
Block-Coordinate Frank-Wolfe Optimization for
Counting Objects in Images

Fei Xia∗
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
xia.fei09@gmail.com

Shanghang Zhang∗
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

shanghaz@andrew.cmu.edu

Abstract
We develop an optimization method to count objects in images. To avoid the
detection of individual objects, which is computationally expensive and relies
heavily on image quality, we model the object density as a linear transformation
of each pixel feature, and obtain the object count by integrating density over the
image. Learning such linear transformation is formulated as the minimization
of a regularized quadratic function. Solving this optimization problem is highly
nontrivial because it has exponentially large number of constraints. To cope with
this challenge, inspired by the structural support vector machine (SVM), we explore
the Block-Coordinate Frank-Wolfe (BCFW) algorithm, which is a state-of-the-art
algorithm to solve structural SVM. However, BCFW cannot be directly applied
to our problem. We derive the dual of our optimization problem and solve it by
BCFW with modifications. Experiments show that BCFW solves our problem with
lower iteration cost, faster convergence, and decent error rate.

1 Introduction
Learning to count objects in images is an important machine learning problem, forming an essential
part of many real-world applications, including counting cells in microscopic images, monitoring
pedestrian in surveillance system, and counting vehicles to estimate traffic flow. For objects counting,
two types of approaches have been proposed in literature [7]: (1) Counting by detection [13, 2, 5],
and (2) Counting by regression [6, 4, 8, 3]. The first approach attempts to detect individual object
in the image and then count the number of detected objects. This approach is quite sensitive to the
image quality and computationally expensive. To address these shortcomings, the second approach
attempts to directly map the global image characteristics to the number of objects [18]. However, this
approach has to discard object location information.

To overcome the limitation of existing methods, we model object density as a linear transformation
of each pixel feature, and obtain the object count by integrating object density over the image
[14]. Learning to infer such linear transformation is formulated as minimization of a regularized
quadratic function. To reflect spatial information of image and avoid influence of zero-mean noise, we
apply the Maximum Excess over SubArrays (MESA) distance measure [14]. Such distance induces
exponentially large number of constraints, making the optimization problem very challenging to
solve. Observing the similarity between our formulation and structural SVM, we explore BCFW [10]
algorithm to solve our problem. BCFW is a state-of-the-art algorithm to solve structural SVM, but
it cannot be directly applied to our problem. We derive the dual of our optimization problem and
solve it by BCFW with modifications. Compared with Frank-Wolfe algorithm [1, 9, 16], BCFW only
requires a single call of maximization oracle, with the same convergence rate O(1/ε). Although the
stochastic subgradient [17, 19] and BCFW have a similar iteration cost, BCFW has several important
advantages: (1) the optimal step-size can be efficiently computed in closed-form; (2) the algorithm
yields a duality gap guarantee, and the duality gap can be computed as a proper stopping criterion.
(3) the convergence rate holds even when using approximate maximization oracles [10].
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2 Problem Formalization
We try to estimate a density function F so that its integral over the whole image is equal to the
number of objects in it [14]. For an image Ii, each pixel p in an image can be represented by
a feature vector xip, so that we can model the density function as a linear transformation of xip:
Fi(p) = w>xip. Given a set of training images, the parameter vector w is learnt in the regularized
risk framework to match the estimated densities with the ground truth densities for the training
images (under regularization of w). Each training image Ii is annotated with a set of 2D points
Pi = {P1, P2, ..., Pc(i)}, where Pk is the center of the object and c(i) is the number of objects
annotated by users. We define the ground truth density function for training image Ii to be a
kernel density estimate based on the provided 2D points: F 0

i (p) =
∑
P∈Pi

N (p;P, σ212×2), where
N (p;P, σ212×2) denotes a normalized Gaussian kernel evaluated at pixel p. One critical question
is how to define the loss between the ground truth and estimated density. Here we apply MESA
distance [14]: DMESA(F1, F2) = maxB∈B |

∑
p∈B F1(p)−

∑
p∈B F2(p)|, where B is the set of all

box subarrays in I , and DMESA is defined as the largest absolute difference between sums of F1(p)
and F2(p) over all box subarrays. To learn w, we need to solve the following optimization problem:

min
w

1

2
w>w + C

N∑
i=1

max
B∈Bi

|
∑
p∈B

F 0
i (p)−

∑
p∈B

w>xip| (1)

This is a convex quadratic problem. It encouragesw to minimize the sum of mismatch between ground
truth and estimated density under regularization. By introducing slack variables ξ = {ξ1, ξ2, ..., ξN},
(1) can be rewritten as:

min
w,ξ

1

2
w>w + C

N∑
i=1

ξi

s.t. ∀i,∀B ∈ Bi : ξi ≥
∑
p∈B

(F 0
i (p)− w>xip), ξi ≥

∑
p∈B

(w>xip − F 0
i (p))

(2)

The most challenging part of this problem is to tackle a large number of constraints. We give our
analysis and solution in the next section.

