≥ 22−pdistp(u, U∗).
Moreover, it can be shown that operator F (·) is not monotone for p > 1. Consider two points
u = (u1, u2)

′, where u1 = 0, u2 = 1, and v = (v1, v2)
′, where v1 = 0, v2 = 1 + 1

5(p−1) . Then,
F (u) = (2, 2)′, and F (v) = (1 + 1

5(p−1) , (1 +
1

5(p−1))
p−1)′, and we have

⟨F (u)− F (v), u− v⟩ = ⟨

[
1− 1

5(p−1)

2− (1 + 1
5(p−1))

p−1

]
,

[
0

− 1
5(p−1)

]
⟩

= − 1

5(p− 1)
(2− (1 +

1

5(p− 1)
)p−1)

≤ − 1

5(p− 1)
(2− e0.2) < 0

where the inequality holds since (1 + a/x)x ≤ ea.
Next, we show that F is discontinuous at u = (0, 1)′. Consider vk = (0, 1 + 1/k)′ and notice

that as k → ∞, vk → u, but limk→∞ ∥F (u) − F (vk)∥ =
√
2. Hence, F is discontinuous at

u = (0, 1)′. Now, we show that operator F has linear growth for p ≤ 2. In case when ∥u∥ ≤ 1,
∥F (u)∥ = 2

√
(sign(u1)|u1|p−1 + u2)2 + (sign(u2)|u2|p−1 − u1)2 ≤ 2

√
22 + 22 = 4

√
2. For
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∥u∥ > 1:

∥F (u)∥ = ∥
[
u2
−u1

]
+

[
sign(u1)|u1|p−1

sign(u2)|u2|p−1

]
∥

≤ ∥u∥+ ∥
[

sign(u1)|u1|p−1

sign(u2)|u2|p−1

]
∥

≤ ∥u∥+
√

(|u1|p−1)2 + (|u2|p−1)2

≤ ∥u∥+
√
u21 + u22 + 2

≤ 2∥u∥+
√
2.

(7)

Combining these two cases, we obtain that ∥F (u)∥ ≤ 2∥u∥+ 4
√
2 for all u ∈ R2.

Finally, we show that F does not satisfy quasi-strong monotonicity for any p ∈ (0, 2)∪ (2,∞).
To arrive at contradiction, we assume that F is quasi-strong monotone with µ > 0. Then, for all
u ∈ R2

⟨F (u), u− u∗⟩ ≥ µ∥u− u∗∥2.

Consider u = (u1, 0). Similar to the derivation in (6), we can see that

⟨F (u), u− u∗⟩ = c(|u1|p + |u2|p) = c|u1|p.

Since ∥u − u∗∥2 = ∥u∥2 = u21, the quasi-strong monotonicity would imply that the following
inequality holds for p > 0 and p ̸= 2, and for any u1 ∈ R,

c|u1|p ≥ µu21,

which is a contradiction.

Appendix B. Almost Sure and in-Expectation Convergence

In our analysis of the Popov method (2) we use the properties of the projection operator PU (·) given
in the following lemma.

Lemma 5 (Theorem 1.5.5 and Lemma 12.1.13 in [5]) Given a convex closed set U ⊂ Rm, the
projection operator PU (·) has the following properties:

⟨v − PU (v), u− PU (v)⟩ ≤ 0 for all u ∈ U, v ∈ Rm, (8)

∥u− PU (v)∥2 ≤ ∥u− v∥2 − ∥v − PU (v)∥2 for all u ∈ U, v ∈ Rm, (9)

∥PU (u)− PU (v)∥ ≤ ∥u− v∥ for all u, v ∈ Rm. (10)
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B.1. Basis Lemma

We first provide a lemma presenting the main inequality for the iterates of stochastic Popov method (2)
without any assumptions on the operator. This lemma is the basis for all the subsequent results.
Lemma 6 can be further refined for different types of operators, such as Lipschitz continuous and
operators with linear growth.

Lemma 6 Let U be a closed convex set. Then, for the iterate sequences {uk} and {hk} generated
by the stochastic Popov method (2) we surely have for all y ∈ U and k ≥ 1,

∥uk+1 − y∥2 ≤ ∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2

− 2αk⟨ek + F (hk), hk − y⟩+ 6α2
k∥ek−1∥2

+ 6α2
k ∥F (hk)− F (hk−1)∥2 + 6α2

k∥ek∥2,

where ek = Φ(hk, ξk)− F (hk) for all k ≥ 0.

Proof Let k ≥ 1 be arbitrary but fixed. From the definition of uk+1 in (2), we have ∥uk+1 − y∥2 =
∥PU (uk − αkΦ(hk, ξk)) − y∥ for any y ∈ U . Using the inequality (9) of Lemma 5 we obtain for
any y ∈ U ,

∥uk+1 − y∥2 ≤ ∥uk − αkΦ(hk, ξk)− y∥2 − ∥uk − αkΦ(hk, ξk)− uk+1∥2

= ∥uk − y∥2 − ∥uk+1 − uk∥2 − 2αk⟨Φ(hk, ξk), uk+1 − y⟩.
(11)

We next consider the term ∥uk+1 − uk∥2, where we add and subtract hk, and thus obtain

∥uk+1 − uk∥2 =∥(uk+1 − hk)− (uk − hk)∥2

=∥uk+1 − hk∥2 + ∥uk − hk∥2 − 2⟨uk − hk, uk+1 − hk⟩
=∥uk+1 − hk∥2 + ∥uk − hk∥2 − 2⟨uk − αkΦ(hk−1, ξk−1)− hk, uk+1 − hk⟩
− 2αk⟨Φ(hk−1, ξk−1), uk+1 − hk⟩,

(12)
where the last equality is obtained by adding and subtracting 2αk⟨Φ(hk−1, ξk−1), uk+1−hk⟩. Next,
we use the projection property (8) of Lemma 5, where we let v = uk − 2αkΦ(hk−1, ξk−1), u =
uk+1, and hk = PU (v) (which follows by the definition of hk in the method (2)). Then, it follows
that

⟨uk − αkΦ(hk−1, ξk−1)− hk, uk+1 − hk⟩ ≤ 0. (13)

Therefore,

∥uk+1 − uk∥2 ≥ ∥uk+1 − hk∥2 + ∥uk − hk∥2 − 2αk⟨Φ(hk−1, ξk−1), uk+1 − hk⟩ (14)

Combining (11) and (14) we can see that for any y ∈ U ,

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨Φ(hk, ξk), uk+1 − hk⟩
− 2αk⟨Φ(hk, ξk), hk − y⟩+ 2αk⟨Φ(hk−1, ξk−1), uk+1 − hk⟩

=∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨Φ(hk, ξk), hk − y⟩
+ 2αk⟨Φ(hk−1, ξk−1)− Φ(hk, ξk), uk+1 − hk⟩.

