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Abstract

We propose a novel approach to robust and efficient recovery of low-rank sparse matrices
from few noisy compressive measurements. Our approach is based on minimization of
a multi-penalty functional with a sparsity-promoting term on right singular vectors. We
propose and analyze an iterative alternating algorithm for minimizing the functional. The
main virtue of the proposed algorithm is that each singular vector pair is updated iteratively
rather than a whole matrix. This modification allows not only to achieve near optimal
performance guarantees at low computational costs but also to remove assumptions on the
matrix entries distribution, required in other methods. The theoretical results are exemplified
by numerical experiments, demonstrating state of the art performance.

1 Introduction

In many data acquisition and reconstruction applications, the data or signal being acquired is assumed to have
sparse representations with respect to suitable bases. Classical compressed sensing results guarantee recovery
of a sparse signal from a small number of random linear measurements, under certain assumptions on the
measurement matrix.

In this paper, we consider a generalization of classical compressed sensing towards the recovery of low-rank
sparse matrices. We provide below the precise notion of matrix sparsity, which we consider in this paper. In
particular, we consider the general problem of recovering a low-rank sparse matrix X ∈ Rn1×n2 from the
noisy measurements y collected by a linear map A : Rn1×n2 → Rm with m� n1n2 :

y = A(X) + η, where rank(X) ≤ R� min{n1, n2} and X is sparse

where η is some additive noise. This problem formulation is common for many real-life applications in signal
and image processing such as hypperspectral image recovery [Golbabaee and Vandergheynst(2012)] or in
inverse problems such as blind deconvolution [Lee et al.(2013)Lee, Wu, and Bresler].

Related work The recovery from linear measurements of low-rank matrices without sparsity constraints
has been well studied as an extension of classical compressed sensing theory [Candes and Plan(2011),
Recht et al.(2010)Recht, Fazel, and Parrilo]. When the unknown matrix is assumed to have both low-rankness
and sparsity, the number of compressed sensing measurements required to its successful recovery can be
further reduced, see [Jain et al.(2013)Jain, Netrapalli, and Sanghavi] and references therein. The conceptually
closest work [Lee et al.(2013)Lee, Wu, and Bresler] to ours proposes an alternating minimization algorithm,
the so-called Sparse Power Factorization (SPF), for recovering low-rank sparse matrices from compressed
measurements. The authors represent the unknown matrix X as product of two matrices X = UV T and then
apply alternating minimization based on Hard Thresholding Pursuit (HTP), which enforces additional sparsity
on the columns of U and/or V . The authors showed that with a suitable initialization and for small noise levels,
SPF provides a stable recovery of a rank-R matrix with s1-sparse columns and s2-sparse rows whenever the
number of measurements is O(R(s1 + s2) log(max{en1/s1, en2/s2})). At the same time, to achieve these
results, the authors require that all columns (resp. rows) of X share a common support, which is not always
practical and/or feasible. Moreover, convergence heavily relies on A fulfilling a certain Restricted Isometry
Property (RIP) which can only be guaranteed for a small class of randomly generated measurement ensembles.
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Contribution We present a new alternating iterative algorithm for efficient and robust low-rank and sparse
matrix recovery with theoretical guarantees. The algorithm is based on minimization of a non-smooth multi-
penalty functional with sparsity promoting terms for the right singular vectors. The main virtue of the algorithm
is the given explicit formulas for computation of the successive iterations, resulting in low computational
complexity. We also illustrate numerically that by using convex relaxation instead of solving a non-convex
problem as in [Jain et al.(2013)Jain, Netrapalli, and Sanghavi] we can achieve better approximation properties,
esp. in the presence of noise, and show convergence results without any conditions on the measurement
operator A or assumptions on the support distribution in X . Additionally, we generalize the concept of
alternating minimization by not only alternating between two matrices but between R pairs of vectors. This
enables us to drop the assumption of a common support for all columns (resp. rows).

The paper is organized as follows: in Section 2 we present and discuss the iterative alternating algorithm for low-
rank matrix recovery. The main results are presented in Section 3, whereas numerical experiments are provided
in Section 4. Proofs and further results are provided in [Fornasier et al.(2017)Fornasier, Maly, and Naumova].

2 Algorithm

Let us first define our notion of matrix sparsity: We are interested in recovering the unknown low-rank sparse
matrix X , which can be represented as X =

∑R
r=1 u

r(vr)T such that ‖ur‖2 = 1 and ‖vr‖2 = σr where R is
the rank of the matrix; σ1, . . . σR are the positive singular values, and U = [u1, . . . , uR], V = [v1, . . . , vR]
are the matrices of left- and right-singular vectors. We consider the case when the right singular vectors
vr are s−sparse, i.e., vr has only s non-zero coefficients. We take measurements of X using a linear map
A : Rn1×n2 → Rm such that

y = A(X) + η =

 〈A1, X〉F
...

