
Characterization of Gradient Dominance and Regularity
Conditions for Neural Networks

Yi Zhou zhou.1172@osu.edu
Ohio State University
Yingbin Liang liang.889@osu.edu
Ohio State University

Abstract

The past decade has witnessed a successful application of deep learning to solving many
challenging problems in machine learning and artificial intelligence. However, the loss
functions of neural networks are still far from being well understood from a theoretical
aspect. In this paper, we enrich the current understanding of the landscape of the square loss
functions for three types of neural networks, i.e., linear networks, linear residual networks,
and one-hidden-layer nonlinear networks. Specifically, when the parameter matrices are
square, we establish two quadratic types of landscape properties for the square loss of these
neural networks: the gradient dominance condition within the neighborhood of their full
rank global minimizers and the regularity condition along certain directions and within the
neighborhood of their global minimizers.

1 Introduction

The significant success of deep learning (see, e.g., [2]) has influenced many fields such as machine learning,
artificial intelligence, computer vision, natural language processing, etc. Consequently, there is a rising interest
in understanding the fundamental properties of deep neural networks. Among them, the landscape (also
referred to as geometry) of the loss functions of neural networks is an important aspect, since it is central to
determine the performance of optimization algorithms that are designed to minimize these loss functions.

This paper focuses on two important landscape properties for nonconvex optimization. The first property
is referred to as gradient dominance condition as we describe below. Consider a global minimizer x∗ of a
generic function f : Rd → R, and a neighborhood Bx∗(δ) around x∗. The local gradient dominance condition
with regard to x∗ is given by, for some λ > 0

∀x ∈ Bx∗(δ), f(x)− f(x∗) ≤ λ ‖∇f(x)‖22 ,
This condition has been shown to hold for a variety of nonconvex machine learning problems, e.g., phase
retrieval [11] and blind deconvolution [5]. If the gradient descent algorithm iterates in the neighborhood
Bx∗(δ), then the gradient dominance condition, together with a Lipschitz property of the gradient of the
objective function, guarantees a linear convergence of the function value residual f(x)− f(x∗) [4, 7]. The
second property is referred to as local regularity condition, which is given by, for some α, β > 0

∀x ∈ Bx∗(δ), 〈x− x∗,∇f(x)〉 ≥ α ‖∇f(x)‖22 + β ‖x− x∗‖22 ,
This condition can be viewed as a restricted version of the strong convexity, and it has been shown to guarantee
a linear convergence of the iterate residual ‖x− x∗‖ of the gradient descent algorithm [6, 1]. Problems such
as phase retrieval [1], affine rank minimization [9, 8] and matrix completion [10] have been shown to satisfy
the local regularity condition. This paper studies these two landscape properties for the square loss function of
linear, linear residual, and one-hidden-layer nonlinear neural networks under the setting where all parameter
matrices are square.

2 Preliminaries of Neural Networks

Throughout, (X,Y ) denotes the input and output data matrix pair. We assume that X,Y ∈ Rd×m, and Σ :=
Σ>XY Σ−1XXΣXY is full rank with distinct eigenvalues. The kronecker product is denoted as “⊗”. For a matrix
X , its spectral norm is denoted by ‖X‖. The smallest nonzero singular value is denoted by ηmin(X). For a
collection of matrix variables W := {W1, . . . ,Wl}, we denote vec (W ) := [vec (W1)

>
. . . vec (Wl)

>
]>,

OPTML 2017: 10th NIPS Workshop on Optimization for Machine Learning (NIPS 2017).



where vec (Wk) denotes the vertical stack of the columns of Wk. We also denote a collection of natural
numbers as [n] := {1, . . . , n}.
Consider a feed forward linear neural network with l−1 hidden layers, where each layer k ∈ [l] is parameterized
by a matrix Wk ∈ Rd×d. We consider the square loss of the linear network:

h(W ) := 1
2 ‖WlWl−1 . . .W1X − Y ‖2F . (1)