(15)

11
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To estimate the last inner product in (15), we write

⟨Φ(hk−1, ξk−1)− Φ(hk, ξk), uk+1 − hk⟩ ≤ ∥Φ(hk−1, ξk−1)− Φ(hk, ξk)∥ ∥uk+1 − hk∥.

From the definitions of uk+1 and hk+1 in (2), we have uk+1 = PU (uk − αkΦ(hk, ξk)) and hk =
PU (uk − αkΦ(hk−1, ξk−1)). Thus, by using the Lipschitz property of the projection operator (see
relation (10) in Lemma 5), we obtain ∥uk+1 − hk∥ ≤ αk∥Φ(hk−1, ξk−1) − Φ(hk, ξk)∥, implying
that

⟨Φ(hk−1, ξk−1)− Φ(hk, ξk), uk+1 − hk⟩ ≤ αk∥Φ(hk−1, ξk−1)− Φ(hk, ξk)∥2.

Upon substituting the preceding estimate back in relation (15), we have that

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨Φ(hk, ξk), hk − y⟩
+ 2α2

k∥Φ(hk, ξk)− Φ(hk−1, ξk−1)∥2.
(16)

In the last term of (16), we add and subtract F (hk) and F (hk−1). Recalling that ek = Φ(hk, ξk)−
F (hk), we obtain

∥Φ(hk,ξk)− Φ(hk−1, ξk−1)∥2

= ∥(Φ(hk, ξk)− F (hk)) + (F (hk)− F (hk−1)) + (F (hk−1)− Φ(hk−1, ξk−1))∥2

≤ 3∥Φ(hk, ξk)− F (hk)∥2 + 3∥F (hk)− F (hk−1)∥2 + 3∥F (hk−1)− Φ(hk−1, ξk−1)∥2

≤ 3∥F (hk)− F (hk−1)∥2 + 3(∥ek∥2 + ∥ek−1∥2),
(17)

where the first inequality follows from (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , which is valid for any scalars

ai, i = 1, . . . ,m, and any integer m ≥ 1. Combining relations (16) and (17), and using ek =
Φ(hk, ξk)− F (hk), we obtain the desired relation:

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨ek + F (hk), hk − y⟩
+ 6α2

k∥F (hk)− F (hk−1)∥2 + 6α2
k(∥ek∥2 + ∥ek−1∥2).

(18)

B.2. Linear Growth Condition

In the following lemma, we refine Lemma 6 for the case when the operator F (·) has a linear growth
(see Assumption 2). The part (a) of the following lemma gives a suitable relation for our conver-
gence rate analysis of the method (2), while part (b) is used for establishing almost sure convergence
of the method.

Lemma 7 Assume that U is a closed convex set and that the operator F (·) : U → Rm has a linear
growth on the set U . Then, the iterates uk and hk of the stochastic Popov method (2) satisfy the
following relations:

(a) For all y ∈ U and for all k ≥ 1,

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨ek + F (hk), hk − y⟩
+ 24α2

kC
2(∥hk∥2 + ∥hk−1∥2) + 6α2

k(∥ek∥2 + ∥ek−1∥2 + 4D2);
(19)

12
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(b) For all y ∈ U , z ∈ Rm, and for all k ≥ 1,

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨ek + F (hk), hk − y⟩
+ 72α2

kC
2(∥hk − uk∥2 + ∥uk − hk−1∥2 + 2∥uk − z∥2)

+ 6α2
k(∥ek∥2 + ∥ek−1∥2 + 4D2 + 24∥z∥2);

(20)

where ek = Φ(hk, ξk)− F (hk) for all k ≥ 0.

Proof Let k ≥ 1 and y ∈ U be arbitrary. By Lemma 6, we have

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨ek + F (hk), hk − y⟩
+ 6α2

k∥F (hk)− F (hk−1)∥2 + 6α2
k(∥ek∥2 + ∥ek−1∥2).

(21)

Using (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , which is valid for any scalars ai, i = 1, . . . ,m, and any integer

m ≥ 1, to estimate ∥F (hk)− F (hk−1)∥2, and the linear growth of operator F (·) we obtain

∥F (hk)− F (hk−1)∥2 ≤ 2∥F (hk)∥2 + 2∥F (hk−1)∥2

≤ 4C2(∥hk∥2 + ∥hk−1∥2) + 4D2.
(22)

By substituting the preceding estimate back in relation (21) we arrive at the relation in part (a).
To obtain the relation in part (b), for ∥hk∥2 we write

∥hk∥2 = ∥(hk − uk) + (uk − z) + z∥2.

where z ∈ Rm is arbitrary. Using (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , with m = 3, we find that

∥hk∥2 ≤ 3
(
∥hk − uk∥2 + ∥uk − z∥2 + ∥z∥2

)
.

Similarly, we can see that

∥hk−1∥2 ≤ 3
(
∥hk−1 − uk∥2 + ∥uk − z∥2 + ∥z∥2

)
.

Therefore,

∥hk∥2 + |hk−1∥2 ≤ 3
(
∥hk − uk∥2 + ∥hk−1 − uk∥2 + 2∥uk − z∥2 + 2∥z∥2

)
.

Upon substituting the preceding estimate back in relation (22) we obtain

∥F (hk)− F (hk−1)∥2 ≤ 12C2(∥hk − uk∥2 + ∥hk−1 − uk∥2 + 2∥uk − z∥2 + 2∥z∥2) + 4D2.
(23)

Combining the estimate in (23) with relation (21) we obtain the following relation

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨ek + F (hk), hk − y⟩
+ 72α2

kC
2(∥hk − uk∥2 + ∥uk − hk−1∥2 + 2∥uk − z∥2)

+ 6α2
k(∥ek∥2 + ∥ek−1∥2 + 4D2 + 24∥z∥2),

(24)

which is the relation stated in part (b).

In the forthcoming analysis, we use Lemma 11 [14], which is stated below.

13
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Lemma 8 [Lemma 11 [14]] Let {vk}, {zk}, {ak}, {bk} be nonnegative random scalar sequences
such that almost surely for all k ≥ 0,

E[vk+1 | Fk] ≤(1 + ak)vk − zk + bk, (25)

where Fk = {v0, . . . , vk, z0, . . . , zk, a0, . . . , ak, b0, . . . , bk}, and a.s.
∑∞

k=0 ak < ∞,
∑∞

k=0 bk <
∞. Then, almost surely, limk→∞ vk = v for some nonnegative random variable v and

∑∞
k=0 zk <

∞.

