
Stochastic Frank-Wolfe Methods for Nonconvex
Optimization

Sashank J. Reddi
Carnegie Mellon University
sjakkamr@cs.cmu.edu

Suvrit Sra
Massachusetts Institute of Technology

suvrit@mit.edu

Barnabás Póczos
Carnegie Mellon University
bapoczos@cs.cmu.edu

Alexander J. Smola
Carnegie Mellon University

alex@smola.org

Abstract

We study Frank-Wolfe methods for nonconvex stochastic and finite-sum optimiza-
tion problems. Frank-Wolfe methods (in the convex case) have gained tremendous
recent interest in machine learning and optimization communities due to their
projection-free property and their ability to exploit structured constraints. How-
ever, our understanding of these algorithms in the nonconvex setting is fairly lim-
ited. In this paper, we propose nonconvex stochastic Frank-Wolfe methods and
analyze their convergence properties. Furthermore, for objective functions that
decompose into a finite-sum, we leverage ideas from variance reduction for con-
vex optimization to obtain new variance reduced nonconvex Frank-Wolfe methods
that have provably faster convergence than the classical Frank-Wolfe method.

1 INTRODUCTION

We study optimization problems of the form:

min
x∈Ω

F (x) :=

{
Ez[f(x, z)], (stochastic)
1
n

∑n
i= fi(x), (finite-sum).

(1)

We assume that F , f , and fi (i ∈ {1, . . . , n} , [n]) are all differentiable, but possibly nonconvex;
the domain Ω is convex and compact.

Problems of this form are at the heart of machine learning and statistics; for instance, the finite-sum
problem arises under the name empirical loss minimization and M-estimation. Examples of such
problems include multiclass classification, matrix learning, recommendation systems [13, 11, 12].

Within convex optimization, problem (1) is relatively well-studied. Two particularly popular ap-
proaches for solving it are: (i) Projected stochastic gradient descent (SGD); and (b) the Frank-Wolfe
(FW) method. At each iteration, SGD takes a step in a direction opposite to a stochastic approx-
imation of the gradient ∇F and uses projection onto Ω to ensure feasibility. While computing a
stochastic approximation to ∇F is usually inexpensive, in many real settings, the cost projecting
onto Ω can be very high (e.g., projecting onto the trace-norm ball, onto base polytopes in submodu-
lar minimization [6]); and in extreme cases projection can even be computationally intractable [3].

In such cases, projection based methods like SGD become impractical. This difficulty underlies the
recent surge of interest in Frank-Wolfe methods [5, 13] (also known as conditional gradient), due to
their projection-free property. In particular, FW methods avoid the expensive projection operation
and requires just a linear oracle that solves problems of the form minx∈Ω〈x, g〉 at each iteration.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Algorithm SFO/IFO Complexity LO Complexity

Frank-Wolfe O(n/ε2) O
(
1/ε2

)
SFW O

(
1/ε4

)
O
(
1/ε2

)
SVFW O(n+ n2/3/ε2) O(1/ε2)

SAGAFW O(n+ n1/3/ε2) O(1/ε2)

Figure 1: Table comparing the best SFO/IFO and LO complexity of algorithms discussed in the paper. The
complexity is measured by the number of oracle calls required to achieve an ε-accurate solution (see Section 2
for definitions of SFO/IFO and LO complexity). The results marked in red are contributions of this paper. For
clarity, we hide the dependence of SFO/IFO and LO complexity on the initial point and few parameters related
to the function F and domain Ω.

Despite the remarkable success of FW approaches in the convex setting, including stochastic prob-
lems [12], their applicability and non-asymptotic convergence for nonconvex optimization is largely
unstudied. Even for SGD, it is only recently that non-asymptotic convergence analysis for noncon-
vex optimization was obtained [8, 9]. More recently, [19, 20] obtained variance reduced stochastic
methods that converge faster than SGD in the nonconvex finite-sum setting.

Similar fast variants of FW for nonconvex problems are not known. Given the vast importance of
nonconvex models in machine learning (e.g., in deep learning) and the need to incorporate non-
trivial constraints in such models, it is imperative to develop scalable, projection-free methods. This
paper presents new FW methods towards this goal. Our main contributions are summarized below,
while the key complexity results are listed in Figure 1.

Main Contributions. For the nonconvex stochastic setting in (1) we propose a stochastic Frank-
Wolfe algorithm (SFW), and provide its convergence analysis. For the nonconvex finite-sum setting,
we propose two variance reduced (VR) algorithms: SVFW and SAGAFW, based on the popular VR
algorithms SVRG and SAGA, respectively. By carefully selecting the parameters of these algorithms,
we prove that SVFW and SAGAFW are faster than deterministic FW by a factor of n1/3 and n2/3

respectively. To our knowledge, our work presents the first theoretical improvement for stochastic
variants of Frank-Wolfe in the context of nonconvex optimization.