3 Optimization
Problem (2) is actually not trivial to solve — Bi is the set of all sub-boxes in image i, so |Bi| is
combinatorial and the number of constraints in (2) is very large. To solve this problem, we are
inspired by the Structural SVM, which also has a large number of constraints. This observation
leads us to explore methods or frameworks that can be used to solve Structural SVM. Specifically,
we investigate Block-Coordinate Frank-Wolfe (BCFW), which is a state-of-the-art algorithm for
Structural SVM, yet cannot be directly applied to our problem. To develop the BCFW algorithm
for object counting, we need to introduce an important concept: Max Oracle, which is defined as
ĤiB = maxB∈Bi

HiB , where HiB =
∑
p∈B(w>xip − F 0

i (p)). With this definition, the constraints
in (2) can thus be written as ξi ≥ −ĤiB and ξi ≥ ĤiB . Here in our problem, the Max Oracle is
actually a 2D maximum subarray problem in an image and can be solved in polynomial time. Solving
the Max Oracle is to find out the most violated constraints in (2).

3.1 Dual Problem
We now derive the dual of our optimization problem and show it can be solved with BCFW with
some modifications. BCFW targets the problem with the following form:

min
γ∈M(1)×...×M(n)

f(γ) (3)

where the domain has structure of a Cartesian productM =M(1) × ...×M(n) ⊆ Rm over n ≥ 1
blocks. It is important that the constraint set can be decomposed, since the idea of BCFW is to
randomly select a block i ∈ {1, ..., n}, and then perform an iteration of the Frank-Wolfe algorithm
applied to just one of the blocks. The dual problem of (2) is derived as (derivation in appendix)
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Algorithm 1 Block-Coordinate Primal-Dual Frank-Wolfe Algorithm for Problem (2)

1: Let w(0) = w
(0)
i = w̄ = 0, `(0) = `

(0)
i = ¯̀= 0

2: for k ← 0 to K do
3: Pick i at random in {1, ..., n}
4: Solve B∗i = argmaxB∈Bi

{HiB ,−HiB}. Set p = 1 if the optimal
value is HiB∗i

, set p = −1 otherwise
5: Let ws = p · C

∑
p∈B∗i

xip and `s = p · C
∑
p∈B∗i

F 0
i (p)

6: Do line search t =
(w

(k)
i −ws)

>w(k)−`(k)
i +`s

‖w(k)
i −ws‖22

and clip it to [0,1]

7: Update w(k+1)
i = (1− t)w(k)

i + tws, `
(k+1)
i = (1− t)`(k)i + t`s

8: Update w(k+1) = w(k) + w
(k+1)
i − w(k)

i , `(k+1) = `(k) + `
(k+1)
i − `(k)i

9: (Optionally: Update w̄(k+1) = k
k+2 w̄

(k) + 2
k+2w

(k+1))

min
α,β

1

2
‖A(α− β)‖22 − b>(α− β)

s.t. ∀i :
∑
B∈Bi

αiB + βiB = 1 αiB , βiB ≥ 0

where A ∈ Rd×m and A = {C
∑
p∈B x

i
p|i ∈ [n], B ∈ Bi}, b = (C

∑
p∈B x

i
p)i∈[n],B∈Bi

, α =

(αiB)i∈[n],B∈Bi
, β = (βiB)i∈[n],B∈Bi

and d is the feature dimension, m =
∑N
i |Bi|. To meet our

target form (3), we further let X = (A,−A), c = (b>,−b>)>, γ = (α>, β>)>, the optimization
problem can be transformed into:

min
γ

1

2
‖Xγ‖22 − c>γ

s.t. ∀i :

2|Bi|∑
g=1

γig = 1 γi ≥ 0

(4)

where γi := (α>i , β
>
i )>, note that γi takes nonconsecutive blocks from γ. This has the same form as

(3). We further derive the specific BCFW solver for our problem in the following section.

3.2 A Block-Coordinate Frank-Wolfe (BCFW) Solver

Now we derive the BCFW solver. In Frank-Wolfe algorithm, the major step is to compute s :=
argmins′∈M〈s′,∇f(γ)〉, where ∇f(γ) is the gradient of f(γ). Our main observation is Lemma 12.
Lemma 1. For each data point, solving s = argmins′∈M〈s′,∇f(γ)〉 is equivalent to solving
B∗i = argmaxB∈Bi

{HiB ,−HiB}

With Lemma 1 in mind, we can get the Primal-Dual BCFW algorithm by only maintaining the
corresponding primal iterates. Please refer to Alg. 1. The convergence rate is proved to be O(1/ε)
[12]. Compared with Cutting Plane method, the most important advantage of BCFW is that in each
iteration, it doesn’t need to solve another quadratic programming problem, which saves a lot of time.

