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Abstract

The time to converge to the steady state of a finite Markov chain can be greatly
reduced by a lifting operation, which creates a new Markov chain on an expanded
state space. For a class of quadratic objectives, we show an analogous behavior
whereby a distributed ADMM algorithm can be seen as a lifting of Gradient
Descent. This provides a deep insight for its faster convergence rate under optimal
parameter tuning. We conjecture that this gain is always present, contrary to when
lifting a Markov chain where sometimes we only obtain a marginal speedup.

1 Introduction

Let M and M̂ be two finite Markov chains with states V and V̂ , of sizes |V̂| > |V|, and with
transition matrices M and M̂ , respectively. Let their stationary distributions be π and π̂. Sometimes
it is possible to use M̂ to sample from the stationary distribution ofM. A formal set of conditions
under which this happen is known as lifting [1]. We say that M̂ is a lifting ofM if there is a row
stochastic matrix S ∈ R|V̂|×|V|, where 1>V̂S = 1>V and 1 is the all-ones vector, such that

π = S>π̂, DπM = S>Dπ̂M̂S. (1)
We denote S> the transpose of S, and for any vector v ∈ Rn, Dv = diag(v1, . . . , vn).

Lifting is very useful when the mixing time Ĥ of the lifted chain M̂ is much smaller than the mixing
timeH of the original chainM1. There are several examples where Ĥ ≈ C

√
H, for some constant

C > 0. However, there is a limit on how much speedup lifting can achieve [1]. IfM is irreducible,
then Ĥ ≥ C

√
H. IfM and M̂ are reversible, then the limitation is even stronger Ĥ ≥ CH.

On the other hand, there is a well known relationship between Gradient Descent (GD) and Markov
chains. Consider the problem

min
z∈R|V|

{
f(z) =

1

2

∑

(i,j)∈E

(zj − zj)2

}
(2)

defined over the undirected and connected graph G = (V, E) with vertex set V and edge set E . The
GD iteration is a function of the probability transition matrix M associated to the random walk on G:

zt+1 = [I − α∇f ] zt = [I − αD(I −M)] zt, (3)
1We follow the definitions of [1] but up to multiplicative factors and slightly loser bounds, one can think of

mixing time asH = min{t : max{i,p0} |pti − πi| < 1/4}, where pti is the probability of being on state i after t
steps elapse from the initial distribution p0.
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Figure 1: (a) For the 4-node ring the evolution of GD and ADMM is related to probability transition
matrices MG and MA, where the later is a lifting of the former. Here α is the step-size of GD and
(γ, ρ) the parameters of ADMM. (b) We propose that this holds in general, where ADMM is the
analogous of a lifted Markov chain while GD is the analogous of the original Markov chain.

where α > 0 is the step-size and D = Dd is the degree matrix of G, where d = diag(d1, . . . , d|V|)
and di is the degree of node i ∈ V .

The above connection is specially clear for d-regular graphs. Choosing α = 1/d, equation (3)
simplifies to zt+1 = Mzt. If M is irreducible and aperiodic, denoting λ2(M) its second largest
eigenvalue in absolute value, then both the mixing time of a Markov chain on G and the time for GD
to reach a given accuracy are equal to

H = C
log(1/|λ2|) ≈

C
1−|λ2| (4)

for some constant C, and for λ2 ≈ 1 in the second equality.

Let us anticipate our proposal by a concrete example. Consider solving (2) over the 4-node ring graph
with two algorithms, GD and the distributed Alternating Direction Method of Multipliers (ADMM).
Both are first-order methods and the objective is quadratic, so they can be written as linear systems
with matrices TG and TA, respectively. Surprisingly, there are Markov matrices MG and MA, very
closely related to TG and TA, where MA is a lifting of MG! The situation is illustrated in Figure 1 (a).
In this case, we have the lifting equations (1) satisfied with π = 1

41, π̂ = 1
81, and α = γρ

2+ρ .