The linear residual network further introduces the residual structure to the linear network. That is, one adds a
shortcut (identity map) for every, say, r hidden layers. Assuming we have in total l residual units. The k-th
residual unit is parameterized by the parameters Akq ∈ Rd×d,∀q ∈ [r], and we denote Bk := I+Akr . . .Ak1.
We consider the square loss of a linear residual network:

f(A) := 1
2‖(I+Alr . . .Al1) . . . (I +Akr . . .Ak1) · · · (I +A1r . . .A11)X − Y ‖2F . (2)

Consider a nonlinear neural network with one hidden layer, where the layer parameters satisfy V1,V2 ∈ Rd×d

and the hidden neurons adopt a differentiable nonlinear activation function σ : R → R. We consider the
square loss of the nonlinear network with one hidden layer:

g(V ) := 1
2 ‖V2σ(V1X)− Y ‖2F , (3)

where σ acts on V1X entrywise. In particular, we consider a class of activation functions that satisfy the
condition range(σ) = R. A typical example of such activation function is the class of parametric ReLU
activation functions, i.e., σ(x) = max{x, ax}, where 0 < a < 1. The following theorem characterizes a
useful property of the global minimizers of these networks.
Theorem 1. Consider the global minimizers W ∗,A∗,V ∗ of h(W ), f(A), g(V ), respectively. Then for all
k ∈ [l], 1) W ∗

k is full rank; 2) B∗k is full rank; and 3) σ(W ∗
1 X) is full rank.

3 Gradient Dominance Condition

We first establish the local gradient dominance condition for the loss h(W ) of linear networks.
Theorem 2. Consider h(W ) of the linear neural network with m = d. Consider a global minimizer W ∗ and
let τ = 1

2 mink∈[l] ηmin(W
∗
k ). Then any point in the neighborhood of W ∗ defined as {W : ‖Wk −W ∗

k ‖ <
τ, ∀k ∈ [l]} satisfies

h(W )− h(W ∗) ≤ λh
∥∥∇vec(W )h(W )

∥∥2
2
, where λh = (2lτ2(l−1)η2min(X))−1. (4)

We note that Theorem 1 guarantees that any global minimizer W ∗ of h(W ) is full rank, and hence the
parameter τ defined in Theorem 2 is strictly positive. The gradient dominance condition implies a linear
convergence of the function value to the global minimum via a gradient descent algorithm if the iterations stay
in this τ neighborhood. In particular, a larger parameter τ (a larger minimum singular value) implies a smaller
λh, which yields a faster convergence of the function value to the global minimum via the gradient descent
algorithm. Next, we establish the local gradient dominance condition for the loss f(A) of linear residual
networks.
Theorem 3. Consider f(A) of the linear residual neural network with m = d. Consider a full-rank global
minimizer A∗, and let τ = 1

2 mink∈[l] ηmin(B
∗
k), τ̃ = 1

2 mink∈[l],q∈[r] ηmin(A
∗
kq), and pick τ̂ sufficiently

small such that any point in the neighborhood of A∗ defined as {A : ‖Akq −A∗kq‖ < τ̂, ∀k ∈ [l], q ∈ [r]}
satisfies ‖Bk − B∗k‖ < τ for all k ∈ [l]. Then any point in the neighborhood of A∗ defined as {A :
‖Akq −A∗kq‖ < min{τ̂ , τ̃},∀k ∈ [l], q ∈ [r]} satisfies

f(A)− f(A∗) ≤ λf
∥∥∇vec(A)f(A)

∥∥2
2
, where λf =

(
2lrτ̃2(r−1)τ2(l−1)η2min(X)

)−1
. (5)

Compare to the gradient dominance condition obtained in [3], which is applicable to the neighborhood of the
origin for the residual network with r = 1, the above result characterizes the gradient dominance condition in
the neighborhood of any full-rank minimizer A∗ and to more general residual networks with r > 1.

We note that the parameter λf in Theorem 3 depends on both τ and τ̃ , where τ captures the overall property of
each residual unit and τ̃ captures the property of individual linear unit in each residual unit. Hence, in general,
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the λf in Theorem 3 for linear residual networks is very different from the λh in the gradient dominance
condition in Theorem 2 for linear networks. When the shortcut depth r becomes large, the parameter λf
involves τ̃ that depends on more unparameterized variables in A∗, and hence becomes more similar to the
parameter λh of linear networks.