We refer the readers to the Appendix for the related work.

2 PRELIMINARIES

As stated above, we study two different problem settings: (1) stochastic, where F (x) = Ez[f(x, z)]
and z is random variable whose distribution P is supported on Ξ ⊂ Rp; and (2) finite-sums, where
F (x) = 1

n

∑n
i=1 fi(x). For the stochastic setting, we assume that F is L-smooth, i.e., its gradient is

Lipschitz continuous with constant L, so ‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω. Here ‖.‖
denotes the `2-norm. Furthermore, for the stochastic setting, we also assume f(x, z) is G-Lipschitz
for all z ∈ Ξ. This assumption can be equivalently written as ‖∇f(x, z)‖ ≤ G for all z ∈ Ξ.

For the finite-sum setting, we assume that the individual functions fi (i ∈ [n]) are L-smooth i.e.,
‖∇fi(x) − ∇fi(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ Ω. Note that this implies that the function F is
also L-smooth. The domain Ω ∈ Rd is assumed to be convex and compact with diameter D; i.e.,
‖x− y‖ ≤ D for all x, y ∈ Ω. Such an assumption is common to all Frank-Wolfe methods.

Convergence criteria. We use the following criterion, typically referred to the Frank-Wolfe gap,
for our convergence analyis :

G(x) = max
v∈Ω
〈v − x,−∇F (x)〉. (2)

For convex functions, the FW gap provides an upper bound on the suboptimality. For nonconvex
functions, the gap G(x) = 0 if and only if x is a stationary point. To state our convergence results
we will also need the following bound: β ≥ 2(F (x0)−F (x∗))/LD2, given some (unspecified) initial
point x0 ∈ Ω.

2

Algorithm 1 Nonconvex SFW
(
x0, T, {γi}T−1

i=0 , {bi}
T−1
i=0

)
1: Input: x0 ∈ Ω, number of iterations T , {γi}T−1

i=0 where γi ∈ [0, 1] for all i ∈ {0, . . . , T − 1}, minibatch
size {bi}T−1

i=0

2: for t = 0 to T − 1 do
3: Uniformly randomly pick i.i.d samples {zt1, . . . , ztbt} according to the distribution P .
4: Compute vt = arg maxv∈Ω〈v,− 1

bt

∑bt
i=1∇f(xt, zi)〉

5: xt+1 = xt + γt(vt − xt)
6: end for
7: Output: Iterate xa chosen uniformly random from {xt}T−1

t=0 .

Oracle model. To compare convergence speed of different algorithms, we use the following black-
box oracles: (i) Stochastic First-Order Oracle (SFO): For a function F (·) = Ez[f(., z)] where z ∼
P , an SFO takes a point x and returns the pair (f(x, z′),∇f(x, z′)) where z′ is a sample drawn i.i.d.
from P [17], (ii) Incremental First-Order Oracle (IFO): For a function F (·) = 1

n

∑
i fi(.), an IFO

takes an index i ∈ [n] and a point x ∈ Rd, and returns the pair (fi(x),∇fi(x)) [1] and (iii) Linear
Optimization Oracle (LO): For a set Ω, an LO takes a direction d and returns arg maxv∈Ω〈v, d〉.
Throughout the paper, by SFO, IFO and LO complexity of an algorithm, we mean the total number
of SFO, IFO and LO calls made by the algorithm to obtain an ε-accurate solution, i.e., a solution for
which E[G(x)] ≤ ε; the expectation is over any randomization as part of the algorithm. For clarity
of presentation, we hide the dependence of these complexities on the initial point F (x0) − F (x∗),
Lipschitz constant G, and the smoothness constant L.

Classical FW. To place our results in perspective, we begin by recalling the classical Frank-Wolfe
(FW) algorithm [5]. Each iteration of FW entails calculation of the gradient∇F and moving towards
a minimizer of a linearized objective. Notice that calculation of ∇F may not be possible in the
stochastic setting of (1). Furthermore, even in the finite-sum setting, computing∇F requires n IFO
calls, rendering the approach useless in large-scale problems, where n is large. For the nonconvex
finite-sum setting, the following key result was proved recently [15].
Theorem 1 ([15]). Under appropriate selection of step sizes γt, the IFO and LO complexity of FW
to achieve an ε-accurate solution in the finite-sum setting are O(n/ε2) and O(1/ε2) respectively.

3 ALGORITHMS

In this section, we describe FW algorithms for solving (1). In particular, we explore stochastic and
VR versions of the classical FW method, for the stochastic and finite-sum settings, respectively.

3.1 STOCHASTIC SETTING

We first investigate the convergence of FW in the stochastic setting. As mentioned earlier, the clas-
sical FW method requires calculation of the full gradient ∇F (x), which is typically impossible to
compute in the stochastic setting. For convex problems, [12] tackle this issue by using the popu-
lar Robbins-Monro approximation [22] to the gradient. We use a variant of the algorithm for our
nonconvex stochastic setting, which we call SFW.