As a direct consequence of Lemma 8, when the sequences {vk}, {zk}, {ak}, {bk} are determin-
istic, we obtain the following result.

Lemma 9 Let {v̄k}, {z̄k}, {āk}, {b̄k} be nonnegative scalar sequences such that for all k ≥ 0,

v̄k+1 ≤(1 + āk)v̄k − z̄k + b̄k, (26)

where
∑∞

k=0 āk < ∞ and
∑∞

k=0 b̄k < ∞. Then, limk→∞ v̄k = v̄ for some scalar v̄ ≥ 0 and∑∞
k=0 z̄k < ∞.

We also use Lebesgue Dominated Convergence Theorem, which is stated below and can be
found, for example, in the textbook [2], Theorem 16.4, page 209.

Theorem 10 (Lebesgue Dominated Convergence Theorem) Let {fk} be a sequence of functions
and g be a function in some measure space with a measure ν, and let |fk| ≤ g almost everywhere.
If g is integrable and fk → f almost everywhere, then

∫
fkdν →

∫
fdν.

B.3. Proof of Theorem 1

We use Lemmas 8 and 9 to establish parts (a) and (b), respectively, while we use Theorem 10 to
prove part (c). (a) Using Lemma 7(b), where we set y = z = u∗ for an arbitrary u∗ ∈ U∗, after
re-arranging the terms, we obtain for all u∗ ∈ U∗ and for all k ≥ 1,

∥uk+1 − u∗∥2+∥uk+1 − hk∥2 ≤ (1 + 144α2
kC

2)∥uk − u∗∥2 − (1− 72α2
kC

2)∥uk − hk∥2

− 2αk⟨F (hk), hk − u∗⟩+ 2αk⟨ek, u∗ − hk⟩+ 72α2
kC

2∥uk − hk−1∥2

+ 6α2
k(∥ek−1∥2 + ∥ek∥2 + 24∥u∗∥2 + 4D2).

(27)

Under Assumption 3, the following relation is valid for all k ≥ 0,

⟨F (hk), hk − u∗⟩ ≥ µdistp(hk, U
∗), (28)

with p > 0 and µ > 0. Combining (28) with (27) we get for all u∗ ∈ U∗ and for all k ≥ 1,

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤(1 + 144α2
kC

2)∥uk − u∗∥2 − 2αkµdist
p(hk, U

∗)

−(1− 72α2
kC

2)∥uk − hk∥2 + 2αk⟨ek, u∗ − hk⟩
+72α2

kC
2∥uk − hk−1∥2 + 6α2

k(∥ek−1∥2 + ∥ek∥2)
+6α2

k(24∥u∗∥2 + 4D2).

(29)

By writing

72α2
kC

2∥uk − hk−1∥2 ≤ (1 + 144α2
kC

2)∥uk − hk−1∥2 − ∥uk − hk−1∥2,

14
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and regrouping some of the terms in (29), we have for all u∗ ∈ U∗ and for all k ≥ 1,

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤(1 + 144α2
kC

2)(∥uk − u∗∥2 + ∥uk − hk−1∥2)
−2αkµdist

p(hk, U
∗)− (1− 72α2

kC
2)∥uk − hk∥2

+2αk⟨ek, u∗ − hk⟩ − ∥uk − hk−1∥2

+6α2
k(∥ek−1∥2 + ∥ek∥2 + 24∥u∗∥2 + 4D2).

Next, we add 7α2
k+1∥ek∥2 to both sides of the preceding relation and, after slightly re-arranging the

terms, we obtain for all u∗ ∈ U∗ and for all k ≥ 1,

∥uk+1 − u∗∥2+∥uk+1 − hk∥2 + 7α2
k+1∥ek∥2

≤(1 + 144α2
kC

2)(∥uk − u∗∥2 + ∥uk − hk−1∥2) + 6α2
k∥ek−1∥2

− 2αkµdist
p(hk, U

∗)− (1− 72α2
kC

2)∥uk − hk∥2

+ 2αk⟨ek, u∗ − hk⟩ − ∥uk − hk−1∥2

+ 7α2
k+1∥ek∥2 + 6α2

k(∥ek∥2 + 24∥u∗∥2 + 4D2).

(30)

We next consider the term 6α2
k∥ek−1∥2 for which we write

6α2
k∥ek−1∥2 = 7α2

k∥ek−1∥2 − α2
k∥ek−1∥2 ≤ 7(1 + 144α2

kC
2)α2

k∥ek−1∥2 − α2
k∥ek−1∥2.

Upon substituting the preceding estimate back in (30) we have that for all u∗ ∈ U∗ and for all
k ≥ 1,

∥uk+1 − u∗∥2+∥uk+1 − hk∥2 + 7α2
k+1∥ek∥2

≤(1 + 144α2
kC

2)(∥uk − u∗∥2 + ∥uk − hk−1∥2 + 7α2
k∥ek−1∥2)

− α2
k∥ek−1∥2 − 2αkµdist

p(hk, U
∗)− (1− 72α2

kC
2)∥uk − hk∥2

+ 2αk⟨ek, u∗ − hk⟩ − ∥uk − hk−1∥2

+ 7α2
k+1∥ek∥2 + 6α2

k(∥ek∥2 + 24∥u∗∥2 + 4D2).

(31)

Since
∑∞

k=0 α
2
k < ∞, it follows that αk → 0, so there exists an index N ≥ 1 such that the

stepsize satisfies 1− 72α2
kC

2 ≥ 1/2 for all k ≥ N . Thus, by defining

vk = ∥uk − u∗∥2 + ∥uk − hk−1∥2 + 6α2
k∥ek−1∥2 for all k ≥ 1, (32)

from relation (31) we obtain for all u∗ ∈ U∗ and k ≥ N ,

vk+1 ≤(1 + 144α2
kC

2)vk − α2
k∥ek−1∥2 − 2αkµdist

p(hk, U
∗)− 1

2
∥uk − hk∥2

+2αk⟨ek, u∗ − hk⟩ − ∥uk − hk−1∥2 + 7α2
k+1∥ek∥2 + 6α2

k(∥ek∥2 + 24∥u∗∥2 + 4D2).
(33)

Recalling that ek = Φ(hk, ξk) − F (hk) and using the stochastic properties of ξk imposed by
Assumption 1, we have E[⟨ek, hk − u∗⟩|Fk−1] = 0 and E[∥ek∥2|Fk−1] ≤ σ2 for all k ≥ 1. Thus,
by taking the conditional expectation on Fk−1 = {ξ0, . . . , ξk−1} in relation (33), we obtain for all
u∗ ∈ U∗ and for all k ≥ N ,

E[vk+1 | Fk−1] ≤(1 + 144α2
kC

2)vk − α2
k∥ek−1∥2 − 2αkµdist

p(hk, U
∗)− 1

2
∥uk − hk∥2

−∥uk − hk−1∥2 + 7α2
k+1σ

2 + 6α2
k(σ

2 + 24∥u∗∥2 + 4D2).
(34)

15
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Notice that when u∗ ∈ U∗ is a fixed solution, then ∥u∗∥ is a constant.
Since

∑∞
k=0 α

2
k < ∞, the inequality in (34) satisfies the conditions of Lemma 8 for all k ≥ N ,

with
zk = α2

k∥ek−1∥2 + 2αkµdist
p(hk, U

∗) +
1

2
∥uk − hk∥2 + ∥uk − hk−1∥2,

ak = 144α2
kC

2, bk = 7α2
k+1σ

2 + 6α2
k(σ

2 + 24∥u∗∥2 + 4D2).