We conjecture that this connection holds more generally, as described in Figure 1 (b). First, we show
that for problems like (2) GD and ADMM satisfy an analogous relation to (1), although MA might
have few negative entries. Therefore, ADMM can be seen as a “lifting” of GD. Second, since lifting
can speed mixing times up to a square root factor, we conjecture that the optimal convergence time
H?A of ADMM is related to the optimal convergence timeH?G of GD as follows:

Conjecture 1 (ADMM lifting speedup). For problems like (2) over any connected graph G, there is
a universal constant C > 0 such that

H∗A ≤ C
√
H∗G. (5)

Note that this is a much stronger statement than for lifted Markov chains, where for some graphs the
gain in speed is only marginal. We support this conjecture with numerical evidence. Due to lack of
space, our proofs are included as supplementary material. We end the paper with related works.

2 ADMM as a lifting of Gradient Descent

In this section we show that the lifting relations (1) hold for the following generalization of (2):

min
z∈R|V|

{
f(z) =

1

2

∑

(i,j)∈E

qij(zi − zj)2
}
, (6)

where qij = qe and e = (i, j). Let us introduce the extended set of variables x ∈ R|Ê|, where
Ê = {(e, i) : e ∈ E , i ∈ e, and i ∈ V}. Note that |Ê | = 2|E|. Each component of x is indexed by a
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pair (e, i) ∈ Ê . For simplicity we denote (e, i) by ei. Now (6) can be written as

min
x,z

{
f(x) =

1

2

∑

e=(i,j)∈E

qe(xei − xej )2
}

subject to xei = zi, xej = zj , ∀ e = (i, j) ∈ E Qe

xei xei

e = (i, j)

zi zj

zi zj

(7)

Notice that f(x) = 1
2x
>Qx where Q is block diagonal, one block per edge e = (i, j), in the form

Qe = qe
(

+1 −1
−1 +1

)
. The diagram in (7) explains the new variables introduced. We define the matrix

S ∈ R|Ê|×|V| with components such that Sei,i = Sej ,j = 1 for all e = (i, j) ∈ E and zero otherwise.

The distributed over-relaxed ADMM is a first order method that operates in five variables: x and
z, defined in (7), but also u, m and n, introduced below. It depends on the relaxation parameter
γ ∈ (0, 2) and several parameters ρ ∈ R|Ê|. The components of ρ are ρei > 0 for ei ∈ Ê (see [2, 3],
and also [4] for more details on multiple ρ’s). We can now write ADMM iterations as

xt+1 = Ant, mt+1 = γxt+1 + ut, st+1 = (1− γ)st +Bmt+1,

ut+1 = ut + γxt+1 + (1− γ)st − st+1, nt+1 = st+1 − ut+1,
(8)

where st = Szt, B = S(S>DρS)−1S>Dρ, and A = (I +D−1
ρ Q)−1.

Theorem 2 (Linear evolution for ADMM). Iterations (8) are equivalent to
nt+1 = TA n

t where TA = I − γ(A+B − 2BA), (9)
with st = Bnt and ut = −(I −B)nt. Thus, all the variables in ADMM depend only on nt.

We can also generalize GD rule (3) to problem (6) as

zt+1 = TGz
t where TG = I − αS>QS. (10)

In the following we establish lifting relations between ADMM and GD in terms of matrices MA and
MG which are very closely related, but not necessarily equal to TA and TG. They are defined as

MG = (I −DG)−1(TG −DG), vG = (I −DG)1, (11)

MA = (I −DA)−1(TA −DA), vA = (I −DA)ρ, (12)
where DG 6= I and DA 6= I are arbitrary diagonal matrices. We also introduced two vectors.