The pseudocode of SFW is listed in Algorithm 1. Note that the samples {zi} are chosen indepen-
dently according to the distribution P . Thus, Ezi [∇f(x, zi)] = ∇F (x), i.e., we obtain an unbiased
estimate of the gradient. Also, note that the output in Algorithm 1 is randomly selected from all the
iterates of the algorithm. For our analysis, we assume that the function f(x, z) is G-Lipschitz for
all z ∈ Ξ, i.e., we have maxz∈Ξ ‖∇f(x, z)‖ ≤ G. This bound on the gradient is crucial for our
convergence analysis. We prove the following key result for nonconvex SFW.
Theorem 2. Consider the stochastic setting of (1) where f(x, z) is G-Lipschitz for all z ∈ Ξ and

F is L-smooth. Then, the output xa of Algorithm 1 with parameters γt = γ =
√

2(F (x0)−F (x∗))
TLD2β ,

bt = b = T for all t ∈ {0, . . . , T − 1}, satisfies the following bound:

E[G(xa)] ≤ D√
T

(
G+

√
2L(F (x0)−F (x∗))

β (1 + β)

)
,

3

Algorithm 2 SVFW
(
x0, T,m, {γi}m−1

i=0 , {bi}m−1
i=0

)
1: Input: x0

m = x0 ∈ Ω, epoch size m, number of epochs S = dT/me, {γi}m−1
i=0 where γi ∈ [0, 1] for all

i ∈ {0, . . . ,m− 1}, minibatch size {bi}m−1
i=0

2: for s = 0 to S − 1 do
3: Let x̃s = xsm
4: Compute g̃s = ∇F (x̃s) = 1

n

∑n
i=1 f(x̃s)

5: for t = 0 to m− 1 do
6: Uniformly randomly (with replacement) select subset It = {i1, . . . , ibt} from [n].
7: Compute vs+1

t = arg maxv∈Ω〈v,− 1
bt

(
∑

i∈It ∇fi(x
s+1
t)− fi(x̃s) + g̃s)〉

8: Compute update direction ds+1
t = vs+1

t − xs+1
t

9: xs+1
t+1 = xs+1

t + γtd
s+1
t

10: end for
11: end for
12: Output: Iterate xa chosen uniformly random from {{xs+1

t }T−1
t=0 }

S−1
s=0 .

where x∗ is an optimal solution to (stochastic) problem (1).

An immediate consequence of Theorem 2 is the following complexity result for SFW.
Corollary 1. Under the setting of Theorem 2, the SFO complexity and LO complexity of Algorithm 1
are O(1/ε4) and O(1/ε2), respectively.

3.2 FINITE-SUM SETTING

In this section, we consider the finite-sum setting of (1). We show that by building on ideas from
variance reduction for SGD, one can significantly improve the convergence rates. The key idea is to
use a variance reduced approximation of the gradient [14, 4].

SVFW Algorithm

Pseudocode of our first method (SVFW) is presented in Algorithm 2. Similar to [14] and [12],
nonconvex SVFW is also epoch-based. At the end of each epoch, the full gradient is computed at the
current iterate. This gradient is used for controlling the variance of the stochastic gradients in the
inner loop. For epoch size m = 1, SVFW reduces to the classic FW algorithm. In general, the epoch
sizem is chosen such that the total number of IFO calls per epoch is Θ(n). This ensures that the cost
of computing the full gradient at the end of each epoch is amortized. To enable a fair comparison
with SFW, we assume that the total number of inner iterations across all epochs in Algorithm 2 is T .

We prove the following key result for Algorithm 2. For ease of exposition, we assume that the total
number of inner iterations T is a multiple of m.
Theorem 3. Consider the finite-sum setting of (1) where the functions {fi}ni=1 are L-smooth. Then,

the output xa of Algorithm 2 with parameters γt = γ =
√

F (x0)−F (x∗)
TLD2β and bt = b = m2 for all

t ∈ {0, . . . ,m− 1}, satisfies

E[G(xa)] ≤ 2D√
Tβ

√
L(F (x0)− F (x∗))(1 + β),

where x∗ is an optimal solution of (1) and xa is the output of Algorithm 3.

The analysis suggests that the value of m should be set appropriately in Theorem 3 to obtain good
convergence rates. If m is small, the IFO complexity of Algorithm 2 is dominated by the step
involving calculation of the full gradient at the end of each epoch. On the other hand, if m is large,
a large minibatch is used in each step of the algorithm (since b = m2), which increases the IFO
complexity. With this intuition, we present following important corollary.

Corollary 2. Under the setting of Theorem 3 and with m = dn1/3e, the IFO complexity and LO
complexity of Algorithm 1 are O(n+ n2/3/ε2) and O(1/ε2), respectively.

A stronger result can be obtained by using SAGA variant of Frank-Wolfe (see Section 3.3 in the
Appendix).

