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Abstract

In this paper, we consider the problem of constrained maximization of the minimum
of a set of submodular functions, in which the goal is to find solutions that are
robust to worst-case values of the objective functions. Unfortunately, this problem
is both non-submodular and inapproximable. In the case where the submodular
functions are monotone, an approximate solution can be found by relaxing the
problem. We propose an algorithm called GENERALIZED SATURATE (GENSAT)
that exploits the submodular structure of the problem and, as a result, returns a near-
optimal solution with a constant-factor approximation guarantee on the relaxed
problem. GENSAT can handle any submodular constraint, e.g. matroids, cover, and
knapsack, and is compatible with any submodular maximization algorithm.

1 Introduction

Submodular function optimization problems have been well studied. Recent advancements have
looked at even harder optimization problems that, while not submodular, have submodular structure.
One particular problem is constrained maximization of the minimum of submodular functions, i.e.,
finding a solution that is robust to worst-case values of the objective functions. While this problem is
NP-hard, inapproximable, and non-submodular, a relaxed version can be approximately solved if
either the constraint or the problem is relaxed [7, 9]. Both of these methods rely on the saturation
trick, in which a submodular surrogate problem is substituted for the original and maximized. The
solution to the surrogate problem can then be used to find an approximation to the relaxed problem.
Maximizing the minimum of a set of submodular functions is useful in problems like robust sensor
selection, robust observation selection, submodular fair allocation, and other worst-case optimization
problems [9, 7, 1].

Our main contribution is the proposed optimization algorithm, GENERALIZED SATURATE (GENSAT),
that is related to SATURATE [7]. GENSAT maximizes the minimum of a set of submodular functions
subject to any submodular constraint, e.g. matroids, cover, and knapsack, rather than just cardinality
constraints. As a result, GENSAT offers a new strategy for robust submodular optimization over
constraint sets (such as matroids) that are not easily expanded as in the case of a cardinality constraints.
In section 2, we review submodularity and matroids. In section 3, we describe GENSAT. In section 4
we provide experimental results that demonstrate the efficacy of GENSAT. We conclude in section 5.

2 Submodularity

Submodularity is a property that describes set functions similar to how convexity describes func-
tions in a continuous space. Rather than exhaustively searching over all combinations of subsets,
submodular functions provide a fast and tractable framework to compute a solution [8, 4, 6].

Let the set of available objects, known as the ground set, be denoted as V . A submodular function
f maps a set of objects denoted by a binary indicator vector of length V to a real number. The
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binary indicator vector is represented by the expression 2V since the binary elements can take one of
two values and are indexed by elements of set V . Since a value of 1 or 0 for the ith element of the
indicator vector denotes the inclusion or exclusion of the ith element of the ground set V , any subset
A ⊆ V can be placed in one-to-one correspondence with incidence vectors.

Submodularity can be expressed via the notion of diminishing returns, i.e., the incremental gain
of the objective diminishes as the context grows. If we define the incremental gain of adding
v to A as f (v|A) = f (A ∪ {v}) − f (A), then submodularity is defined as any function with
f (v|A) ≥ f (v|B) for all A ⊆ B ⊂ V and a v /∈ B.

Submodularity is very closely tied to structures known as matroids, which generalize the notion of
linear independence in vector spaces [2]. One can think of matroids as a generalization of matrices,
which extend the definition of rank beyond column vectors of a matrix to more general independent
subsets over a finite ground set. More importantly, submodular function optimization allows for
matroid independence constraints to be placed on the problem, which means complicated variable
dependence patterns can be encoded into the problem. Though matroids are combinatorial objects
that grow exponentially with ground set size, their submodular nature allows approximate solutions
in polynomial time. Given a finite set V and a finite set of subsets I = {I1, I2, . . . }, the pair (V, I)
is said to be a matroid when the family of sets I satisfies the following three properties:

1. ∅ ∈ I,
2. I1 ⊆ I2 ∈ I,
3. I1, I2 ∈ I, |I1| < |I2| =⇒ ∃v ∈ I2\I1 : I1 ∪ v ∈ I.

3 Proposed algorithm: GENERALIZED SATURATE (GENSAT)

We consider the constrained robust maximization problem given by
A∗ ∈ argmax

A∈C
min
i
fi (A) , (1)

where C denotes a family a feasible sets that are compatible with submodular optimization, e.g.
matroid, a knapsack, cover, or other submodular constraint.