By Lemma 8 (where we shift the indices to start with k = N ), it follows that the sequence {vk}
converges a.s. to a non-negative scalar for any u∗ ∈ U∗, and almost surely we have

∞∑
k=N

α2
k∥ek−1∥2 < ∞,

∞∑
k=N

αkdist
p(hk, U

∗) < ∞,

∞∑
k=N

(∥uk − hk∥2 + ∥uk − hk−1∥2) < ∞.

Thus, it follows that
lim
k→∞

α2
k∥ek−1∥2 = 0 a.s. (35)

lim
k→∞

∥uk − hk∥ = 0 a.s. (36)

lim
k→∞

∥uk − hk−1∥ = 0 a.s. (37)

Moreover, since
∑∞

k=0 αk = ∞ , it follows that

lim inf
k→∞

distp(hk, U
∗) = 0 a.s.

Since the sequence {vk} converges a.s. for any given u∗ ∈ U∗, in view of the definition of vk
in (32) combined with relations(35) and (37), it follows that the sequence {∥uk − u∗∥2} converges
a.s. for all u∗ ∈ U∗. Thus, the sequence {uk} is bounded a.s. and, consequently, it has accumulation
points a.s. In view of relation (36), the sequences {uk} and {hk} have the same accumulation points.

Now, let {ki | i ≥ 1} be a (random) index sequence such that

lim
i→∞

distp(hki , U
∗) = lim inf

k→∞
distp(hk, U

∗) = 0 a.s. (38)

Without loss of generality we may assume that {uki} is a convergent sequence (for otherwise we
will select a convergent subsequence), and let ū be its (random) limit point, i.e.,

lim
i→∞

∥uki − ū∥ = 0 a.s. (39)

By relation (36), it follows that

lim
i→∞

∥hki − ū∥ = 0 a.s.

By continuity of the distance function dist(·, U∗), from relation (38) we conclude that dist(ū, U∗) =
0 a.s., which implies that ū ∈ U∗ almost surely since the set U∗ is closed. Since the sequence
{∥uk − u∗∥2} converges a.s. for any u∗ ∈ U∗, it follows that {∥uk − ū∥2} converges a.s., and by
relation (39) we conclude that limk→∞ ∥uk − ū∥2 = 0.

16
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(b) Taking the total expectation in (34), we obtain for all u∗ ∈ U∗ and all k ≥ N ,

E[vk+1] ≤(1 + 144α2
kC

2)E[vk]− α2
kE[∥ek−1∥2]− 2αkµE[distp(hk, U∗)]− 1

2
E[∥uk − hk∥2]

− E[∥uk − hk−1∥2] + 7α2
k+1σ

2 + 6α2
k(σ

2 + 24∥u∗∥2 + 4D2).
(40)

We can now apply Lemma 9 for k ≥ N (instead of k ≥ 0), with

v̄k = E[vk], z̄k = α2
kE[∥ek−1∥2]+2αkµE[distp(hk, U∗)]+

1

2
E[∥uk−hk∥2]+E[∥uk−hk−1∥2],

āk = 144α2
kC

2, b̄k = 7α2
k+1σ

2 + 6α2
k(σ

2 + 24∥u∗∥2 + 4D2).

Since
∑∞

k=0 α
2
k < ∞, the inequality (40) satisfies the conditions of Lemma 9 for all k ≥ N . By

Lemma 9 (where the indices are shifted to start with k = N instead of k = 0), and the definitions
of v̄k, vk in (32), and z̄k, it follows that

lim
k→∞

E[∥uk − u∗∥2 + ∥uk − hk−1∥2 + 6α2
k∥ek−1∥2] exist for every u∗ ∈ U∗, (41)

∞∑
k=N

(α2
kE[∥ek−1∥2] + 2αkµE[distp(hk, U∗)] +

1

2
E[∥uk − hk∥2] + E[∥uk − hk−1∥2]) < ∞.

Therefore, it follows that

lim
k→∞

(α2
kE[∥ek−1∥2] + E[∥uk − hk−1∥2) = 0, (42)

lim
k→∞

E[∥uk − hk∥2] = 0. (43)

From relations (41) and (42) we conclude that

lim
k→∞

E[∥uk − u∗∥2] exist for every u∗ ∈ U∗, (44)

which implies that {E[∥uk − u∗∥2]} is bounded. Hence, for a fixed u∗ ∈ U∗ and all k ≥ 0,

E[∥uk∥2] = E[∥(uk − u∗) + u∗∥2] ≤ E[(∥uk − u∗∥+ ∥u∗∥)2 ≤ 2E[∥uk − u∗∥2] + 2∥u∗∥2,

implying that the sequence {E[∥uk∥2]} is bounded. Moreover, we have that all k ≥ 0,

E[∥hk∥2] = E[∥(hk − uk) + uk∥2] ≤ E[(∥hk − uk∥+ ∥uk∥)2 ≤ 2E[∥hk − uk∥2] + 2E[∥uk∥2],

thus implying that the sequence {E[∥hk∥2]} is bounded due to relation (43) and the boundedness of
{E[∥uk∥2]}.

(c) By part (a), we have that almost surely

lim
k→∞

∥uk − ū∥2 = 0, lim
k→∞

∥hk − ū∥2 = 0,

for some random solution ū ∈ U∗. When the set U∗ is bounded, we further have that

∥uk − ū∥2 ≤ (∥uk∥+ ∥ū∥)2 ≤ 2∥uk∥2 + 2∥u∗∥2 ≤ 2∥uk∥2 + 2M2
0 ,

17
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where M0 = maxu∗∈U∗ ∥u∗∥. Similarly, we have

∥hk − ū∥2 ≤ 2∥hk∥2 + 2M2
0 .