We demonstrate below thatMG andMA satisfy (1). Moreover,MG can be interpreted as a probability
transition matrix, and the rows of MA sum up to one. We only lack the strict non-negativity of MA,
which in general is not a probability transition matrix. Therefore, in general, we do not have a lifting
between Markov chains. Some of the proof techniques we use are standard, and we include them as
supplementary material.
Theorem 3. For (DG)ii < 1, and sufficiently small α, MG in (11) is a doubly stochastic matrix.
Lemma 4. The rows of MG and MA sum up to one: MG1 = 1 and MA1 = 1. Moreover,
v>GMG = v>G and v>AMA = v>A . These are properties shared with Markov matrices (see Section 1).
Theorem 5 (ADMM as a lifting of GD). MA and MG satisfy relation (1), namely,

vG = S>vA, DvGMG = S>DvAMAS, (13)
provided DG, DA, α, γ, and ρ are related according to

S>Dρ(I −DA)S = I −DG, α =
γ qeρei,iρej ,j

ρei,iρej ,j + qe
(
ρei,i + ρej ,j

) , (14)

for all e = (i, j) ∈ E . The last equation restricts the components of ρ.
Theorem 6 (Negative probabilities). There exists a graph G such that, for any diagonal matrix DA,
ρ and γ, MA has at least one negative entry. Thus in general MA is not a transition matrix.
Remark 7 (Regular graphs). As shown in Figure 1, for the n-node ring we have true lifted Markov
chain since MA is non-negative. Now consider d-regular graphs. We fix qe = 1 for simplicity, and
ρ = ρ1. Equation (14)-left is satisfied by DA = (1 − (ρ|Ê |)−1)I and DG = (1 − |V|−1)I , since
d|V| = |Ê | = 2|E|. Equation (14)-right imposes α = γρ/(2 + ρ). Notice that (DG)ii < 1 for all i,
thus choosing γ or ρ small enough we can make MG positive. Moreover, v>G1 = v>A1 = 1, and all
components of vG and vA are non-negative, hence these are stationary probability distributions of
MG and MA. Thus, except for a few negative entries, MA is a Markov chain lifting of MG.
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Figure 2: Convergence rate of ADMM and GD for different graphs. (a) Chain; (b) Periodic 2D grid.
The two green curves occur because odd and even |V| behave differently; (c) Barbell graph.

Based on the above results we propose Conjecture 1, which is equivalent to the following statement.
Let τ?G and τ?A be the optimal convergence rates of GD and ADMM, respectively. At least for
objective (7), and for any G, there is some universal constant C > 0 such that

1− τ?A ≥ C
√

1− τ?G (15)

when τ?G and τ?A are close to 1. To see this equivalence, just recall equation (4).

3 Numerical evidence
For many graphs, we observe very few negative entries in TA and MA. These can be reduced even
more by adjusting ρ and γ. Nonetheless, in general, the lack of strict non-negativity in MA prevents
us from directly applying the theory of lifted Markov chains to relate ADMM and GD.

However, there is compelling numerical evidence to Conjecture 1, or equivalently (15). Consider
a sequence {Gn} of graphs, where n = |V|, such that τ?G → 1 and τ?A → 1 as n → ∞. Denote
RG(n) = (1 − τ?G)−1 and RA(n) = (1 − τ?A)−1. We look for the smallest β such that RA(n) ≤
CRG(n)β , for some C > 0 and all n large enough. Would (15) be false, there would exist sequences
{Gn} for which β 6= 1/2. For instance, if {Gn} have low conductance, lifting does not speedup the
mixing time of random walks on {Gn}, and we could find β = 1.

To find β we plot β̂1 = logRA(n)
logRG(n) and β̂2 = RG(n)

RA(n)
∆RA(n)
∆RG(n) as functions of n, where for any function

h(n), ∆h(n) = h(n+ 1)−h(n). The idea is simple. Let f(x) = Cg(x)β and f, g →∞ as x→∞.
Then, log f

log g → β and also ∂x log f
∂x log g = g

f
∂xf
∂xg
→ β, as x → ∞. We thus numerically analyze their

discrete analogues. Given Gn, from (10) and (9) we compute τ = maxj{|λj(T )| : |λj(T )| < 1}.
The optimal convergence rates are then given by τ?G = minα τG, and τ?A = min{γ,ρ} τA where
ρ = ρ1. In Figure 2 we see that (5) holds for three very different types of graphs. Surprisingly, we
get the same

√· speedup for a barbell graph, which is known to not speedup random walks via lifting.
We find similar behavior for several other graphs, but we omit these results due to lack of space.