4

References
[1] A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. arXiv:1410.0723, 2014.
[2] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.
[3] Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L Bartlett. Exponentiated gra-

dient algorithms for conditional random fields and max-margin markov networks. JMLR, 9:1775–1822,
2008.

[4] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives. In NIPS 27, pages 1646–1654. 2014.

[5] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1-2):95–110, March 1956.

[6] Satoru Fujishige and Shigueo Isotani. A submodular function minimization algorithm based on the
minimum-norm base. Pacific Journal of Optimization, 7(1):3–17, 2011.

[7] Dan Garber and Elad Hazan. Faster rates for the frank-wolfe method over strongly-convex sets. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, pages 541–549, 2015.

[8] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[9] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation methods for
nonconvex stochastic composite optimization. Mathematical Programming, 155(1-2):267–305, Decem-
ber 2014.

[10] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient algorithms for norm-
regularized smooth convex optimization. Mathematical Programming, 152(1-2):75–112, apr 2014.

[11] Elad Hazan and Satyen Kale. Projection-free online learning. In ICML. icml.cc / Omnipress, 2012.
[12] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. CoRR,

abs/1602.02101, 2016.
[13] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML’13, pages

427–435, 2013.
[14] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduc-

tion. In NIPS 26, pages 315–323. 2013.
[15] Simon Lacoste-Julien. Convergence Rate of Frank-Wolfe for Non-Convex Objectives. abs/1607.00345,

2016.
[16] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of frank-wolfe optimization

variants. In Advances in Neural Information Processing Systems 28, pages 496–504, 2015.
[17] Arkadi Nemirovski and D Yudin. Problem Complexity and Method Efficiency in Optimization. John

Wiley and Sons, 1983.
[18] Yurii Nesterov. Introductory Lectures On Convex Optimization: A Basic Course. Springer, 2003.
[19] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Stochastic

variance reduction for nonconvex optimization. arxiv:1603.06160, 2016.
[20] Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Fast incremental method for

nonconvex optimization. arxiv:1603.06159, 2016.
[21] Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Fast stochastic methods for

nonsmooth nonconvex optimization. arXiv:1605.06900, 2016.
[22] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical

Statistics, 22(3):400–407, sep 1951.
[23] Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing Finite Sums with the Stochastic

Average Gradient. arXiv:1309.2388, 2013.
[24] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction.

SIAM Journal on Optimization, 24(4):2057–2075, 2014.
[25] Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans. Generalized conditional gradient for sparse estima-

tion. abs/arXiv:1410.4828, 2014.

APPENDIX

3.3 RELATED WORK

The classical Frank-Wolfe method [5] using line-search was analyzed for smooth convex functions
F and polyhedral domains Ω. Here, a convergence rate of O(1/ε) to ensure F (x) − F ∗ ≤ ε was
proved without additional conditions [5, 13]. There have been several recent works on improving
the convergence rates under additional assumptions [7, 16]. More recently, [12] proposed stochastic
variants of FW for convex problems of form (1), and showed theoretical improvements over the
classical Frank-Wolfe method.

5

Algorithm 3 SAGAFW
(
x0, T, {γi}T−1

i=0 , {bi}
T−1
i=0

)
1: Input: αi

0 = x0 ∈ Ω for all i ∈ [n], number of iterations T , {γi}T−1
i=0 where γi ∈ [0, 1] for all i ∈

{0, . . . , T − 1}, minibatch size {bi}T−1
i=0

2: Compute g0 = 1
n

∑n
i=1∇F (αi

0)
3: for t = 0 to T − 1 do
4: Uniformly randomly (with replacement) select subsets It, Jt from [n] of size bt.
5: Compute vt = arg maxv∈Ω〈v,− 1

bt
(
∑

i∈It ∇fi(xt)− fi(α
i
t) + gt)〉

6: Compute update direction dt = vt − xt
7: xt+1 = xt + γtdt
8: αj

t+1 = xt for j ∈ Jt and αj
t+1 = αj

t for j /∈ Jt
9: gt+1 = gt − 1

n

∑
j∈Jt

(∇fj(αj
t)−∇fj(α

j
t+1))

10: end for
11: Output: Iterate xa chosen uniformly random from {xt}T−1

t=0 .

The literature on nonconvex Frank-Wolfe is relatively small. The work [2] proves asymptotic con-
vergence of FW to a stationary point; though, no convergence rates are provided. To the best of our
knowledge, [25] is the first to provide convergence rates for FW-type algorithm in the nonconvex
setting. Very recently, [15] provided a (non-asymptotic) convergence rate ofO(1/ε2) for nonconvex
FW with adaptive step sizes. However, as we shall see later, implementation of classical FW for (1)
is expensive (or impossible in the pure stochastic case) since it requires calculation of the gradient
∇F at each iteration. We show that our stochastic variants are provably faster than the existing FW
methods. In the nonconvex setting, most of the work on stochastic methods focuses on SGD [8, 9]
and analyzes convergence to stationary points. For the finite-sum setting, we build on recent vari-
ance reduction techniques [14, 4, 23], which were first proposed for solving unconstrained convex
problems of form (1). Projected variants to handle constraints were studied in [4, 24]. More recently,
[19, 20, 21] provided nonconvex variants of these methods that converge provably faster than both
SGD and its deterministic counterpart.