We note that by part (b), the sequences {E[∥uk∥2]} and {E[∥hk∥2]} are bounded. By applying the
Lebesgue Dominated Convergence Theorem, with fk = ∥uk − ū∥2 and g = 2∥uk∥2 + 2M2

0 , we
conclude that

lim
k→∞

E[∥uk − ū∥2] = 0.

Similarly, applying the Lebesgue Dominated Convergence Theorem, with fk = ∥hk − ū∥2 and
g = 2∥hk∥2 + 2M2

0 , we obtain that

lim
k→∞

E[∥hk − ū∥2] = 0.

Appendix C. Convergence Rates

C.1. Auxiliary Results

In our analysis we make use of Lemma 3 and Lemma 7 from [16], as well as the sequences provided
in the proofs in [16].

Lemma 11 Let {rk} and {sk} be nonnegative scalar sequences that satisfy the following relation

rk+1 ≤ (1− aγk)rk − bγksk + cγ2k for all k ≥ 0,

where a > 0, b > 0, c ≥ 0, and

γk =
2

a
(
2d
a + k

) for all k ≥ 0,

where d ≥ a. Then, for any given K ≥ 0, the following relation holds:

b

WK

K∑
k=0

wksk + arK+1 ≤
8d2

aK2
r0 +

2c

aK
,

where wk = 2d/a+ k, 0 ≤ k ≤ K, and WK =
∑K

k=0wk.

Lemma 12 Let {rk}, {sk}, and {γk} be nonnegative scalar sequences that satisfy the following
relation

rk+1 ≤ (1− aγk)rk − bγksk + cγ2k for all k ≥ 0,

where a > 0, b > 0, c ≥ 0, and γk ≤ d−1 for some d ≥ a and for all k ≥ 0. Then, for any
given K ≥ 0, we can choose the stapsizes γk and the weights wk ≥ 0, 0 ≤ k ≤ K, such that the
following relation holds:

b

WK

K∑
k=0

wksk + arK+1 ≤ 32dr0e
−aK

2d +
36c

aK
,

where WK =
∑K

k=0wk.

18
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A specific choice of the stepsize and the weights for which the preceding lemma holds is as follows:

γk = 1
d , wk =

(
1− a

d

)−(k+1) if K ≤ d
a ,

γk = 1
d , wk = 0 if K > d

a and k < k0,

γk = 2
a( 2d

a
+k−k0)

, wk =
(
2d
a + k − k0

)2
if K > d

a and k ≥ k0, (45)

where k0 =
⌈
K
2

⌉
.

C.2. Proof of Theorem 2

Proof By equation (29) in the proof of Theorem 1, the following relation holds for all u∗ ∈ U∗

and for all k ≥ 1,

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤(1 + 144α2
kC

2)∥uk − u∗∥2 − 2αkµdist
2(hk, U

∗)

−(1− 72α2
kC

2)∥uk − hk∥2 + 2αk⟨ek, u∗ − hk⟩
+72α2

kC
2∥uk − hk−1∥2

+6α2
k(∥ek−1∥2 + ∥ek∥2 + 24∥u∗∥2 + 4D2).

(46)

The solution set U∗ is closed, so there exists a projection u∗k of the iterate uk on the optimal set
U∗, i.e., there is a point u∗k ∈ U∗ such that ∥uk − u∗k∥ = dist(uk, U

∗). Thus, by letting u∗ = u∗k in
relation (46), and noting that dist(uk+1, U

∗) ≤ ∥uk+1 − u∗k∥ we obtain for all k ≥ 1,

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤(1 + 144α2

kC
2)dist2(uk, U

∗)− 2αkµdist
2(hk, U

∗)

−(1− 72α2
kC

2)∥uk − hk∥2 + 2αk⟨ek, u∗k − hk⟩
+72α2

kC
2∥uk − hk−1∥2

+6α2
k(∥ek−1∥2 + ∥ek∥2 + 24∥u∗k∥2 + 4D2).

(47)

We next estimate the term −2dist2(hk, U
∗) in (47) by using the relation shown in (??), i.e.,

−2dist2(hk, U
∗) ≤ 2∥uk − hk∥2 − dist2(uk, U

∗).

By substituting the preceding estimate in relation (47), we obtain for all k ≥ 1,

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤(1 + 144α2

kC
2 − µαk)dist

2(uk, U
∗)

+72α2
kC

2∥uk − hk−1∥2

−(1− 2µαk − 72α2
kC

2)∥uk − hk∥2 + 2αk⟨ek, u∗k − hk⟩
+6α2

k(∥ek−1∥2 + ∥ek∥2) + 6α2
k(24∥u∗k∥2 + 4D2).

(48)
By Assumption 1, we have that E[∥ek∥2 | hk] ≤ σ2 and E[ek | hk] = 0 for all k ≥ 1, implying

that E[∥ek∥2] ≤ σ2 for all k ≥ 1, and

E[⟨ek, hk − u∗k⟩] = E [E[⟨ek, hk − u∗k⟩ | hk, u∗k]] = 0 for all k ≥ 1.
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Therefore, by taking the expectation in relation (48) and using the assumption that the set U∗ is
bounded, we obtain for all k ≥ 1,

E[dist2(uk+1, U
∗) + ∥uk+1 − hk∥2] ≤(1 + 144α2

kC
2 − µαk)E[dist2(uk, U∗)]

+72α2
kC

2E[∥hk−1 − uk∥2]
−(1− 2µαk − 72α2

kC
2)E[∥uk − hk∥2]

+12α2
k(σ

2 + 2D2 + 12M2
1 ),

(49)

where M1 > 0 is such that ∥u∗∥ ≤ M1 for all u∗ ∈ U∗.
By the stepsize choice we have that αk ≤ d−1 with d−1 ≤ µ

288C2 for all k ≥ 0, implying that
144αkC

2 ≤ µ/2, and consequently

1 + 144α2
kC

2 − µαk ≤ 1 +
µ

2
αk − µαk = 1− µ

2
αk for all k ≥ 0.

Thus, it follows that

E[dist2(uk+1, U
∗) + ∥uk+1 − hk∥2] ≤

(
1− µ

2
αk

)
E[dist2(uk, U∗)] + 72α2

kC
2E[∥hk−1 − uk∥2]

−(1− 2µαk − 72α2
kC

2)E[∥uk − hk∥2]
+12α2

k(σ
2 + 2D2 + 12M2

1 ).
(50)

Since αk ≤ µ
288C2 for all k ≥ 0, we also have

72αkC
2 ≤ µ

4
=⇒ 72α2

kC
2 ≤ µ

4
αk.