To further compare the λf in Theorem 3 and the λh in Theorem 2, consider a simplified setting of the linear
residual network with the shortcut depth r = 1. Then λf =

(
2lτ2(l−1)η2min(X)

)−1
. Although it takes

the same expression as λh in Theorem 2 for the linear network, the parameter τ is better regularized since
Bk, k ∈ [l] are further parameterized by I +Ak. More specifically, when ‖Ak‖ < 1, ηmin(I +Ak) (and
hence the parameter τ ) is regularized away from zero by the identity map, which was also observed by [3].
Consequently, the identity shortcut leads to a smaller λf (due to larger τ ) compared to a large λh when the
parameters of linear networks have small spectral norm. Such a smaller λf is more desirable for optimization,
because the function value approaches closer to the global minimum after one iteration of a gradient descent
algorithm. We now establishes the local gradient dominance condition for the loss g(V ) of nonlinear networks.
Theorem 4. Consider the loss function g(V ) of one-hidden-layer nonlinear neural networks with m = d and
with range(σ) = R. Consider a global minimizer V ∗, and let τ = 1

2ηmin(σ(V
∗
1 X)). Then any point in the

neighborhood of V ∗ defined as {V : ‖σ(V1X)− σ(V ∗1 X)‖ ≤ τ} satisfies

g(V )− g(V ∗) ≤ λg
∥∥∇vec(V )g(V )

∥∥2
2
, where λg = (2τ2)−1. (6)

We note that Theorem 1 guarantees that σ(V ∗1 X) is full rank, and hence τ is well defined. Differently from
linear networks, the gradient dominance condition for nonlinear networks holds in a nonlinear τ neighborhood
that involves the activation function σ. This is naturally due to the nonlinearity of the network. Furthermore,
the parameter τ depends on the nonlinear term σ(V1X), whereas the τ in Theorem 2 of linear networks
depends on the individual parameters Wk.

4 Regularity Condition

For the linear network, define matrix G(W ) := [G1(W ), . . . ,Gl(W )], where for all k ∈ [l]

Gk(W ) := (Wk−1 . . .W1X)> ⊗ (Wl . . .Wk+1). (7)

The following result establishes the local regularity condition for the loss h(W ) of linear networks.
Theorem 5. Consider h(W ) of linear neural networks with m = d. Further consider a global minimizer
W ∗, and let ζ = 2maxk∈[l] ‖W ∗

k ‖. Then for any δ > 0, there exists a sufficiently small ε(δ) such that any
point W that satisfies

‖G(W ∗)vec (W −W ∗)‖2 ≥ δ ‖vec (W −W ∗)‖2 (8)
and within the neighborhood of W ∗ defined as {W : ‖Wk −W ∗

k ‖F < ε(δ),∀k ∈ [l]} satisfies

〈∇vec(W )h(W ), vec (W −W ∗)〉 ≥ α
∥∥∇vec(W )h(W )

∥∥2
2
+ β ‖vec (W −W ∗)‖22 , (9)

where α = γ/(lζ2(l−1) ‖X‖2) and β = (1− γ)δ2/2 for any γ ∈ (0, 1).

We note that the regularity condition has been established for various nonconvex problems [1]. There,
the condition was shown to hold within the entire neighborhood of any global minimizer. In comparison,
Theorem 5 guarantees the regularity condition for linear networks within a neighborhood of W ∗ along the
directions of vec (W −W ∗) that satisfy eq. (8). Furthermore, the parameter δ in eq. (8) determines the
range of directions that satisfy eq. (8). For example, if we set δ = ηmin(G(W ∗)), then all W such that
vec (W −W ∗) ⊥ kerG(W ∗) satisfy eq. (8).

For all W that satisfy the regularity condition, it can be shown that one gradient descent iteration yields an
update that is closer to the global minimizer W ∗ [1]. Hence, W ∗ serves as an attractive point along the
directions of vec (W −W ∗) that satisfy eq. (8). Furthermore, the value of δ in eq. (8) affects the parameter β
in the regularity condition. Larger δ results larger β, which further implies that one gradient descent iteration
at the point W yields an update that is closer to the global minimizer W ∗ [1].