SAGAFW Algorithm

SVFW is a semi-stochastic algorithm since it requires calculation of the full gradient at the end
of each epoch. Below we propose a purely incremental method (SAGAFW) based on the SAGA
algorithm of [4]. The pseudocode for SAGAFW is presented in Algorithm 3.

A key feature of SAGAFW is that it entirely avoids calculation of full gradients. Instead, it updates
the average gradient vector gt at each iteration. This update requires maintaining additional vectors
αi (i ∈ [n]), and in the worst case such a strategy incurs additional storage cost of O(nd). However,
this cost can be reduced to O(n) in several practical cases (refer to [4, 20]).

For SAGAFW, we prove the following key result.

Theorem 4. Consider the finite-sum setting of (1) where functions {fi}ni=1 are L-smooth. Define
θ(b, n, T) = 1/2 + (2n3/2/Tb3/2). Then the output xa of Algorithm 3 with parameters γt = γ =√

F (x0)−F (x∗)
TLD2θ(b,n,T)β and bt = b ≤ n for all t ∈ {0, . . . , T − 1}, satisfies the following:

E[G(xa)] ≤ 2D√
Tβ

√
Lθ(b, n, T)(F (x0)− F (x∗))(1 + β),

where x∗ is an optimal solution of problem (1) and xa is the output of Algorithm 3.

Corollary 3. Assume T ≥ n. Under the settings of Theorem 4 and with b = dn1/3e, the IFO and
LO complexity of Algorithm 1 are O(n+ n1/3/ε2) and O(1/ε2), respectively.

6

Proof of Theorem 2

Proof. First observe the following upper bound:

F (xt+1) ≤ F (xt) + 〈∇F (xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= F (xt) + 〈∇F (xt), γ(vt − xt)〉+
L

2
‖γ(vt − xt)‖2

≤ F (xt) + γ〈∇F (xt), vt − xt〉+
LD2γ2

2
. (3)

The first inequality follows since F is L-smooth (see Lemma 1). The equality is due to the fact that
xt+1 − xt = γ(vt − xt). The second inequality holds because vt, xt ∈ Ω and because the diameter
of Ω is D.

Next, we introduce the following quantity:

v̂t := arg max
v∈Ω
〈v,−∇F (xt)〉, (4)

which is used purely for our analysis and is not part of the algorithm. For brevity, we use ∇t to
denote 1

b

∑b
i=1 f(xt, z

t
i).

Rewriting inequality (3) using this quantity, we see that

F (xt+1) ≤ F (xt) + γ〈∇t, vt − xt〉

+ γ〈∇F (xt)−∇t, vt − xt〉+
LD2γ2

2
≤ F (xt) + γ〈∇t, v̂t − xt〉

+ γ〈∇F (xt)−∇t, vt − xt〉+
LD2γ2

2

≤ F (xt)− γG(xt) + γ〈∇F (xt)−∇t, vt − v̂t〉+
LD2γ2

2

≤ F (xt)− γG(xt) +Dγ‖∇F (xt)−∇t‖+
LD2γ2

2
.

The second inequality follows from the optimality of vt in Algorithm 1, while the third inequality
follows from the definition of G(xt) and the optimality of v̂t in (4). The last inequality follows from
Cauchy-Schwarz and the fact that the diameter of the feasible set Ω is bounded by D.

Taking expectations and using Lemma 2 in the above bound, we obtain the following important
bound:

E[F (xt+1)] ≤ E[F (xt)]− γE[G(xt)] +
GDγ√

b
+
LD2γ2

2

Summing over t and telescoping, we then obtain

γ

T−1∑
t=0

E[G(xt)] ≤ F (x0)− E[F (xT)] +
TGDγ√

b
+
TLD2γ2

2

≤ F (x0)− F (x∗) +
TGDγ√

b
+
TLD2γ2

2
.

The latter inequality follows from the optimality of x∗. Using the definition of the output xa of
Algorithm 1 and the parameters specified in the theorem statement, we get

E[G(xa)] ≤ F (x0)− F (x∗)

Tγ
+
GD√
b

+
LD2γ

2

≤ D√
T

(
G+

√
2L(F (x0)−F (x∗))

β (1 + β)
)
, (5)

which concludes the proof of the theorem.