Therefore
1− 2µαk − 72α2

kC
2 ≥ 1− 2µαk −

µ

4
αk = 1− 9

4
µαk ≥ 0, (51)

where the last inequality follows from the stepsize choice so that αk ≤ d−1, and our assumption
that d−1 ≤ 4

9µ for all k. Moreover, from 1− 2µαk − 72α2
kC

2 ≥ 0, it follows that

72α2
kC

2 ≤ 1− 2µαk < 1− µ

2
αk for all k ≥ 0. (52)

By using the estimates (51) and (52) in relation (50) we obtain that for all k ≥ 1,

E[dist2(uk+1, U
∗) + ∥uk+1 − hk∥2] ≤

(
1− µ

2
αk

) (
E[dist2(uk, U∗)] + E[∥hk−1 − uk∥2]

)
+ 12α2

k(σ
2 + 2D2 + 12M2

1 ).
(53)

The equation (53) satisfies the conditions of Lemma 12 with the following identification

rk = E[dist2(uk+1, U
∗) + ∥uk+1 − hk∥2], sk = 0, γk = αk, a =

µ

2
,

d ≥ 1

min{ µ
288C2 ,

4
9µ}

, c = 12(σ2 + 2D2 + 12M2
1 ).
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By applying Lemma 12 with a time shift to start with k = 1 instead of k = 0, we obtain that for all
K ≥ 1,

aE[dist2(uK+1, U
∗) + ∥uK+1 − hK∥2] ≤32d(E[dist2(u1, U∗) + ∥h0 − u1∥2])e−

a(K−1)
2d

+
36c

a(K − 1)
. (54)

Upon dividing by a = µ
2 and omitting the term ∥uk+1 − hk∥2, we arrive at

E[dist2(uK+1, U
∗)] ≤ 64d

µ

(
E[dist2(u1, U∗) + ∥h0 − u1∥2]

)
e−

µ(K−1)
4d +

144c

µ2(K − 1)
.

C.3. Proof of Theorem 3

Proof By Lemma 6 we have that surely for all y ∈ U and k ≥ 1,

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨F (hk), hk − y⟩
− 2αk⟨ek, hk − y⟩+ 6α2

k∥F (hk−1)− F (hk)∥2 + 6α2
k

(
∥ek−1∥2 + ∥ek∥2

)
.(55)

Using the Lipschitz continuity of the operator F (·) we can bound the term ∥F (hk) − F (hk−1)∥2,
as follows

∥F (hk)− F (hk−1)∥2 ≤ L2∥hk−1 − hk∥2

≤ L2 (∥hk−1 − uk∥+ ∥uk − hk∥)2

≤ 2L2(∥hk−1 − uk∥2 + ∥uk − hk∥2),
(56)

where the last inequality follows the inequality (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , which is valid for any

scalars ai, i = 1, . . . ,m, and any integer m ≥ 1. Combining relations (55) and (56), and letting
y = u∗ ∈ U∗, we surely obtain for all u∗ ∈ U∗ and k ≥ 1,

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤∥uk − u∗∥2 − (1− 12α2
kL

2)∥uk − hk∥2

−2αk⟨F (hk), hk − u∗⟩ − 2αk⟨ek, hk − u∗⟩
+12α2

kL
2∥hk−1 − uk∥2 + 6α2

k

(
∥ek−1∥2 + ∥ek∥2

)
.

(57)

By the 2-quasi sharpness property of F (·) (Assumption 3, with p = 2), we have that ⟨F (hk), hk −
u∗⟩ ≥ dist2(hk, U

∗), thus implying that

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤∥uk − u∗∥2 − 2αkµdist
2(hk, U

∗)

−(1− 12α2
kL

2)∥uk − hk∥2 − 2αk⟨ek, hk − u∗⟩
+12α2

kL
2∥hk−1 − uk∥2 + 6α2

k

(
∥ek−1∥2 + ∥ek∥2

)
.

(58)

Using the relation (see (??))

−2dist2(hk, U
∗) ≤ 2∥uk − hk∥2 − dist2(uk, U

∗),
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we obtain surely for all u∗ ∈ U∗ and k ≥ 1,

∥uk+1 − u∗∥2 + ∥uk+1 − hk∥2 ≤(1− µαk)∥uk − u∗∥2 − (1− 2µαk − 12α2
kL

2)∥uk − hk∥2

− 2αk⟨ek, hk − u∗⟩+ 12α2
kL

2∥hk−1 − uk∥2

+ 6α2
k

(
∥ek−1∥2 + ∥ek∥2

)
.

(59)
Since U∗ is closed, there is a projection of u∗k of the iterate uk on the solution set U∗ such

that ∥uk − u∗k∥ = dist(uk, U
∗). Thus, by letting u∗ = u∗k and by noting that dist(uk+1, U

∗) ≤
∥uk+1 − u∗k∥, we can see that for all k ≥ 1,

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2| ≤(1− µαk)dist

2(uk, U
∗)

− (1− 2µαk − 12α2
kL

2)∥uk − hk∥2

− 2αk⟨ek, hk − u∗k⟩+ 12α2
kL

2∥hk−1 − uk∥2

+ 6α2
k

(
∥ek−1∥2 + ∥ek∥2

)
.

(60)

We next consider the coefficient 1 − 2µαk − 12α2
kL

2. We note that the polynomial p(s) = 1 −

2µs− 12L2s2, s ∈ R, has two real roots s1/2 =
µ±

√
µ2+12L2

12L2 . Thus, since the stepsize is selecetd
so that 0 < αk ≤ 1

2
√
3L

for all k and since we have

1

2
√
3L

=

√
12L2

12L2
≤ µ+

√
µ2 + 12L2

12L2
,

it follows that the stepsize αk satisfies

1− 2µαk − 12α2
kL

2 ≥ 0 for all k ≥ 0.

Subsequently, we have that 12α2
kL

2 ≤ 1 − 2µαk < 1 − µαk for all k. Thus, from (60) we obtain
surely for all k ≥ 1,

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2| ≤(1− µαk)

(
dist2(uk, U

∗) + ∥hk−1 − uk∥2
)

− 2αk⟨ek, hk − u∗k⟩+ 6α2
k

(
∥ek−1∥2 + ∥ek∥2

)
.

(61)

By Assumption 1, we have that E[∥ek∥2 | hk] ≤ σ2 and E[ek | hk] = 0 for all k ≥ 1. Therefore,
E[∥ek∥2] ≤ σ2 for all k ≥ 1, and

E[⟨ek, hk − u∗k⟩] = E [E[⟨ek, hk − u∗k⟩ | hk, u∗k]] = 0 for all k ≥ 1.