4 Related work, conclusion, and an open problem
We state our Conjecture 1 for a relatively simple problem but, to the best of our knowledge, we
cannot resolve it through existing literature on GD or ADMM. Our conjecture compares the exact
asymptotic optimal rates of convergence of ADMM and GD. On the contrary, most literature on
ADMM focus on upper bounding global convergence rate and, at best, optimize these upper bounds.
Furthermore, to get linear convergence rates, strong convexity is usually assumed, which does not hold
for our problem; see e.g. [5]. Most papers not requiring strong convexity, focus on the convergence
rate of the objective and not on the convergence rate of the variables like us; see e.g. [6]. Some
works consider a consensus problem which is related but different from ours. They use the objective
f(z) =

∑
i∈V

∑ ‖zi−ci‖2 subject to zi = zj if (i, j) ∈ E where ci > 0 are constants [7]. A branch
of research considers f(z) =

∑
i fi(z) and ADMM iterations that are agnostic to whether or not

fi(z) depends on a subset of the components of z; see e.g. [8]. This contrasts with our setting, where
we can interpret ADMM’s scheme as a message-passing algorithm where the messages between
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agents i and j are only associated to the variables shared by fi and fj [3]. The works closest to help
resolve our conjecture are [9, 10] on optimally tunning ADMM for quadratic problems, and also [11]
that contains explicit rates of convergence. Nonetheless, their theorems’ assumptions do not hold for
our non-strongly-convex distributed problem. Very few works express the optimal convergence rate
of ADMM as a function of the optimal convergence rate of GD. For example [2] does it, but assumes
strong convexity. Finally, and most importantly, no prior work has connected GD and ADMM with
Markov chain lifting, although some works on non-ADMM-based distributed averaging and gossip
algorithms have made use of lifting to speed up convergence time [12, 13, 14].
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5 Supplementary material for “Markov chain lifting and distributed
ADMM”

In the main part of the paper, we introduced the extended set Ê which essentially duplicates all edges
of the original graph, |Ê | = 2|E|; see discussion before (7). This is the shortest route to state our
results concisely, but it complicates the notation in the following proofs. Therefore, in this section we
introduce the notion of a factor graph for problem (6).

The factor-graph Ḡ = (F̄ , V̄, Ē) for problem (6) is a bipartite graph that summarizes how different
variables are shared across different terms in the objective. This is illustrated in Figure 3.

The factor-graph Ḡ has two sets of vertices, F̄ and V̄ . The blue circles represent the nodes in V̄ = V ,
and the red squares represent the nodes in F̄ = E , where G = (V, E) is the original graph. Note that
each a ∈ F̄ is uniquely associated to one edge e ∈ E and uniquely associated to one term in the
sum of the objective. Before, we referred to this function by fe but now we refer to it by fa. With a
slight abuse of notation we indiscriminately write a ∈ F̄ or fa ∈ F̄ . Each node b ∈ V̄ is uniquely
associated to one node i ∈ V and uniquely associated to one component in z. Before, we referred to
this variable by zi but now we refer to it by zb, and indiscriminately write b ∈ F̄ or zb ∈ F̄ . Each
edge (a, b) ∈ Ē must have a ∈ F̄ and b ∈ V̄ and its existence implies that the function fa depends on
variable zb. Moreover, each edge (a, b) ∈ Ē is also uniquely associated to one component of x in the
equivalent formulation (7). In particular, if a ∈ Ē is associated to e ∈ E , and b ∈ V̄ is associated to
i ∈ V , then (a, b) ∈ Ē is associated to xei . Here, we denote xei by xab. Thus, we can think of Ē has
being Ê . Another way of thinking of Ē and x is as follows. If (a, b) ∈ Ē then xab = zb appears as a
constraint in problem (7).