7

Proof of Theorem 3

Proof. We first analyze the convergence properties of iterates within an epoch. Suppose that the
current epoch is s+ 1. For brevity, we drop the symbol s from xs+1

t , x̃s and g̃s, whenever it safe to
do so given the context. The first part of the proof is similar to that of Theorem 2. We again use the
quantity v̂t = arg maxv∈Ω〈v,−∇F (xt)〉, as before, purely for our analysis.

For the tth iteration within the epoch s, we have

F (xt+1) ≤ F (xt) + 〈∇F (xt), γ(vt − xt)〉+
L

2
‖γ(vt − xt)‖2

≤ F (xt) + γ〈∇F (xt), vt − xt〉+
LD2γ2

2
. (6)

This is due to Lemma 1 and definition of xt+1 in Algorithm 2. We use ∇̃t to denote the following
quantity: 1

bt
(
∑
i∈It ∇fi(xt)− fi(x̃) + g̃). Rewriting, we then obtain

F (xt+1) ≤ F (xt) + γ〈∇̃t, vt − xt〉

+ γ〈∇F (xt)− ∇̃t, vt − xt〉+ LD2γ2

2

≤ F (xt) + γ〈∇̃t, v̂t − xt〉

+ γ〈∇F (xt)− ∇̃t, vt − xt〉+ LD2γ2

2

≤ F (xt) + γ〈∇F (xt), v̂t − xt〉

+ γ〈∇F (xt)− ∇̃t, vt − v̂t〉+ LD2γ2

2

≤ F (xt)− γG(xt) +Dγ‖∇F (xt)− ∇̃t‖+ LD2γ2

2 . (7)

The second inequality is due to the optimality of vt in Algorithm 2. The last inequality is due to the
definition of G(xt), the diameter of set Ω, and an application of Cauchy-Schwarz.

Taking expectations and using Lemma 3 in inequality (7) we obtain the bound

E[F (xt+1)] ≤ E[F (xt)]− γE[G(xt)]

+
LDγ√
b
E[‖xt − x̃‖] +

LD2γ2

2
. (8)

To aid further analysis of this bound, we introduce the following Lyapunov function:

Rt = E[F (xt) + ct‖xt − x̃‖],

where cm = 0 and ct = ct+1 +(LDγ)/
√
b for all t ∈ {0, . . . ,m−1}. Using the relationship in (8),

we see that

Rt+1 = E[F (xt+1) + ct+1‖xt+1 − x̃‖]

≤ E[F (xt)]− γE[G(xt)] +
LDγ√
b
E[‖xt − x̃‖]

+
LD2γ2

2
+ ct+1E[‖xt+1 − x̃‖]

≤ E[F (xt)]− γE[G(xt)] +
LDγ√
b
E[‖xt − x̃‖]

+
LD2γ2

2
+ ct+1E[‖xt+1 − xt‖+ ‖xt − x̃‖]

≤ Rt − γE[G(xt)] +
LD2γ2

2
+ ct+1Dγ. (9)

The second inequality follows from the triangle inequality, while the last inequality holds because:
(a) ct = ct+1 + (LDγ)/

√
b, and (b) ‖xt+1 − xt‖ = γ‖vt − xt‖ ≤ Dγ (recall the definition of

8

diameter of Ω). Telescoping over all the iterations within an epoch, we obtain

Rm ≤ R0 − γ
m−1∑
t=0

E[G(xt)] +
LmD2γ2

2
+Dγ

m∑
t=1

ct

= R0 − γ
m−1∑
t=0

E[G(xt)] +
LmD2γ2

2
+
L(m− 1)mD2γ2

2
√
b

. (10)

The equality follows from the relationship ct = ct+1 + (LDγ)/
√
b. Since cm = 0 and xs+1

0 =
x̃s = xsm (in Algorithm 2), from (10) we obtain

E[F (xs+1
m)] ≤ E[F (xs+1

m)]− γ
m−1∑
t=0

E[G(xs+1
t)]

+
LmD2γ2

2
+
L(m− 1)mD2γ2

2
√
b

.

Now telescoping over all epochs, we obtain

E[F (xSm)] ≤ F (x0)− γ
S−1∑
s=0

m−1∑
t=0

E[G(xs+1
t)]

+
TLD2γ2

2
+
TL(m− 1)D2γ2

2
√
b

.

Rearranging this inequality and using the definition of the output in Algorithm 2, we finally obtain

E[G(xa)] ≤ F (x0)− E[F (xSm)]

Tγ
+
LD2γ

2
+
L(m− 1)D2γ

2
√
b

≤ F (x0)− F (x∗)

Tγ
+ LD2γ

≤ 2

√
LD2(F (x0)− F (x∗))

Tβ
(1 + β).

The second inequality follows from the optimality of x∗ and because b = m2. The last inequality
follows from the choice of γ stated in the theorem. This concludes the proof.

Proof of Theorem 4

Proof. We use the following quantities in our analysis:

∇̌t =
1

bt

∑
i∈It

(
∇fi(xt)− fi(αit) + gt

)
v̂t = arg max

v∈Ω
〈v,−∇F (xt)〉.

