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Abstract

This work proposes a multiple kernel learning (MKL) descent strategy based on
multiple epochs of stochastic variance reduced gradients (i.e. multi-epochs SVRG).
The proposed descent strategy takes place with a constant-size learning step, that
is entangled to the evolution of the kernels combination coefficients, and hence
corrected in between epochs. This descending regime leads to an improved MKL
bound that exhibits a linear dependency on the number of samples n, and sub-
linear in both the number of kernels F and tolerance error ε. In particular, for
an `p-norm MKL, the proposed method is able to find an ε-accurate solution in
a complexity O(F 1/q · n log( 1ε )), where q is the dual norm. This matches the
optimal convergence rate reported for (non-accelerated) strongly-convex objectives
and improves over other state-of-the-art MKL solutions.

1 Introduction

Multiple kernel learning algorithms are very well suited to address multi-cue multi-source problems,
and have been certainly competitive [1, 2, 3, 4] in several problem domains. Despite this success,
traditional (batch) MKL solutions such as Level set MKL [5] and SMO-MKL [6] become extremely
slow in presence of large amounts of data due to their (generally quadratic) complexity. Meanwhile,
other MKL approaches such as SILP [7] can handle large amounts of data, but lack of theoretical
guarantees on its convergence rate. On the other hand, incremental/stochastic MKL solutions based
on SGD [8, 9] have proven to be much more efficient when addressing large scale problems due to
a better (linear) complexity. However, their associated convergence deteriorates when very precise
solutions are required. There is therefore a growing need of MKL solutions that are able to cope with
large amounts data, arbitrary small errors, and large number of kernels in a computational efficient
manner.

In this work, we propose a MKL solution based stochastic variance reduced gradients [10, 11, 12]
(SVRG). The proposed descent strategy performs multiple epochs of SVRG with a constant-size
learning step, that is entangled to the kernel’s combination coefficients evolution and hence corrected
in between epochs. This strategy yielded to a sub-linear dependency on the number of kernels F ,
while the multi-epochs SVRG allowed to obtain a sub-linear dependency on the error ε and a linear
one in the number of samples n, resulting in an overall complexity O(F 1/q · n log( 1ε )).
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2 Related Works

As a main difference with other problems, solving MKL via semi-stochasticity requires a careful
consideration regarding assumptions on the strong convexity parameter due to the presence of
multiple kernels in the regularization term. Authors in [8] considered (within the context of SGD) a
formulation that is ensured [13] to be λ

q -strongly convex for their particular `p-norm MKL objective.
In principle, this formulation could also be used in the semi-stochastic framework, easing the analysis
since the strong convexity parameter becomes immediately clear. However, it also deteriorates the
prospects of convergence by decreasing the objective curvature from λ to λ

q (less strongly convex
since q > 1 in an `p-MKL context). Instead, we followed the formulation in [14] and designed a
descending strategy that yielded to an improved bound compared to other MKL solutions (see Table
1). Notably, the bigger q becomes the sparser the kernel combination vector will be, which will result
in a faster convergence.

Type MKL Method Norm Complexity for ε < 1

Non-Stoch Level MKL [5] p = 1 O
(
F · n

2

ε2

)
Stochastic UFO-MKL [15] p = 2 logF

2 logF−1 O
(
logF · nε

)
Stochastic Obscure MKL [8] 1 < p ≤ 2 O

(
qF 1/q · nε

)
Semi-Stoch This work 1 < p <∞ O

(
F 1/q · n log( 1ε )

)
Table 1: Complexity of different MKL methods taking into account the `p-norm with 1

p + 1
q = 1,

total samples n, number of kernels F and tolerance error ε; we recall that λ ∝ 1
n thus 1

λ is O(n). The
comparison includes traditional (non-stochastic) methods, stochastic ones and the proposed method.

Very few works have addressed MKL solutions based on variance reduction techniques. Among
the exceptions we can find the general work of [16], that could be (indirectly) used to solve MKL
formulations. Our work goes precisely in this line and aims at solving MKL by making use of
SVRG [10] within the semi-stochastic framework of [11].

We provide the proposed optimization Algorithm in Section 3.1 along with a sketch of the proof of
its convergence in Section 3.2.