Hence, by taking the expectation in relation (61) we obtain for all k ≥ 1,

E
[
dist2(uk+1, U

∗) + ∥uk+1 − hk∥2
]
≤(1− µαk)E

[
dist2(uk, U

∗) + ∥hk−1 − uk∥2
]

+12α2
kσ

2.
(62)

Relation (62) satisfies the conditions of Lemma 12 with the following identification

rk = E[dist2(uk, U∗) + ∥uk − hk−1∥2], sk = 0, γk = αk, a = µ,

22



POPOV METHOD FOR NON-MONOTONE SVI

d ≥ max
{
2
√
3L, µ

}
, c = 12σ2.

Thus, by using Lemma 12 with a time shift to start with k = 1 instead of k = 0, we obtain for all
K ≥ 1,

µE[dist2(uK+1, U
∗) + ∥uK+1 − hK∥2] ≤32d(E[dist2(u1, U∗) + ∥h0 − u1∥2])e−

µ(K−1)
2d

+
36c

µ(K − 1)
.

(63)

Upon dividing by µ and substituting c = 12σ2, we find that for all K ≥ 1,

E
[
dist2(uK+1, U

∗) + ∥uK+1 − hK∥2
]
≤32d

µ

(
E[dist2(u1, U∗) + ∥h0 − u1∥2]

)
e−

µ(K−1)
2d

+
432σ2

µ2(K − 1)
,

(64)
which implies the stated relation.

C.4. Proof of Theorem 4

Proof By Lemma 6 we surely have for all y ∈ U and all k ≥ 1,

∥uk+1 − y∥2 ≤∥uk − y∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨ek + F (hk), hk − y⟩
+ 6α2

k ∥F (hk)− F (hk−1)∥2 + 6α2
k(∥ek∥+ ∥ek−1∥2).

Since the set U is compact and the operator F (·) is continuous, it follows by Corollary 2.2.5 in [5]
that the solution set U∗ of the SVI(U,F ) is a nonempty and compact set. Therefore, by letting
u = u∗ with u∗ ∈ U∗ in the preceding relation, we surely obtain for all u∗ ∈ U∗ and all k ≥ 1,

∥uk+1 − u∗∥2 ≤∥uk − u∗∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αk⟨ek + F (hk), hk − u∗⟩
+ 6α2

k ∥F (hk)− F (hk−1)∥2 + 6α2
k(∥ek∥+ ∥ek−1∥2).

The set U is compact and the operator F (·) is continuous, so there is a constant D > 0 such that
∥F (u)∥ ≤ D for all u ∈ U . Moreover, we have that {hk} ⊂ U , implying that surely for all k ≥ 1,

∥F (hk)− F (hk−1)∥2 ≤ (∥F (hk)∥+ ∥F (hk−1)∥)2 ≤ 4D2.

By combining the preceding two relations, and using the p-quasi sharpness property of the operator,
we obtain that surely for all u∗ ∈ U∗ and all k ≥ 1,

∥uk+1 − u∗∥2 ≤∥uk − u∗∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2 − 2αkµdistp(hk, U
∗)

−2αk⟨ek, hk − u∗⟩+ 24α2
k D

2 + 6α2
k(∥ek∥+ ∥ek−1∥2). (65)

Next, we estimate dist(hk, U
∗). Since U is a compact set, there is an MU > 0 such that

∥u− u′∥ ≤ MU for all u, u′ ∈ U.
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Therefore, for any u∗ ∈ U∗ ⊆ U , we have

dist(hk, U
∗) ≤ ∥hk − u∗∥ ≤ MU ,

which implies that

dist2(hk, U
∗) ≤ M2−p

U distp(hk, U
∗) =⇒ −distp(hk, U

∗) ≤ − 1

M2−p
U

dist2(hk, U
∗).

(66)
Moreover, by using the following relation (see (??))

−2dist2(hk, U
∗) ≤ 2∥uk − hk∥2 − dist2(uk, U

∗),

from (66) we obtain that

− 2dist(hk, U
∗) ≤ 1

M2−p
U

(
2∥uk − hk∥2 − dist2(uk, U

∗)
)
. (67)

Bu using (67) in relation (65) we surely obtain for all u∗ ∈ U∗ and k ≥ 1,

∥uk+1 − u∗∥2 ≤∥uk − u∗∥2 − ∥uk+1 − hk∥2 − ∥uk − hk∥2

+
αkµ

M2−p
U

(
2∥uk − hk∥2 − dist2(uk, U

∗)
)

− 2αk⟨ek, hk − u∗⟩+ 24α2
k D

2 + 6α2
k(∥ek∥+ ∥ek−1∥2). (68)

Next, we let u∗ = u∗k, where u∗k is a projection of uk on the solution set U∗, which exists since U∗

is a closed set. We also use ∥uk − u∗k∥ = dist(uk, U
∗) and dist(uk+1, U

∗) ≤ ∥uk+1 − u∗k∥ and,
thus, after re-arranging the terms in (68) we obtain that surely for all k ≥ 1,

dist2(uk+1, U
∗) + ∥uk+1 − hk∥2 ≤

(
1− αkµ

M2−p
U

)
dist2(uk, U

∗)−

(
1− 2αkµ

M2−p
U

)
∥uk − hk∥2

− 2αk⟨ek, hk − u∗⟩+ 24α2
k D

2 + 6α2
k(∥ek∥+ ∥ek−1∥2).

(69)

By Assumption 1, we have that E[∥ek∥2 | hk] ≤ σ2 and E[ek | hk] = 0 for all k ≥ 1, implying that
E[∥ek∥2] ≤ σ2 for all k ≥ 1,and

E[⟨ek, hk − u∗k⟩] = E [E[⟨ek, hk − u∗k⟩ | hk, u∗k]] = 0 for all k ≥ 1.

Therefore, by taking the expectation in relation (69) (and omitting the term ∥uk+1 − hk∥2), we
obtain for all k ≥ 1,

E[dist2(uk+1, U
∗)] ≤

(
1− αkµ

M2−p
U

)
E[dist2(uk, U∗)]−

(
1− 2αkµ

M2−p
U

)
E[∥uk − hk∥2]

+ 12α2
k(σ

2 + 2D2).

(70)
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We now consider the two stepsize choices in parts (a) and (b) separately.

(a) Since the stepsize is given by αk =
2M2−p

U
µ(3+k) for all k ≥ 0, it follows that αk ≤ M2−p

U
2µ for all

k ≥ 1. Hence, 1− 2µαk/M
2−p
U ≥ 0, implying that

E[dist2(uk+1, U
∗)] ≤

(
1− αkµ

M2−p
U

)
E[dist2(uk, U∗)] + 12α2

k(σ
2 + 2D2). (71)

The equation (71) satisfies the conditions of Lemma 11, where the recursive relation is starting with
k = 1 and with the following identification

rk = E[dist2(uk, U∗)], sk = 0, γk = αk, a =
µ

M2−p
U

, d =
2µ

M2−p
U

, c = 12(σ2 + 2D2).