To optimize the Equation (1), we develop a novel algorithm GENSAT, which generalizes the SATU-
RATE algorithm created by Krause et al. [7]. Krause et al. use SATURATE to optimize an objective
function of the form

A∗ ∈ argmax
|A|≤k

min
i
fi (A) (2)

where fi (A) is a set of monotone submodular functions. SATURATE solves this worst-case optimiza-
tion problem by proposing an alternative formulation and relaxing the cardinality constraint from
|A| ≤ k to |A| ≤ αk. As long as α is large enough, the solution Â from the SATURATE algorithm
guarantees that

minifi(Â) ≥ max
|A|≤k

min
i
fi (A) and |Â| ≤ αk.

Krause et al. claim that the only way to achieve a non-trivial guarantee is to relax the constraint,
which limits both the types of constraints that can be applied to the problem as well as the values the
objective functions can take, i.e. integral or rational valued objective functions. Matroid constraints,
for instance, have no immediately obvious relaxation. One way to relax the matroid constraint,
however, might be to expand the bases of the matroid, which may lead to undesirable solutions.
However, there is another way to achieve non-trivial guarantees, which is to relax the objective itself,
leaving the constraints intact, and produce a fractional bound on the objective function, something
that is made possible thanks to the use of submodularity. The proposed algorithm, GENSAT, uses this
alternative approach to find a solution such that a fraction γ of the submodular functions are above a
minimum value β. Moreover, the user can set particular values of β or γ, as long as β is less than the
submodular guarantee α and γ < 1. The derivation for the lower bound is given below.

For a fixed value of c, which can be thought of as the saturation level, we can determine if fi (A) ≥ c
from equation (1) via submodular maximization of the following surrogate function:

f c (A) =
1

M

M∑
i=1

min{fi (A) , c}. (3)
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f c(A) is a submodular function, because it is a non-negatively weighted sum of functions
min{fi (A) , c} which are submodular [5]. At each iteration of GENSAT, we run a submodular
maximization algorithm like the one described in Algorithm 2, which selects the element which
provides the best incremental gain in the objective and does not violate the constraint.

GENSAT is outlined in Algorithm 1. Given monotone submodular functions (f1, ..., fM ), approxi-
mation guarantee α for the matroid constrained submodular maximization problem, and tolerance
threshold ε, we first set cmin and cmax to values that ensure the true optimal value lies in the interval.
While performing a binary search over c, we test the value of the approximate solution f c(Â) against
the lower bound αc. If the approximate solution is less than the lower bound, we know that the
true optimal is less than c, so we limit the search to the lower half of the interval. Likewise, if the
lower bound is met, we store the solution (which, as we describe below, is fractionally good w.r.t. the
current c) and then continue attempting to find a better one (higher c) by searching over the upper
half of the interval. We stop when the range falls within the tolerance.

Algorithm 1 GENSAT (f1, ..., fM , α, ε)

1: cmin ← 0, cmax ← minifi (V )
2: while (cmax − cmin) > ε do
3: c← (cmax − cmin) /2
4: f c (A)← 1

M

∑M
i=1 min{fi (A) , c}

5: Â← GREEDY (f c, c)

6: if f c(Â) < αc then
7: cmax ← c
8: else
9: cmin ← c, Abest ← Â

10: end if
11: end while
12: return Abest

Algorithm 2 GREEDY (f c, c)

1: A← ∅
2: while ∃a ∈ V \A s.t. A ∪ {a} ∈ C
3: and f c (a|A) > 0 do
4: S ← {a ∈ V \A : A ∪ {a} ∈ C}
5: s∗ ← argmaxs∈Sf

c (a|A)
6: A← A ∪ {s∗}
7: end while
8: return A

Theorem 1. Given a value β < α, GENSAT finds a solution Â that guarantees the following fraction
γ of the M functions min{fi

(
Â
)
, c} ≥ βc:

γ ≥ α− β
1− β

where α is the approximation guarantee for matroid independence set constrained submodular
maximization problem.

Proof: f c(A) ≥ c only if mini fi(A) ≥ c. When all fi(A) ≥ c, then f c(A) = c. Likewise, when
any fi(A) < c then the f c(A) < c, since the maximum value of f c(A) is c. The greedy solution
Â for maximizing a monotone submodular function subject to a constraint is f c(Â) ≥ αf c(A∗),
where α depends on the algorithm chosen and the constraint. If line 6 of Algorithm 1 is true, then
f c(Â) < αc which implies that mini fi(A

∗) < c. Line 6 being true also implies that c is too
large, so cmax ← c. At line 12 of Algorithm 1, (cmax − cmin) ≤ ε and the true optimal value
mini fi(A

∗) is in the interval [cmin, cmax]. The submodular approximation guarantee ensures that
f c(Â) ≥ αf c(A∗) and f c(Â) ≥ αc. Given a value for β, the terms of f c(Â) can be split into two
groups, one that have value less than βc and the other greater than or equal to βc:

f c(Â) =
1

M

∑
i:min{fi(A),c}<βc

min{fi (A) , c}+
1

M

∑
i:min{fi(A),c}≥βc

min{fi (A) , c}.