Maintaining Primal iterates. In the Frank-Wolfe Algorithm, the corresponding primal iterates
w(k) = Xγ(k). With Frank-Wolfe search corner s, this yields ws = Xs. Since only one element in s
is 1, others are 0, ws in Frank-Wolfe Algorithm can be written as:

ws =

{∑N
i=1 C

∑
p∈B∗i

xip, if max{HiB ,−HiB} = HiB∗i

−
∑N
i=1 C

∑
p∈B∗i

xip, if max{HiB ,−HiB} = −HiB∗i

Then for BCFW,
ws =

{
C
∑
p∈B∗i

xip, if max{HiB ,−HiB} = HiB∗i

−C
∑
p∈B∗i

xip, if max{HiB ,−HiB} = −HiB∗i

2Due to space limit, the proof is in the appendix.
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Figure 1: From left to right: (a) Objective value comparison between BCFW and CP with inner
active set; (b) Error rate comparison between BCFW and CP with inner active set; (c) Objective value
comparison between BCFW and CP with inner interior point; (d) Error rate comparison between
BCFW with weighted average w̄ and BCFW without weighted average w.

Line Search. The optimal step-size can be obtained analytically because of the quadratic form of the
dual problem. Specifically, topt = argmint∈[0,1] f(γ + t(s− γ)).

Weighted Averaged of w. Optionally, we maintain a weighted average version of w, i.e. w̄. It turns
out that w̄ is more stable than w in the optimization process. We’ll show experiments on this later.

4 Experiments
In this section, we evaluate the proposed algorithm on a cell counting task on microscopy images,
and compare its performance with cutting plane method [11].

Experiment Setup. We have 200 microscopy images, each of which has the total number of cells
varying between 74 and 317. We extract SIFT feature [15] of each pixel, and then use a codebook of
K = 256 entries constructed via k-means on SIFT descriptors extracted from the images. We used
160 images for training, while another 40 images for testing. Each object is labeled as a dot in the
training image. The ground truth density is computed as the normalized 2D Gaussian kernel estimate
based on the labeled dot. The weight vector w which maps each pixel’s feature vector to density
distribution is learnt from the training images. Counting is then performed by summing the density
of all pixels in the test images.

Experiment Results. We do three experiments to compare the performance of different solutions
based on the above settings: 1) Compare the BCFW algorithm and the cutting plane method (CP)
with active set algorithm as the inner algorithm. 2) Compare the BCFW and the CP with interior
point algorithm as the inner algorithm. 3) Compare the BCFW with weighted average w̄ and the
BCFW without weighted average w̄.

Fig. 1 (a) shows the objective value of BCFW and CP with inner active set algorithm over time. From
the figure we can see that BCFW converges much faster than CP. Fig. 1 (b) shows the error rate of
BCFW and CP with inner active set algorithm over time. A pretty low training and testing error rate
can be achieved, which means the model here is decent. Also, BCFW and CP can finally get similar
results, but BCFW is much faster in terms of wall clock time. Fig. 1 (c) shows the objective value of
BCFW and CP with inner interior point algorithm over time. Similarly, we can observe that, in terms
of wall clock time, the objective value of BCFW has lower objective value in the first 250 seconds,
and then cutting plane achieves slightly lower objective value. Eventually, BCFW and CP reach very
close objective values, but BCFW converges faster, especially in the first 100 seconds. Generally
speaking, according to our experiments, BCFW performs better than CP.

The experiments above all use BCFW with weighted average. We also do experiemnts to compare
the weighted-average version and non-weighted-average version, shown in Fig. 1 (d). Obviously,
The former one is much more stable, so the weighted average is important in BCFW.

5 Conclusion
In this paper, we formulate the object counting problem as a convex optimization problem. We
explored BCFW algorithm in solving this optimization problem with large number of constraints.
Experiments show that BCFW performs better than Cutting Plane method in general. Several
important properties of BCFW are also revealed: (1) BCFW converges faster than CP; (2) weighted
average is a useful strategy to keep the BCFW algorithm stable.
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Appendix
Due to space limitation, we explain our algorithm detailedly in the appendix.

The Max Oracle

The Max Oracle is defined as follows:

ĤiB = max
B∈Bi

∑
p∈B

(w>xip − F 0
i (p))︸ ︷︷ ︸

= HiB

(5)

With this definition, the constraints in (2) can thus be written as ξi ≥ −ĤiB and ξi ≥ ĤiB . Here in
our problem, the Max Oracle problem is actually a 2D maximum subarray problem in an image and
can be solved in polynomial time. Note that solving the Max Oracle problem is actually to find out
the most violated constraints in (2).