〈Am, X〉F

+ η. (1)

Motivated by recent works, providing theoretical and numerical evidences of superior perfor-
mance of multi-penalty regularization, see [Naumova and Peter(2014), Grasmair and Naumova(2016),
Daubechies et al.(2016)Daubechies, Defrise, and De Mol] and references therein, we propose to recover X
by minimizing the following multi-penalty functional:

JRα,β(u
1, . . . , uR, v1, . . . , vR) :=

∥∥∥∥∥y −A
(

R∑
r=1

ur(vr)T

)∥∥∥∥∥
2

2

+ α

R∑
r=1

‖ur‖22 + β

R∑
r=1

‖vr‖1, (2)

where α, β are regularization parameters. We will denote the global minimizer of (2) by
(u1α,β , . . . , u

R
α,β , v

1
α,β , . . . , v

R
α,β). Note that JRα,β also applies to matrices by viewing each 2R-uple

(u1, . . . , uR, v1, . . . , vR) as the matrix
∑R
r=1 u

r(vr)T , and we denote Xα,β the one corresponding to
(u1α,β , . . . , u

R
α,β , v

1
α,β , . . . , v

R
α,β). The functional JRα,β has a restricted domain (the decomposition can only

consist of R vector pairs) to enforce low-rankness of X and uses a non-smooth term ‖ · ‖1 to promote sparsity
in right singular vectors of X .

The minimization of functional (2) is performed by using the alternating algorithm based on simple iterative
soft-thresholding, the so-called Alternating Tikhonov regularization and Lasso (ATLAS), see (3). As most
of the non-convex minimization algorithms, empirical performance of ATLAS depends heavily on a proper
initialization (u10, . . . , u

R
0 , v

1
0 , . . . , v

R
0 ). We show in Section 4 that initialisation by the leading right singular

values of A∗(y) can provide a stable recovery. After the initialization step, ATLAS iteratively updates the
components pairwise {(urk, vrk)}, r = 1 . . . R. The algorithm is efficient as it reduces the minimization of
JRα,β to solving a sequence of least-squares and `1−minimization problems. In the following section, we
show that under general assumptions algorithm (3) provides stable recovery of the low-rank sparse matrix at a
low-computational cost.
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u1
k+1 = argminu

∥∥∥(y −A(∑R
r=2 u

r
k(v

r
k)
T
))
−A(u(v1k)T )

∥∥∥2
2
+ α‖u‖22 + 1

2λ1
k
‖u− u1

k‖22,

v1k+1 ∈ argminv

∥∥∥(y −A(∑R
r=2 u

r
k(v

r
k)
T
))
−A(u1

k+1v
T )
∥∥∥2
2
+ β‖v‖1 + 1

2µ1
k
‖v − v1k‖22,

...

uRk+1 = argminu

∥∥∥(y −A(∑R−1
r=1 u

r
k+1(v

r
k+1)

T
))
−A(u(vRk )T )

∥∥∥2
2
+ α‖u‖22 ++ 1

2λR
k

‖u− uRk ‖22,

vRk+1 ∈ argminv

∥∥∥(y −A(∑R−1
r=1 u

r
k+1(v

r
k+1)

T
))
−A(uRk+1v

T )
∥∥∥2
2
+ β‖v‖1,+ 1

2µR
k

‖v − vRk ‖22
(3)

3 Main Results

Before stating our main results, we define a set of low-rank matrices with approximately sparse singular vectors
and a corresponding RIP which is necessary for approximation guarantees. We call a decomposition Z =

UV T =
∑R
r=1 u

r(vr)T an approximate Sparse Decomposition (SD) of Z if U ∈ Rn1×R and V ∈ Rn2×R

have columns which are approximately sparse, i.e. ‖ur‖1/‖ur‖2 ≤
√
s1 (resp. ‖vr‖1/‖vr‖2 ≤

√
s2) for all

r ∈ [R]; see [Plan and Vershynin(2013)] for more details on approximate sparsity. The SD is not unique and
the SVD of Z is not necessarily an SD. We define the sets of approximately sparse matrices as

KR
s1,s2 = {Z ∈ Rn1×n2 : Z possesses approximate SD}.

Note that a set of sparse matrices is a subset of KR
s1,s2 . Contrary to [Lee et al.(2013)Lee, Wu, and Bresler],

we do not require neither columns to share a common support, nor orthogonality of U and V .