For the linear residual network, define Q(A) := [Q11(A), . . . ,Qlr(A)], where for all k ∈ [l], q ∈ [r]

Qkq(A) :=
[
(Bk−1 . . .B1X)

> ⊗ (Bl . . .Bk+1)
] [(

Ak(q−1) . . .Ak1

)> ⊗ (Akr . . .Ak(q+1)

)]
.

We then establish the local regularity condition for the loss f(A) of linear residual networks.
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Theorem 6. Consider f(A) of linear residual neural networks with m = d. Further consider a global
minimizer A∗, and let ζ = 2maxk∈[l] ‖B∗k‖ and ζ̃ = 2maxk∈[l],q∈[r] ‖A∗kq‖. Then, for any constant δ > 0,
there exists a sufficiently small ε(δ) such that any point A that satisfies

‖Q(A∗)vec (A−A∗)‖2 ≥ δ ‖vec (A−A∗)‖2
and within the neighborhood defined as {A : ‖Akq −A∗kq‖F < ε(δ),∀k ∈ [l], q ∈ [r]}, satisfies〈

∇vec(A)f(A), vec (A−A∗)
〉
≥ α

∥∥∇vec(A)f(A)
∥∥2
2
+ β ‖vec (A−A∗)‖22 , (10)

where α = γ/(lrζ̃2(r−1)ζ2(l−1) ‖X‖2) and β = (1− γ)δ2/2 with any γ ∈ (0, 1).

Similarly to the regularity condition for linear networks, the regularity condition for linear residual networks
holds along the directions of vec (A−A∗) that depends on Q(A∗). However, the parametrization of Q(A∗)
is different from that of G(W ∗) of linear networks. To illustrate, consider a simplified setting where the
shortcut depth is r = 1. Then, Qk(A

∗) =
(
B∗k−1 . . .B

∗
1X
)> ⊗ (B∗l . . .B∗k+1

)
. Although it takes a similar

form as G(W ∗) of the linear network, the reparameterization B∗k = I +A∗k keeps ηmin(B
∗
k) away from

zero when ‖A∗k‖ is small. This enlarges ηmin(Qk(A
∗)) so that the direction constraint can be satisfied along

a wider range of directions. In this way, A∗ attracts the optimization iteration to converge along a wider range
of directions in the neighborhood of the origin.

For the nonlinear network, define matrix

H =
[
(I ⊗ V ∗2 )σ′(diag(vec (V ∗1 X)))(X> ⊗ I), σ(V ∗1 X)> ⊗ I

]
We now establish the local regularity condition for the loss g(V ) of nonlinear networks.
Theorem 7. Consider g(V ) of one-hidden-layer nonlinear neural networks with m = d and range(σ) = R.
Further consider a global minimizer V ∗ of g(V ), and let ζ = 2max{‖σ(V ∗1 X)‖ , ‖V ∗2 ‖ , ‖σ′(V ∗1 X)‖∞}.
Then there exists a sufficiently small ε(δ) such that any point V that satisfies

‖H(V ∗)vec (V − V ∗)‖2 ≥ δ ‖vec (V − V ∗)‖2
and within the neighborhood of V ∗ defined as {V : ‖Vk − V ∗k ‖F < ε(δ),∀k ∈ [2]} satisfies

〈∇vec(V )g(V ), vec (V − V ∗)〉 ≥ α
∥∥∇vec(V )g(V )

∥∥2
2
+ β ‖vec (V − V ∗)‖22 , (11)

where α = γ/max{‖X‖2 ζ4, ζ2} and β = (1− γ)δ2/2 for any γ ∈ (0, 1).

Thus, nonlinear neural networks with one hidden layer also have an amenable landscape near the global
minimizers that attracts gradient iterates to converge along the directions restricted by H(V ∗).

5 Conclusion

In this paper, we establish the gradient dominance condition and the regularity condition for three types of
neural networks in the neighborhood of their global minimizers under certain conditions. It is interesting
to exploit these conditions in the convergence analysis of optimization algorithms applied to deep learning
networks.
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