3 Proposed MKL via Multi-Epochs SVRG

3.1 Problem Formulation and Solution

We assume that the MKL objective function is L-smooth, and each individual single-kernel problem
is λ-strongly convex with respect to the Euclidean norm. Consider thus an `p-norm (1 < p < ∞)
combination of F kernels in the following constrained optimization problem:

min
{dk≥0},w

g(w) =
1

2

F∑
k=1

λ

dk
‖wk‖22 +

1

n

n∑
t=1

` (w, xt, yt) s.t.
∑
k

(dk)p ≤ 1 (1)

with w = (w1, · · · , wF ), given n tuples (x, y) ∈ X ×Y and a regularization parameter λ > 0, who’s
value is commonly [14, 8, 15] set to λ = 1

Cn (C is the well-known SVM hyper-parameter). We also
adopted the framework of Kloft. et al. [14], where x

0 = 0 if x = 0, otherwise x
0 =∞ [14, 17]; hence

wk = 0 whenever dk = 0 to reach a finite objective. Among other benefits, this formulation allows
involving an `p-norm such that 1 < p < ∞ (consequently 1 < q < ∞) and is slightly different
from [8, 15]. The solution of the combination coefficients d1, . . . , dF uniquely depends on the values
w1, . . . , wF respectively, and can be obtained through a Lagrange derivation in a closed form as
follows:

dk =
(
‖wk‖22

) 1
p+1 ·

[
F∑
s=1

(
‖ws‖22

) p
p+1

]− 1
p

(2)

2



which is in accordance with [14] and [18]. In the proposed solution, we solve (1) interleavingly by
epochs in a semi-stochastic approach. At the beginning of each i-th epoch we consider a fixed set of
kernel coefficients dki ∀k and descend at each k- th particular block wki at a time. Under this view,
we have k individual single kernel problems that share the same loss `, each one with a potentially
different strong convexity degree λ̃k = λ

dk
according to their associated coefficient dk. The semi-

stochastic descending regime [11] is fully determined by the achieved convergence c from the settings
of basically three parameters, that we will refer to as descent parameters: the target decrease in the
objective4 (defined indirectly by ε), and a proper combination of the learning step h and number of
iterations m. The setting of both h,m depends on the strong convexity parameter λ and Lipschitz
constant L. The Lipschitz constant L bounds the gradient∇g =

∑
1
n∇gt of (1), where1 gt considers

only one tuple (xt, yt) ∈ X × Y from the training set [11].

As stated above, we consider k problems each one with a (potentially) different strong convexity
parameter λ̃k. As consequence, each single-kernel problem will have associated its own set of descent
parameters, defined in Proposition 1 in Section (3.2), and hence each kernel follow its own tailored
descending regime. The number of iterations at the i-th epoch for the k kernels is thereforem(4, L

λ̃k
),

with λ̃k = λ
dki

, or equivalently:

m

(
4, L

λ̃k

)
= mk

(
4, dki

L

λ

)
(5)

≤ dkim

(
4, L

λ

)
= dkim (4, κ) (3)

where κ = L
λ is a fixed/unique condition number associated to (1). A key observation in the above

equivalence is that the number of iterations at each k-th kernel, for a fixed dki at some i- th epoch,
is simply a partitioning (according to di) of certain amount of iterations m(4, κ) between all the
kernels. This observation, in combination with the constraint

∑
(dk)p ≤ 1, is at the core of our

optimization strategy (detailed in Algorithm 1) and yields the improvements related to the dependency
on F . Theorem 1 in Section (3.2) shows that due to this partitioning, the total amount of iterations
performed by all the kernels at each epoch is at most F 1/qm(κ).

Algorithm 1 Semi-Stochastic MKL
Require: Parameters: p, L, λ, ε

1: Initialize c̃k0 = 1, dk = 1
F and wk0 ← Randomly ∀k

2: for j = 1, · · · , [log(1/ε)] do
3: Set parameters4kj (c̃kj ), hkj (4kj , Lk, λ̃k),mk

j (4kj , Lk

λ̃k
) ∀k

4: Let T kj ← t with probability (1− λ̃khkj )m
k
j−t for t = 1, ..,mk

j ∀k
5: Initialize ω0 ← (w1

j−1, · · · , wFj−1)
6: Prepare full gradient snapshot Gj =

∑n
t=1

1
n∇gt(ω0; d)

7: for t = 0, · · · ,max(m1
j , . . . ,m

F
j ) do

8: (xt, yt)← Random sample (uniformly selected from training set)
9: for k = 1, · · · , F do