Definition 3.1 (Rank-R and (s1, s2)-sparse RIP,[Fornasier et al.(2017)Fornasier, Maly, and Naumova])
A linear operator A : Rn1×n2 → Rm satisfies the rank-R and approximately (s1, s2)-sparse RIP with
isometry constant 0 < γ < 1 if for all Z ∈ KR

s1,s2

(1− γ)‖Z‖F ≤ ‖A(Z)‖2 ≤ (1 + γ)‖Z‖F , (4)

The next Lemma shows that up to log-factors m ≈ O
(
R3(s1 + s2))

)
Gaussian measurements are sufficient

to preserve the norms within KR
s1,s2 .

Lemma 3.2 (RIP for Gaussian Operators, [Fornasier et al.(2017)Fornasier, Maly, and Naumova]) Let
A : Rn1×n2 → Rm be the linear measurement operator of form (1). Assume, all Ai for 1 ≤ i ≤ m have
i.i.d. Gaussian entries. If m & γ−4R3(s1 + s2) log

3 (max{n1, n2}), A has the rank-R and approximately
(s1, s2)-sparse RIP with probability at least 1− 2 exp(−C ′

√
m), C ′ = C ′(R, log(n1), log(n2), s1, s2).

Our main result demonstrates that under suitable RIP condition the approximation error is linear in noise level
with the slope depending on sparsity level and RIP constant.

Theorem 3.3 ([Fornasier et al.(2017)Fornasier, Maly, and Naumova]) Let X fulfils the noisy measure-
ments y = A(X) + η with v̂r s-sparse for all r ∈ [R] and let α = β = ‖η‖22/‖X‖

2
3
2
3

< 1. Assume

A has the rank-2R approximately
(
n1,max{s, C2(‖X‖

2
3
2
3

/‖η‖22)2}
)

-sparse RIP with some RIP-constant

0 < γ < 1, C = C(‖X‖ 2
3
, η, s). Then, for Xα,β with ‖vrα,β‖2 ≥ ‖y‖2/C, r = 1, . . . , R, we have

‖X −Xα,β‖F ≤
2 6
√
s+ 2

1− γ
‖η‖2.

As the above results apply only to global minimizers of JRα,β , an important question whether the sequences pro-
duced by (3) converge to it. Adapting the results [Attouch et al.(2010)Attouch, Bolte, Redont, and Soubeyran],
we can show the local convergence to a global minimizer. The current results do not provide proof for any
initialization to fulfill the above requirements, which remains to be an open problem for future research.
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Theorem 3.4 ([Fornasier et al.(2017)Fornasier, Maly, and Naumova]) ATLAS converges to a stationary
point of JRα,β . Let (u1α,β , ..., v

R
α,β) be a global minimiser of JRα,β . There exist ε, η > 0 such that

‖(u10, . . . , vR0 )− (u1α,β , . . . , v
R
α,β))‖2 < ε, min JRα,β < min JRα,β(u

1
0 . . . v

R
0 ) < min JRα,β + η,

implies the sequence (u1k, . . . , v
R
k ) generated by ATLAS converges to (u1α,β , ..., v

R
α,β).

4 Numerical Experiments

We compare the performance of ATLAS to the state-of-the art method SPF
[Jain et al.(2013)Jain, Netrapalli, and Sanghavi] for the low-rank sparse matrix recovery. Actually,
SPF can be considered as a benchmark, as it has been shown to outperform most of the popular recovery
algorithms based on convex relaxation [Jain et al.(2013)Jain, Netrapalli, and Sanghavi]. We compare the
performance of the algorithms in terms of recovery probability and mean approximation error for 30
experiments with Gaussian random sampling operator A. In each experiment, we randomly generate
X ∈ R16×100 with ‖X‖F = 10 and 10-sparse right singular vectors. We consider the experiments with noisy
measurements, and η = 0.3‖X‖F . We fix both regularization parameters at α = β = 0.5. As initialisation,
we use leading singular vectors of A∗(y) for both algorithms which is a sub-optimal choice but sufficient for
illustration. We count the recovery as successful if ‖X −Xappr‖F /‖X‖F ≤ 0.4. All computations reported in
this paper are performed in Matlab using standard toolboxes.

The comparison results are displayed in Fig. 1 and Fig 2. As can be seen from the results, ATLAS shows
a higher level of robustness w.r.t. noise, in contrast to SPF that has a good performance in noise-free cases.
Additionally, ATLAS outperforms SPF as soon as singular vectors of X do not share common support, which
is a quite restrictive assumption for SPF to be successful.

Figure 1: Comparison of SPF and ATLAS with and without common support for R = 5. Depicted are average
approximation error relative to ‖X‖F and recovery probabilities of SPF (dashed) and ATLAS (solid). Common
Support: SPF (red) vs ATLAS (blue). Arbitrary Support: SPF (green) vs ATLAS (cyan).

(a) SPF (b) ATTILA

Figure 2: Comparison of SPF and ATLAS with noise on the measurements for R = 1. Recovery probability is
depicted by color from zero (blue) to one (yellow).
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