The first part of our proof is similar to that of Theorem 3. Using essentially the same argument
until (7), we have

E[F (xt+1)]

≤ F (xt)− γG(xt) +Dγ‖∇F (xt)− ∇̌t‖+
LD2γ2

2

≤ F (xt)− γG(xt) +
LDγ

√
n√

b

1

n

n∑
i=1

E‖xt − αit‖+
LD2γ2

2
. (11)

The second inequality is due to Lemma 4. Next, we define the following Lyapunov function:

Rt = E[F (xt)] + ct+1
1

n

n∑
i=1

E‖xt − αit‖,

9

where cT = 0 and ct = (1 − ρ)ct+1 + (LDγ
√
n)/
√
b for all t ∈ {0, . . . , T − 1}, where ρ is the

probability 1− (1− 1/n)b of an index i being in Jt. We can bound ρ from below as

ρ = 1−
(
1− 1

n

)b ≥ 1− 1
1+(b/n) = b/n

1+b/n ≥
b

2n , (12)

where the first inequality follows from (1−y)r ≤ 1/(1+ry) (which holds for y ∈ [0, 1] and r ≥ 1),
while the second inequality holds because b ≤ n. Now observe the following:

1

n

n∑
i=1

E‖xt+1 − αit+1‖

=
1

n

n∑
i=1

E
[
ρ‖xt+1 − xt‖+ (1− ρ)‖xt+1 − αit‖

]
≤ 1

n

n∑
i=1

E
[
ρ‖xt+1 − xt‖

+ (1− ρ)(‖xt+1 − xt‖+ ‖xt − αit‖)
]

=
1

n

n∑
i=1

E
[
‖xt+1 − xt‖+ (1− ρ)E‖xt − αit‖

]
(13)

The first equality follows from the definition of αit+1 in Algorithm 3, while the inequality is just the
triangle inequality. Using the above relationship and the bound in (11), we obtain

Rt+1 ≤ E[F (xt)]− γE[G(xt)] +
LD2γ2

2

+
LDγ

√
n√

b

1

n

n∑
i=1

E[‖xt − αit‖] + ct+1E[‖xt+1 − xt‖]

+ ct+1(1− ρ)
1

n

n∑
i=1

E[‖xt − αit‖]

≤ Rt − γE[G(xt)] +
LD2γ2

2
+ ct+1Dγ. (14)

The second inequality holds because: (a) ct = (1−ρ)ct+1 +(LDγ
√
n)/
√
b, and (b) ‖xt+1−xt‖ =

γ‖vt−xt‖ ≤ Dγ (due to our bound on the diameter of the set Ω). Telescoping over all the iterations,
we see that

RT ≤ R0 − γ
T−1∑
t=0

E[G(xt)] +
TLD2γ2

2
+Dγ

T∑
t=1

ct

≤ R0 − γ
T−1∑
t=0

E[G(xt)] +
TLD2γ2

2
+
LD2γ2

√
n

ρ
√
b

≤ R0 − γ
T−1∑
t=0

E[G(xt)] +
TLD2γ2

2
+

2LD2γ2n3/2

b3/2
.

The second inequality follows form the fact that
∑T
t=1 ct ≤ LDγ

√
n/(ρ

√
b). This can, in turn, be

obtained from the recursion ct = (1− ρ)ct+1 + (LDγ
√
n)/
√
b and cT = 0. The third inequality is

due to the bound on ρ in (12). Rearranging the above inequality and using the definition of xa from
Algorithm 3, we finally obtain the bound

E[G(xa)] ≤ F (x0)− E[F (xT)]

Tγ
+
LD2γ

2
+

2LD2γn3/2

Tb3/2

≤ F (x0)− F (x∗)

Tγ
+ LD2γθ(b, n, T).

The first inequality uses the fact that cT = 0 and αi0 = x0 (in Algorithm 3). The second inequality
uses the optimality of x∗ and the definition of θ(b, n, T). Using the setting of γ in the theorem
statement, we obtain the desired result.

10

The following bound on the value of functions with Lipschitz continuous gradients is classical (see
e.g., [18]).
Lemma 1. If f : Rd → R is L-smooth, then

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2,

for all x, y ∈ Rd.

The following lemma is useful for bounding the variance of the gradient estimate used in the stochas-
tic setting.
Lemma 2. Suppose the function F (x) = Ez[f(x, z)] where z is a random variable with distribution
P and support Ξ, and maxz∈Ξ ‖∇f(x, z)‖ ≤ G. Also, let ∇̄ = 1

b

∑
i∈It ∇f(x, zi) where {zi}bi=1

are i.i.d. samples from the distribution P . Then, the following holds:

E[‖∇̄ − ∇F (x)‖] ≤ G√
b
.

Proof. The proof follows from a simple application of Jensen’s inequality.

