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Abstract

We give the first dimension-efficient algorithms for learning Rectified Linear Units
(ReLUs), which are functions of the form x 7→ max(0, w · x) with w ∈ Sn−1.
Our algorithm works in the challenging Reliable Agnostic learning model of Kalai,
Kanade, and Mansour [10] where the learner is given access to a distribution D
on labeled examples but the labeling may be arbitrary. We construct a hypothesis
that simultaneously minimizes the false-positive rate and the loss on inputs given
positive labels by D, for any convex, bounded, and Lipschitz loss function.
The algorithm runs in polynomial-time (in n) with respect to any distribution on
Sn−1 (the unit sphere in n dimensions) and for any error parameter ε = Ω(1/ log n)
(this yields a PTAS for a question raised by F. Bach on the complexity of maximiz-
ing ReLUs). These results are in contrast to known efficient algorithms for reliably
learning linear threshold functions, where ε must be Ω(1) and strong assumptions
are required on the marginal distribution. We can compose our results to obtain the
first set of efficient algorithms for learning constant-depth networks of ReLUs.
Our techniques combine kernel methods and polynomial approximations with a
“dual-loss” approach to convex programming. As a byproduct we obtain a number
of applications including the first set of efficient algorithms for “convex piecewise-
linear fitting” and the first efficient algorithms for noisy polynomial reconstruction
of low-weight polynomials on the unit sphere.

1 Introduction

Let X = Sn−1, the set of all unit vectors in Rn, and let Y = [0, 1]. We define a ReLU (Rectified
Linear Unit) to be a function f : X → Y equal to max(0, w · x) where w ∈ Sn−1 is a fixed element
of Sn−1 and (w · x) denotes the standard inner product. The ReLU is a key building block in the area
of deep nets, where the goal is to construct a network or circuit of ReLUs that “fits” a training set
with respect to various measures of loss. Recently, the ReLU has become the “activation function of
choice” for practitioners in deep nets, as it leads to striking performance in various applications [14].

Surprisingly little is known about the computational complexity of learning even a single ReLU.
In this work, we provide the first set of efficient algorithms for learning a ReLU. The algorithms
succeed with respect to any distribution D on Sn−1, tolerate arbitrary labelings (equivalently viewed
as adversarial noise), and run in polynomial-time for any accuracy parameter ε = Ω(1/ log n). This
is in contrast to the problem of learning threshold functions, i.e., functions of the form sign(w · x),
where only computational hardness results are known (unless stronger assumptions are made on the
problem).
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Before formally defining our learning model and stating our results, we recall the following two
fundamental problems: linear regression and learning a threshold function.
Problem 1.1 (Ordinary Least Squares). LetD be a distribution on Sn−1×[0, 1]. Given i.i.d. examples
drawn from D, find w ∈ Sn−1 that minimizes E(x,y)∼D[(w · x− y)2].

Problem 1.2 (Agnostically Learning a Threshold Function). LetD be a distribution on Sn−1×{0, 1}.
Given i.i.d. examples drawn from D, find w ∈ Sn−1 that minimizes Pr(x,y)∼D[sign(w · x) 6= y].

The term agnostic refers to the fact that the labeling on {−1, 1} may be arbitrary. In this work, we
relax the notion of success to improper learning, where the learner may output any polynomial-time
computable hypothesis achieving a loss that is within ε of the optimal solution from the concept class.

Taken together, these two problems are at the core of many important techniques from modern
Machine Learning and Statistics. It is well-known how to solve the Ordinary Least Squares problem
and other variants of linear regression efficiently. We know of multiple polynomial-time solutions, all
extensively in practice [17]. In contrast, the threshold learning problem defined above is thought to
be computationally intractable due to the many existing hardness results in the literature [3, 7, 11, 12]!

The ReLU is a hybrid function that lies “in-between” a linear function and a threshold function in the
following sense: restricted to inputs x such that w · x > 0, the ReLU is linear, and for inputs x such
that w · x ≤ 0, the ReLU thresholds the value w · x and simply outputs zero. In this sense, we could
view the ReLU as a “one-sided” threshold function. Since learning a ReLU has aspects of both linear
regression and threshold learning, it is not straightforward to identify a notion of loss that captures
both of these aspects.

We introduce a natural model for learning ReLUs inspired by the Reliable Agnostic learning model
that was introduced by Kalai et al. [10] in the context of Boolean functions. The goal will be to
minimize both the false positive rate and a loss function (for example, square-loss) on points the
distribution labels non-zero. In this work, we give efficient algorithms for learning a ReLU over the
unit sphere with respect to any loss function that satisfies mild properties (convexity, monotonicity,
boundedness, and Lipschitz-ness). The Reliable Agnostic model is motivated by the Neyman-Pearson
criteria, and is intended to capture settings in which false positive errors are more costly than false
negative errors (e.g., spam detection) or vice versa. We observe that the asymmetric manner in
which the Reliable Agnostic model [10] treats different types of errors naturally corresponds to the
one-sided nature of a ReLU. In particular, there may be settings in which mistakenly predicting a
positive value instead of zero carries a high cost.