Let us introduce the neighbor set of a given node in Ḡ. For a ∈ F̄ , the variables that fa depends on
are in the set Na = {b ∈ V̄ : (a, b) ∈ Ḡ}. Analogously, for b ∈ V̄ , the functions that depend on zb
are in the set Nb = {a ∈ F̄ : (a, b) ∈ Ḡ}. In other words, N• denotes the neighbors of either circle
or square nodes in Ḡ. For a ∈ F̄ we define Ia = {e ∈ Ē : e is incident on a}. For b ∈ V̄ we define
Ib = {e ∈ Ē : e is incident on b}.
If we re-write problem (7) using the new notation, which indexes variables by the position they the
take in Ḡ, the objective takes the form

f(x) =
1

2
x>Qx =

1

2

∑

a∈F
x>a Q

axa (16)

where Q ∈ RĒ×Ē is block diagonal and each block, now indexed by a ∈ F̄ , takes the form
Qa = qa

(
+1 −1
−1 +1

)
(qa > 0), and xa = (xab, xac)

> for (a, b), (a, c) ∈ Ē . Here, qa is the same as qe
in the main text. We also have the constraints xab = xa′b = zb for each a, a′ ∈ Nb and b ∈ V̄ . The
row stochastic matrix S, introduced in the ADMM iterations, is now expressed as S ∈ R|Ē|×|V̄| and
has a single 1 per row such Seb = 1 if and only if edge e ∈ Ē is incident on b ∈ V̄ in the factor-graph.
Notice that S>S = D is the degree matrix of the original graph G.

Proof of Theorem 2. Recall that B = S(S>DρS)−1S>Dρ, thus B2 = B is a projection operator,
and B⊥ = I −B its orthogonal complement.

Consider updates (8). Substituting xt+1 andmt+1 into the other variables we obtain

(
I 0 0
I I 0
−I I I

)

st+1

ut+1

nt+1


 =

(
(1− γ)I B γBA
(1− γ)I I γA

0 0 0

)

st

ut

nt


 (17)

which can be easily inverted yielding

st+1 = (1− γ)st +But + γBAnt, (18)

ut+1 = B⊥ut + γB⊥Ant, (19)

nt+1 = (1− γ)st + (B −B⊥)ut + γ(B −B⊥)Ant. (20)
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Figure 3: Example of a factor graph Ḡ for problem (6) and (7), where G is the complete graph K4

with one edge removed.

Note the following important relations:

Bnt = st, B⊥nt = −ut, (21)

Bst = st, B⊥st = 0, (22)

B⊥ut = ut, But = 0. (23)

The relations (22) follow simply by definition, B st = S(S>DρS)−1(S>DρS)zt = st, which also
implies B⊥st = 0. Since BB⊥ = 0, acting with B over (19) implies But = 0 for every t, and also
B⊥ut = ut. Thus we have shown (22) and (23). Now (21) follows simply by using these facts and
the own definition nt = st−ut. Finally, applying the relations (21) on (20) we obtain nt+1 = TAn

t

where TA = I − γ(A+B − 2BA).

Proof of Theorem 3. Write Q = Q+ +Q− where Q+ is diagonal and has only positive entries, and
Q− only has off-diagonal and negative entries. First, notice that (S>Q+S) is also diagonal. Indeed,
for b, c ∈ V̄ , (S>Q+S)bc =

∑
e∈Ē SebQ

+
eeSec = δbc

∑
e∈Ib Q

+
ee where δ is the Kronecker delta. By

a similar argument, S>Q−S is off-diagonal. Hence, if b, c ∈ V̄ and b 6= c,

(TG)bc = −α
∑

e∈Ib

∑

e′∈Ic

Q−ee′ ≥ 0. (24)