10: if t < T kj then
11: Update solution ωkt+1 = ωkt − hkj (Gkj + ∂gt

∂ωk
t
(ωt; d)− ∂gt

∂ωk
t
(ω0; d))

12: end if
13: end for
14: end for
15: wkj ← ωk

Tk
j
∀k

16: Update dk and set λ̃k ← min( λ
dk
, L2 ) ∀k

17: Re-assess work done c̃ki ← c
(
λ̃k, hki ,m

k
i

)
∀ji=1 ∀k

18: end for
19: return d,wJ

1For sample (xt, yt), ∇gt denotes gradient with respect to ω, and ∂gt
∂ωk partial derivative with respect to ωk
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Since the descent parameters are set according to λ̃ which changes in between epochs, then the
learning step h and the number of iterations m have to be adjusted in order to guarantee convergence
to the desired precision ε. This is done by reassessing the progress achieved up to the current epoch
via c̃. High values of c̃ (lower convergence rate) achieved at early epochs will require a compensation
in further epochs by descending at higher convergence rate, which in turn will require more iterations
(smaller h and bigger m).

3.2 Convergence Analysis

Proposition 1: Assume an objective that is L-smooth and λ-strongly convex. Consider ε < 1 and a
total of J = log(1/ε) epochs. Given ε < c̃1c̃2 · · · c̃j−1, at each j-th epoch, define:

4j(c̃1, . . . , c̃j−1) =

(
min(ε, ε)∏j−1

z=0 c̃z

) 1
J−j

< 1 (4)

and fix the learning step 0 < h < 1
2L , and the number of iterations m as (with κ = L

λ ):

h(4j , L, λ) =
1

4
4j

(L− λ) + 2L
, m(4j , κ) ≥

(
4(κ− 1)

4j
+ 2k

)
log

(
2

4j
+

2κ− 1

κ− 1

)
(5)

resulting in a convergence at j-th epoch as:

c(λ, h,m) =
(1− λh)m

(1− (1− λh)m)(1− 2Lh)
+

2(L− λ)h
1− 2Lh

≤ 4j (6)

Then, running J epochs of Algorithm 1 allows converging to an ε-accurate solution at a rate
c̃1c̃2 · · · c̃J ≤ ε. In particular, since J = log(1ε ), then 1

4 ≤ exp(1) and hence m(κ) = O(κ).

Proof. By choosing h and m as in (5), (Theorem 6 in [11]) establishes that c ≤ 4. Then, after J
epochs, by definition (4) we have that c̃1c̃2 · · · c̃J ≤ ε, with c̃j = ε1/J ∀j as a particular case. Finally,
for the given

∏
c̃j ≤ ε, (Theorem 4 in [11]) guarantees convergence to an ε-accurate solution in J

epochs. �

Theorem 1: Consider a MKL problem in a setup of an `p-norm combination of F kernels, with
1 < p < ∞. Fix the number of epochs J = log( 1ε ) for some ε < 1. Set descent parameters (4,
h and m) according to Proposition 1. Then, starting from a solution w0 and running J epochs of
Algorithm 1 allows finding an ε-accurate solution wJ such that in the expectation:

E (g(wJ)− g(w∗)) ≤ εE (g(w0)− g(w∗)) (7)

in a complexityW∗(J, h,m) ≤ O
((
n+ F 1/qκ

)
log
(
1
ε

))
.

Proof. By choosing descent parameters according to Proposition 1, then convergence in view of (7) is
guaranteed with c̃1c̃2 · · · c̃J ≤ ε. For the second part of the claim, denote j = argmaxz ϕ(z) as the
epoch where the total number of iterations is maximum, thus:

ϕ(j)
(3)
=

F∑
k=1

okjm (κ) ≤ max
{okj }≥0

F∑
k=1

okjm (κ) ≤

(
F∑
k=1

m(κ)q

)1/q

≤ F 1/qm(k) ∀j (8)

for oj = (o1j , · · · , oFj ), ‖oj‖pp ≤ 1; the solution (8) can also be obtained in closed form via Lagrange
derivation. The total cost of performing J-epochs of Algorithm 1 is at mostO(nJ+ϕ(j)J) (see lines
2, 7, 9, 10), accounting for both full and stochastic gradients. Then, since m(κ) = O(κ) (Proposition
1), from (8) we have ϕ(j) ≤ F 1/qm(κ) ≤ O(F 1/qκ) which completes the proof. �
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