The following result is useful for bounding the variance of the updates of SVFW and follows from a
slight modification of a result in [19]. We give the proof here for completeness.

Lemma 3 ([19]). Let ∇̃t = 1
bt

(
∑
i∈It ∇fi(x

s+1
t) − fi(x̃s) + g̃s) in Algorithm 2. For the iterates

xs+1
t and x̃s where t ∈ {0, . . . ,m − 1} and s ∈ {0, . . . , S − 1} in Algorithm 2, the following

inequality holds:

E[‖∇F (xs+1
t)− ∇̃t‖] ≤

L√
bt
‖xs+1

t − x̃s‖.

Proof. For the ease of exposition, we first define

ζs+1
t =

1

|It|
∑
i∈It

(
∇fi(xs+1

t)−∇fi(x̃s)
)
.

Using this notation, we then obtain the following bound:

E[‖∇F (xs+1
t)− ∇̃t‖2]

= E[‖ζs+1
t +∇F (x̃s)−∇F (xs+1

t)‖2]

= E[‖ζs+1
t − E[ζs+1

t]‖2]

=
1

b2t
E

∥∥∥∥∥∑
i∈It

(
∇fi(xs+1

t)−∇fi(x̃s)− E[ζs+1
t]

)∥∥∥∥∥
2
 .

The second equality is due to the fact that E[ζs+1
t] = ∇F (xs+1

t) − ∇F (x̃s). From the above
relationship, we get

E[‖∇F (xs+1
t)− ∇̃t‖2]

≤ 1

bt
E

[∑
i∈It

‖∇fi(xs+1
t)−∇fi(x̃s)− E[ζs+1

t]‖2
]

≤ 1

bt
E

[∑
i∈It

‖∇fi(xs+1
t)−∇fi(x̃s)‖2

]

≤ L2

bt
E[‖xs+1

t − x̃s‖2].

The first inequality follows from Lemma 5. The second inequality is due to the fact that for a random
variable ζ, E[‖ζ − E[ζ]‖2] ≤ E[‖ζ‖2]. The last inequality follows from L-smoothness of fi. The
result follows from a simple application of Jensen’s inequality to the inequality above.

11

The following result is important for bounding the variance in SAGAFW. The key difference from
Lemma 3 is that the variance term in SAGAFW involves αit. Again, we provide the proof for com-
pleteness.

Lemma 4. Let ∇̌t = 1
bt

(
∑
i∈It ∇fi(xt)− fi(α

i
t) + gt) in Algorithm 3. For the iterates xt, vt and

{αit}ni=1 where t ∈ {0, . . . , T − 1} in Algorithm 3, we have the inequality

E[‖∇F (xt)− ∇̌t‖] ≤
L√
bt

n∑
i=1

1√
n
E‖xt − αit‖.

Proof. As before we first define the quantity

ζt =
1

|It|
∑
i∈It

(
∇fi(xt)−∇fi(αit)

)
.

With this notation, we then obtain the equality

E[‖∇F (xt)− ∇̌t‖2]

= E

[∥∥∥∥∥ζt +
1

n

n∑
i=1

∇fi(αi
t)−∇F (xt)

∥∥∥∥∥
2]

= E[‖ζt − E[ζt]‖2]

=
1

b2
E

[∥∥∥∥∥∑
i∈It

(
∇fi(xt)−∇fi(αi

t)− E[ζt]
)∥∥∥∥∥

2]
.

The second equality follows from the fact that E[ζt] = ∇F (xt) − 1
n

∑n
i=1∇fi(αit). From the

above inequality, we get the following bound:

E[‖∇F (xt)− ∇̌t‖2]

≤ 1

bt
E

[∑
i∈It

‖∇fi(xt)−∇fi(αi
t)− E[ζt]‖2

]

≤ 1

bt
E

[∑
i∈It

‖∇fi(xt)−∇fi(αi
t)‖2

]
≤ L2

nbt

n∑
i=1

E[‖xt − αi
t‖2].

The first inequality is due to Lemma 5, while the second inequality holds because for a random
variable ζ, E[‖ζ − E[ζ]‖2] ≤ E[‖ζ‖2]. The last inequality is from L-smoothness of fi (i ∈ [n]) and
uniform randomness of the set It. By applying Jensen’s inequality, we get the desired result.

Lemma 5. For random variables z1, . . . , zr that are independent and have mean 0, we have

E
[
‖z1 + ...+ zr‖2

]
= E

[
‖z1‖2 + ...+ ‖zr‖2

]
.

Proof. Expanding the left hand side we have

E
[
‖z1 + ...+ zr‖2

]
=

r∑
i,j=1

E [zizj] = E
[∑r

i=1
‖zi‖2

]
;

the second equality here follows from the our hypothesis.

12

	INTRODUCTION
	PRELIMINARIES
	ALGORITHMS
	STOCHASTIC SETTING
	FINITE-SUM SETTING
	RELATED WORK