Let γ be the fraction of terms that meet the βc threshold. Then, the two summation terms become
f c(Â) = (1− γ)βc+ γc ≥ αc. Rearranged, the expression becomes γ ≥ α−β

1−β . �

A visualization of the lower bound βc over values of the saturation level c and fractional number of
functions bγMc for M = 8 is shown in figure 1. In this case, α = 1/2, which is the submodular
guarantee for a monotone submodular function constrained by a single matroid via the greedy
algorithm [3]. Notice that the bound becomes trivial, (βc = 0), when γ ≥ α, i.e. where bγMc ≥ 5.
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Figure 1: Visualization of lower bound βc as the
saturation level c and the fractional guarantee
bγMc vary for M = 8 and α = 1/2. Note
that the bound worsens as we demand that a
larger fraction γ of the functions have non-trivial
minimum values and if the algorithm returns
low values of the saturation level c. Also note
that the bound becomes trivial, (βc = 0), when
γ ≥ α, i.e. where bγMc ≥ 5.

5 10 15 20

Number of guaranteed functions ⌊γM⌋

0

0.2

0.4

0.6

0.8

1

F
ra
ct
io
n
a
l
m
in
im

u
m

p
ro
x
im

it
y

Exhaustive search (optimal)
GenSat (proposed)
GenSat lower bound

Figure 2: Fractional minimum proximity results
averaged across 100 realizations of a M = 24
sensor placement problem, comparing the pro-
posed GENSAT (dashed blue line) method to ex-
haustive search (solid green line), and submodu-
lar guarantee lower bound on GENSAT using the
forward greedy algorithm (solid red line). GEN-
SAT achieves near-optimal performance, even
when the bound is trivial.

4 Experiment

In this section, we test GENSAT on a synthetic sensor placement problem in which the goal is to select
a set Â of sensor locations to maximize the minimum proximity between all locations and sensors,
while meeting restrictions on how many sensors can be placed in particular regions. The ground set
V consists of all possible locations for the sensors. The objective functions in the min are facility
location functions given as fi = maxa∈A{wia}, where wia is the proximity between location i ∈ V
and sensor a ∈ A. The randomly generated symmetric proximity matrix describes the closeness
between locations and sensors and has values uniformly sampled from [0, 1]. The constraint on the
number of sensors that can be placed in a given region is encoded in a randomly generated partition
matroid, with four partitions and partition cardinality constraints of three. We use the forward greedy
algorithm described in algorithm 2, so α = 1/2. We run 100 trials, each with a different similarity
matrix and partition matroid, and compare the estimated solution against the true optimal solution A?
found via exhaustive search over the maximal independent sets of the partition matroid.

Results are shown in figure 2. The optimal (solid green line) and estimated (dashed blue line)
fractional minimum proximity are computed over all fractions γ of the M functions. The fractional
minimum proximity is computed as min

j∈Jγ
fj(A), where Jγ is the set of indices of the bγMc functions

fi with the greatest value. The lower bound βc (solid red line) from theorem 1 is computed for every
fraction γ of the M functions as well. Since this lower bound is bicriterion, the minimum proximity
β could be fixed to find the fraction of functions γ that meet the threshold βc. Note that the proposed
GENSAT algorithm nearly matches the optimal exhaustive search approach, even in the region where
the bound becomes trivial (i.e., where γ > α⇒ bγMc ≥ 13⇒ β = 0).

5 Conclusion

Constrained maximization of the minimum of a set of monotone submodular functions has several
applications in machine learning, including robust sensor selection, robust observation selection, and
submodular fair allocation. While this problem is non-submodular, NP-hard, and inapproximable, it
is not entirely intractable. In this paper, we show that through relaxation of the minimum, a fraction
of the functions in the minimum are lower-bounded. We present the algorithm GENSAT that achieves
the lower bound and derive the formula theoretical lower bound. We then demonstrate that GENSAT
can obtain near optimal performance on a matroid-constrained sensor placement problem.
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