Recall that MG = (I −DG)−1(TG −DG), where DG 6= I is diagonal. For MG to be non-negative
we first impose that (DG)bb < 1 for all b ∈ V̄ . Then, since the off-diagonal elements of TG are
automatically positive by (24), we just need to consider the diagonal elements of TG −DG. Thus we
require that for every b ∈ V̄ ,

1− α
∑

e∈Ib

Qee + (DG)bb ≥ 0. (25)

Denoting Qmax = maxb∈V̄
∑
e∈Ib Qee and DG,min the smallest element of DG, the matrix MG will

be non-negative provided α ≤ (1 +DG,min)/Qmax.

Now notice that S1|V̄| = 1|Ē| andQ1 = 0. Thus S>QS1 = 0, implying TG1 = 1, and 1>TG = 1>.
From this we have MG1 = 1 and 1>MG = 1>, so all the rows and columns of MG sum up to
one.

Proof of Lemma 4. We proved above that MG is a doubly stochastic matrix. Now let us consider
MA. Recall the definition of B = S>(S>DρS)−1S>Dρ. Note that the action of B on a vector
v ∈ R|Ē| is to take a weighted average of its components, namely, if (a, b) ∈ Ē then

(Bv)ab =

∑
c∈Nb

ρcbvcb∑
c∈Nb

ρcb
. (26)

Therefore, B1 = 1. Recall that Q1 = 0, thus A1 = 1, where A = (I +D−1
ρ Q)−1, which implies

TA1 = 1, and in turn MA1 = 1. Now the other relations follow trivially.
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Proof of Theorem 5. Due to the block diagonal structure of Q it is possible write A explicitly as

A = I − FQ, (27)

where F is a block diagonal matrix with |F̄ | blocks. Each block F a, a ∈ F̄ , is of the form

F a =
qa

ρabρac + qa(ρab + ρac)

(
ρac 0
0 ρab

)
, (28)

where b, c ∈ Na. Now by the definition of B we have S>DρB = S>Dρ. Hence,

S>DvAMAS = S>Dρ(I −DA)S − γS>DρFQS, (29)

DvGMG = (I −DG)− αS>QS, (30)

Equating the first term of (29) to the first term of (30), and also the second terms to each other, on
using (27) we obtain

S>Dρ(I −DA)S = I −DG, α =
γ qaρabρac

ρabρac + qa(ρab + ρbc)
, (31)

where the second equality above must hold for all a ∈ F̄ and b, c ∈ Na. These give the second
equality in (13) and relations (14). Finally, since diagonal matrices commute, S>vA = S>(I −
DA)DρS1|V̄| = (I −DG)1|V̄| = vG, which gives the first relation in (13).

Proof of Theorem 6. It suffices to show one example with at least one negative entry. Let G be the
complete graph K4 with one edge removed as shown in Figure 3. By direct inspection, one finds the
following sub-matrix of TA:

(
(TA)21 (TA)24

(TA)31 (TA)34

)
= γ




ρ11(ρ12−ρ22)
(ρ12+ρ22)(ρ11+ρ12+ρ11ρ12)

2

(ρ12+ρ22)
(

1+ρ−1
22 +ρ−1

23

)
2

(ρ12+ρ22)
(

1+ρ−1
11 +ρ−1

12

) −ρ23(ρ12−ρ22)
(ρ12+ρ22)(ρ22+ρ23+ρ22ρ23)


 . (32)

First notice that subtracting DA from TA does not affect this sub-matrix. Now recall that all
components of ρ must be strictly positive. The elements (TA)21 and (TA)34 have opposite signs, so
one of them is negative. Since (TA)24 and (TA)31 are both positive, one cannot remove the negative
entries of an entire row of TA by multiplying TA by the diagonal matrix (I −DA)−1. Therefore,
MA = (I −DA)−1(TA −DA) has at least one negative entry.
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