More formally, for a function h and distribution D over Rn × [0, 1] define the following losses

L=0(h) = Pr
(x,y)∼D

[h(x) 6= 0 ∧ y = 0]

L>0(h) = E
(x,y)∼D

[`(h(x), y) · I(y > 0)].

Here, ` is a desired loss function, and I(y > 0) equals 0 if y ≤ 0 and 1 otherwise. These two
quantities are respectively the false-positive rate and the expected loss (under `) on examples for
which the true label y is positive.1

Let C be a class of functions mapping Sn−1 to [0, 1] (e.g., C may be the class of all ReLUs). Let
C+ = {c ∈ C | L=0(c) = 0}. We say C is reliably learnable if there exists a learning algorithm A
that (with high probability) outputs a hypothesis that 1) has at most ε false positive rate and 2) on
points with positive labels, has expected loss that is within ε of the best c from C+. That is, the hy-
pothesis must be both reliable and competitive with the optimal classifier from the class C+ (agnostic).

2 Main Results

All of our results hold for loss functions ` that satisfy convexity, monotonicity, boundedness, and
Lipschitz-ness. For brevity, we avoid making these requirements explicit in the theorem statements,
and we omit the dependence of the runtime on the failure probability δ of the algorithm or on the
boundedness and Lipschitz parameters of the loss function.

1We restrict Y = [0, 1] as it is a natural setting for the case of ReLUs. However, our results can easily be
extended to larger ranges.
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Theorem 2.1. Let C = {x 7→ max(0,w · x) : ‖w‖2 ≤ 1} be the class of ReLUs with weight
vectors w satisfying ‖w‖2 ≤ 1. There exists a learning algorithm A that reliably learns C in time
2O(1/ε) · nO(1).
Remark 2.2. We can obtain the same complexity bounds for learning ReLUs in the standard
agnostic model with respect to the same class of loss functions. This yields a PTAS (polynomial-time
approximation scheme) for an optimization problem regarding ReLUs posed by Bach [2].

For the problem of learning threshold functions, all known polynomial-time algorithms require strong
assumptions on the marginal distribution (e.g., Gaussian [11] or large-margin [18]). In contrast,
for ReLUs, we succeed with respect to any distribution on Sn−1. We leave open the problem of
improving the dependence of Theorem 2.1 on ε. We note that for the problem of learning threshold
functions—even assuming the marginal distribution is Gaussian—the run-time complexity must be
at least nΩ(log 1/ε) under the widely believed assumption that learning sparse parities is hard [13].
Further, the best known algorithms for agnostically learning threshold functions with respect to
Gaussians run in time nO(1/ε2) [4, 11]. Contrast this to our result for learning ReLUs, where we give
polynomial-time algorithms even for ε as small as 1/ log n.

We can compose our results to obtain efficient algorithms for small-depth networks of ReLUs. For
brevity, here we state results only for linear combinations of ReLUs (which are often called depth-two
networks of ReLUs, see, e.g., [5]).
Theorem 2.3. Let C be a depth-2 network of ReLUs with k hidden units. Then C is reliably learnable
in time 2O(

√
k/ε) · nO(1).

The above results are perhaps surprising in light of the hardness result due to Livni et al. [15] who
showed that for X = {0, 1}n, learning the difference of even two ReLUs is as hard as learning a
threshold function.

We also obtain results for noisy polynomial reconstruction on the sphere (equivalently, agnostically
learning a polynomial) with respect to a large class of loss functions:
Theorem 2.4. Let C be the class of polynomials p : Sn−1 → [−1, 1] in n variables such that that
the total degree of p is at most d, and the sum of squares of coefficients of p (in the standard
monomial basis) is at most B. Then C is agnostically learnable under any (unknown) distribution
over Sn−1 × [−1, 1] in time poly(n, d,B, 1/ε).

Andoni et al. [1] were the first to give efficient algorithms for noisy polynomial reconstruction over
non-Boolean domains. In particular, they gave algorithms that succeed on the unit cube but require
an underlying product distribution and do not work in the agnostic setting (they also run in time
exponential in the degree d).