Derivation of the Dual

Now let’s derive the dual of our optimization problem and show it can be solved by BCFW with some
modifications. Recall the primal problem in (2). The Lagrangian is:

L(w, ξ, α, β) =
1

2
w>w + C

N∑
i=1

ξi +

N∑
i=1

∑
B∈Bi

(
αiB

(∑
p∈B

(F 0
i (p)− w>xip)− ξi

)
+ βiB

(∑
p∈B

(w>xip − F 0
i (p))− ξi

))

=
1

2
w>w + C

N∑
i=1

ξi

+

N∑
i=1

∑
B∈Bi

(
(αiB − βiB)

∑
p∈B

(F 0
i (p)− w>xip)− (αiB + βiB)ξi

)
(6)

where α and β are lagrange multipliers. To calculate minw,ξ L(w, ξ, α, β), we take derivatives with
respect to w and ξi and set them to 0:

∂L

∂w
= w +

N∑
i=1

∑
B∈Bi

(
(βiB − αiB)

∑
p∈B

xip

)
= 0

∂L

∂ξi
= C +

∑
B∈Bi

(−αiB − βiB) = 0

We get

w =

N∑
i=1

∑
B∈Bi

(
(αiB − βiB)

∑
p∈B

xip

)
C =

∑
B∈Bi

αiB + βiB

(7)

Plugging (7) to (6) and do some scaling on α, β, the dual problem can be written as:

min
α,β

1

2
‖C

N∑
i=1

∑
B∈Bi

(
(αiB − βiB)

∑
p∈B

xip

)
‖22 − C

N∑
i=1

∑
B∈Bi

(
(αiB − βiB)

∑
p∈B

F 0
i (p)

)
s.t. ∀i :

∑
B∈Bi

αiB + βiB = 1 αiB , βiB ≥ 0

(8)
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Simplify it into matrix form:

min
α,β

1

2
‖A(α− β)‖22 − b>(α− β)

s.t. ∀i :
∑
B∈Bi

αiB + βiB = 1 αiB , βiB ≥ 0

where A ∈ Rd×m and A = {C
∑
p∈B x

i
p|i ∈ [n], B ∈ Bi}, b = (C

∑
p∈B x

i
p)i∈[n],B∈Bi

, α =

(αiB)i∈[n],B∈Bi
, β = (βiB)i∈[n],B∈Bi

and d is the feature dimension, m =
∑N
i |Bi|. To meet our

target form (3), we further let X = (A,−A), c = (b>,−b>)>, γ = (α>, β>)>, the optimization
problem can be transformed into:

min
γ

1

2
‖Xγ‖22 − c>γ

s.t. ∀i :

2|Bi|∑
g=1

γig = 1 γi ≥ 0

where γi := (α>i , β
>
i )>, note that γi takes nonconsecutive blocks from γ. This has the same form as

(3). Next we derive the specific BCFW algorithm for our problem.

Derivation of the BCFW

To derive BCFW algorithm for our problem, we need to first review the Frank-Wolfe algorithm,
shown in Alg. 2.

Algorithm 2 Frank-Wolfe Algorithm

1: Let γ0 ∈M
2: for k ← 0 to K do
3: Compute s := argmins′∈M〈s′,∇f(γ)〉
4: Let t := 2

2+k , or optimize t by line-search
5: Update γk+1 = (1− t)γk + t · s

Line 3 in Alg. 2 is the core part of Frank-Wolfe algorithm. Our main observation is Lemma 1. The
proof of Lemma 1 is as follows.

Proof.

∇f(γ) = X>Xγ − c = X>w − c =

(
A>w − b
−(A>w − b)

)
Since γ ∈M(1) × ...×M(n) and γi := (α>i , β

>
i )>, correspondingly, we need to define ∇if(γ) as

∇if(γ) =

(
−C ·Hi

C ·Hi

)
where Hi = (HiB)B∈Bi

is a vector with dimension |Bi|. Then, the minimization
mins′∈M〈s′,∇f(γ)〉 decomposes as

∑
i minsi∈M(i)〈si,∇if(γ)〉. Note that M(i) is a probabil-

ity simplex, and the minimization of a linear function over a simplex is to search over its corners
(only one component is 1, others are 0). Thus, for each minsi∈M(i)〈si,∇if(γ)〉, it is equivalent to
finding the minimal component in∇if(γ), i.e. minB∈Bi

{−C ·HiB , C ·HiB}, which is the same as
maxB∈Bi

{HiB ,−HiB}.

With Lemma 1 in mind, we can get the Primal-Dual BCFW algorithm by only maintaining the
corresponding primal iterates. Please refer to Alg. 1 for details.
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