(72)
By applying Lemma 11, with a time shift to start with k = 1 instead of k = 0, we find that for all
K ≥ 1,

aE[dist2(uK+1, U
∗)] ≤ 8d2

a(K − 1)2
(E[dist2(u1, U∗)]) +

2c

a(K − 1)
.

Upon dividing by a = µ
M2

, and substituting the corresponding values for d and c, we obtain

E[dist2(uK+1, U
∗)] ≤ 32

(K − 1)2
E[dist2(u1, U∗)] +

24(σ2 + 2D2)M2
U

µ2(K − 1)
.

(b) The stepsizes given by relations in (45), with a = µ

M2−p
U

and d = 2µ

M2−p
U

, satisfies αk ≤ d−1

for all k = 0, 1, . . . ,K − 1, for any K ≥ 1. Hence, we have 1 − 2µαk/M
2−p
U ≥ 0, implying that

relation (71) is valid for all k ≥ 1. Thus, Lemma 12 applies with the same identification as in (72).
Thus, by applying Lemma 12, with a time shift to start with k = 1 instead of k = 0, we obtain the
following result for all K ≥ 1,

aE[dist2(uK+1, U
∗)] ≤ 32dE[dist2(u1, U∗)]e

a(K−1)
2d +

36c

a(K − 1)
,

and after dividing by a = µ

M2−p
U

, we obtain

E[dist2(uK+1, U
∗)] ≤ 64E[dist2(u1, U∗)]e−

(K−1)
4 +

432(σ2 + 2D2)M
2(2−p)
U

µ2(K − 1)
.

Appendix D. Experiment Details

Firstly, we verify that the operator F (·) defined in (??) is Lipschitz continuous, so it satisfies As-
sumption 2. For this, we define the matrix J , as follows

J =

[
A B

−B′ C

]
.
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Then, for all u, v ∈ U we have that

∥F (u)− F (v)∥ = ∥J(u− v)∥ =
√

⟨J ′J(u− v), u− v⟩,

where

J ′J =

[
A′ −B
B′ C ′

] [
A B

−B′ C

] [
A′A+BB′ A′B −BC
B′A− C ′B′ B′B + C ′C

]
.

Therefore, the Lipschitz constant L for the operator F (·) is the square root of the largest eigenvalue
of the matrix J ′J , i.e., L =

√
λmax(J ′J).

Now, we show that the operator F (·) satisfies Assumption 3 with p = 2. In particular, we
show that the operator F (·) is strongly monotone and identify the unique solution to the VI(U,F ),
which implies that Assumption 3 holds with p = 2. To show that F (·) is strongly monotone, we let
u, v ∈ Rm+s be arbitrary, and note that we have

⟨F (u)− F (v), u− v⟩ = ⟨J(u− v), u− v⟩

Let z = u− v ∈ Rm+s, and note that z = [z1, z2]
′ with z1 ∈ Rm and z2 ∈ Rs. Thus, we have

⟨z, J ′z⟩ = [z1, z2]

[
A′ −B
B′ C ′

] [
z1
z2

]
= ⟨z1, Az1⟩+ ⟨z2, B′z1⟩ − ⟨z1, Bz2⟩+ ⟨z2, Cz2⟩
= ⟨z1, Az1⟩+ ⟨z2, Cz2⟩
≥ µA⟨z1, z1⟩+ µC⟨z2, z2⟩
≥ min{µA, µC}∥z∥2,

where the first inequality in the preceding relation holds since A and C are symmetric positive defi-
nite matrices. Hence, the operator F (·) is strongly monotone with the constant µ = min{µA, µC}.

D.1. Experiments

We consider the following finite-sum min-max game with quadratic pay-off function as in [12]:

min
u1∈Rm

max
u2∈Rs

1

n

n∑
i=1

fi(u1, u2),

where for each i = 1, . . . , n, the function fi(·) is given by

fi(u1, u2) =⟨u1, Aiu1⟩+ ⟨u1, Biu2⟩ − ⟨u2, Ciu2⟩+ ⟨ai, u1⟩ − ⟨ci, u2⟩.

To formulate the preceding min-max problem as a finite-sum VI problem, we define u =
[u1, u2]

′ and the operator for every i = 1, . . . , n

Fi(u) =

[
Ai Bi

−B′
i Ci

]
u+

[
ai
ci

]
for all u ∈ Rm+s, (73)

and we let

F (u) =
1

n

n∑
i=1

Fi(u). (74)
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POPOV METHOD FOR NON-MONOTONE SVI

In this notation, the corresponding VI(U,F ) for the min-max problem consists of determining a
point u∗ ∈ Rm+s such that

⟨F (u∗), u− u∗⟩ ≥ 0 for all u ∈ U, with U = Rm+s. (75)

We view the preceding VI(U,F ) problem as a stochastic VI where

F (u) = E[Φ(u, ξ)],

where ξ is a uniform random variable taking values in the set {1, 2, . . . , n}, with

Φ(u, i) = fi(u) when ξ = i for i ∈ {1, 2, . . . , n}.

Since the constraint set is U = Rm+s, the SVI(U,F ) in (75) reduces to the problem of deter-
mining a point u∗ ∈ Rm+s such that F (u∗) = 0, i.e. E[Φ(u∗, ξ)] = 0.

In our experiments, the number n of random realizations of the uniform random variable ξ is
n = 20. For every i = 1, . . . , n, we generate positive definite symmetric matrices Ai and Ci with
smallest eigenvalues µA > 0 and µC > 0, respectively. For all i = 1, . . . , n, to generate symmetric
matrix Ai, firstly, we generate eigenvalues uniformly from on [µA, LA] such that µA, LA are always
generated. Then we generate a square random matrix Si ∈ Rm, do QR decomposition Si = QiRi,
and get matrix Ai as Ai = QiΛiQ

′
i, where Λi is a diagonal matrix with generated eigenvalues. We

follow the same generation process for Ci matrices. For every i = 1, . . . , n, the matrix Bi and
vectors ai, ci are sampled from a zero mean normal distribution with variances σ2

B = 1/(m+ s)2,
σ2
bias = 1/(m+ s), respectively. We set threshold for both methods k0 = 200, and the same values

for four parameters µA, µC , LA, LC as in Section ??. The results are presented in Figure 2.
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Figure 2: Comparison of stochastic Popov method and stochastic projection method with stepsize
rule given in (5) and k0 = 200 for a finite-sum VI.
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