We also establish a novel connection between learning networks of ReLUs and a broad class of
piecewise-linear regression problems studied in machine learning and optimization. The following
problem was defined by Boyd and Magnani [16] as a generalization of the well-known MARS
(multivariate adaptive regression splines) framework due to Friedman [9]:
Problem 2.5 (Convex Piecewise-Linear Regression: Max k-Affine). Let C be the class of functions
of the form f(x) = max(w1 · x, . . . ,wk · x) with w1, . . . ,wk ∈ Sn−1 mapping Sn−1 to R. Let D
be an (unknown) distribution on Sn−1 × [−1, 1]. Given i.i.d. examples drawn from D, output h such
that E(x,y)∼D[(h(x)− y)2] ≤ minc∈C E(x,y)∼D[(c(x)− y)2] + ε .

Applying our learnability results for networks of ReLUs, we obtain the first polynomial-time algo-
rithms for solving the above max-k-affine regression problem and the sum of max-2-affine regression
problem when k = O(1). Boyd and Magnani specifically highlight the case of k = O(1) and provide
a variety of heuristics; we obtain the first provably efficient results.
Theorem 2.6. There is an algorithm A for solving the convex piecewise-linear fitting problem (cf.
Definition 2.5) in time 2O((k/ε)log k) · nO(1).

We can also use our results for learning networks of ReLUs to learn the so-called “leaky ReLUs” and
“parameterized” ReLUs (PReLUs). We obtain these results by composing various “ReLU gadgets,”
i.e., constant-depth networks of ReLUs with a small number of bounded-weight hidden units.

We also establish the first hardness results for learning a ReLU. These results highlight the difference
between learning Boolean and real-valued functions and justify our focus on input distributions over
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Sn−1, rather than the Boolean hypercube. Notice that for the domain X = {0, 1}n, the conjunction
of literals x1, . . . , xk can be computed exactly as max(0, x1 + · · ·+ xk − (k − 1)). Due to known
connections between agnostically learning conjunctions and learning sparse parities with noise [8]
we obtain the following result.
Theorem 2.7. Let C be the class of ReLUs over the domain X = {0, 1}n. Then any algorithm for
reliably learning C in time g(ε) · poly(n) for any function g will give a polynomial time algorithm for
learning ω(1)-sparse parities with noise (for any ε = O(1)).

Efficiently learning sparse parities (of any superconstant length) with noise is considered one the
most challenging problems in theoretical computer science.

3 Techniques and Related Work

Let C be the class of all ReLUs, and let S = {(x1, y1), . . . , (xm, ym)} be a training set of examples
drawn i.i.d. from some arbitrary distribution on D on Sn−1 × [0, 1]. To obtain our main result for
learning a single ReLU, our starting point is the following optimization problem.

Optimization Problem 1

minimize
w∈Sn−1

∑
i:yi>0

`(yi,max(0,w · xi))

subject to max(0,w · xi) = 0 for all i such that yi = 0

‖w‖2 ≤ 1

Unfortunately Optimization Problem 1 is not convex in w, and hence it may not be possible to find
an optimal solution in polynomial time. Instead, we will give an efficient approximate solution that
will suffice for reliable learning.

Our starting point will be to prove the existence of low-degree, low-weight polynomial approximators
for every c ∈ C. The polynomial method has a well established history in computational learning
theory (e.g., Kalai et al. [11] for agnostically learning halfspaces under distributional assumptions),
and we can apply classical techniques from approximation theory and recent work due to Sherstov [19]
to construct low-weight, low-degree approximators for any ReLU.

We can then relax Optimization Problem 1 to the space of low-weight polynomials and follow the
approach of Shalev-Shwartz et al. [18] who used tools from Reproducing Kernel Hilbert Spaces
(RKHS) to learn low-weight polynomials efficiently (Shalev-Shwartz et al. focused on a relaxation of
the 0/1 loss for halfspaces).

The main challenge is to obtain reliability; i.e., to simultaneously minimize the false-positive rate and
the loss dictated by the objective function. To do this we take a “dual-loss” approach and carefully
construct two loss functions that will both be minimized with high probability. Proving that these
losses generalize for a large class of objective functions is subtle and requires “clipping” in order to
apply the appropriate Rademacher bound.

Due to space constraints, we omit a technical discussion of our other results and refer the reader to
the full version 2 of the paper.

4 Summary and Open Questions
We have given the first set of efficient algorithms for ReLUs in a natural learning model. ReLUs are
both effective in practice and, unlike linear threshold functions (halfspaces), admit non-trivial learning
algorithms for all distributions with respect to adversarial noise. We “sidestepped” the hardness
results in Boolean function learning by focusing on problems that are not entirely scale-invariant
with respect to the choice of domain (e.g., reliably learning ReLUs). The obvious open question is to
improve the dependence of our main result on 1/ε. We have no reason to believe that 2O(1/ε) is the
best possible.

2Full version available at https://arxiv.org/pdf/1611.10258.pdf
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