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Abstract

The generalized eigenvalue decomposition (GEV) can be rewritten as a constrained mini-
mization problem with a nonconvex objective and constraint. Using the Lagrangian multi-
plier method, we recast GEV into an unconstrained min-max problem. By exploiting the
underlying symmetry of the min-max problem, we investigate the mechanism that generates
unstable stationary points. We then show that all stationary points are unstable except
the convex-concave saddle points, which correspond to the global optima of the original
constrained problem. We apply a stochastic generalized Hebbian algorithm (SGHA) to solve
the GEV problem without any sophisticated (approximate) matrix version operation. By
applying a diffusion approximation analysis, we obtain a global rate of convergence for
the limiting process of SGHA under a simultaneously orthogonal diagonalizable condition.
Numerical results are provided to support our theory.

1 Introduction
We consider the generalized eigenvalue decomposition (GEV) [23] as follows:

X∗ = argminX∈Rd×r F(X) = − tr(X>AX) subject to X>BX = Ir, (1)
where A,B ∈ Rd×d are symmetric, B is positive semidefinite, and Ir ∈ Rr×r is the identity matrix. As
a generalization of the ordinary eigenvalue problem [15], GEV is closely related to popular methods for
classification, dimension reduction, and feature extraction [5, 17, 21, 22] in practice.

Significant efforts have been made on designing efficient solvers for GEV. Although (1) is nonconvex,
there are many algorithms that can obtain global optima in polynomial time under the batch or finite sums
settings [2, 3, 6, 13, 19], where A = 1

n

∑n
k=1A

(k) and B = 1
n

∑n
k=1B

(k). All these algorithms, however,
require intensively computing the approximate inverse of B, which make them not applicable to the online
setting, which is our particular interest here. Specifically, at each iteration, we obtain independent stochastic
approximations A(k)’s and B(k) in a streaming fashion with EA(k) = A and EB(k) = B. At the (k + 1)-th
iteration, A(k)’s and B(k) are discarded. Thus, it is impossible to get good approximate inverses of B in such
settings.

To overcome this drawback, we recast the GEV problem (1) as an unconstrained min-max problem. Specifically,
using the Lagrangian multiplier method with the dual variable Y ∈ Rr×r, we solve

minX maxY L(X,Y ), where L(X,Y ) = − tr(X>AX) + 〈Y,X>BX − Ir〉, (2)
where X is the primal variable. Such a primal-dual formulation allows us to develop new stochastic algorithms
without (approximate) inversion of B. Since (1) is nonconvex, the associated min-max problem (2) does not
have a nice convex-concave structure (convex in X and concave in Y ). Existing theory on convex-concave
saddle point problems cannot be applied for analyzing the convergence of stochastic algorithms for solving
(2) directly. To the best of our knowledge, existing literature only studies the properties of eigenvalues and
eigenspaces for special type of A and B [4, 9]. There is no clear characterization of the generic geometry for
GEV. Especially, it is unclear yet what are the complete set of stationary points and the intrinsic mechanism
that generates these stationary points.

Our first goal is to answer the questions above. Recent progress has been made to characterize the geometry
for nonconvex problems [8, 20, 24]. However, these are either unconstrained or with simple spherical
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constraint that limits their applicability to (1). Here, we leverage the symmetry property and invariant group,
also discussed in [18] for unconstrained problems, to characterize all stationary points (including unstable
ones and global optima) of our constrained problem. Such a characterization is also closely related to the
topology of F(X) on the generalized Stiefel manifold [1]. With clear geometry, our second goal is to
propose a stochastic variant of the generalized Hebbian algorithm [10], called SGHA, for the GEV problem
with a global convergence under a simultaneously orthogonal diagonalizable condition. Our convergence
analysis is motivated by characterizing the associated diffusion process, where the discrete trajectory of the
stochastic update is approximated by solution of a stochastic differential equation under the asymptotic setting,
leveraging the idea in [12, 16]. Though online algorithms are popular and scalable [7, 11, 14], there is no
iteration complexity analysis for solving the GEV problem. Guarantees exists only for simple orthogonal
constraints, e.g., for tensor decomposition [8]. Ours is the first iteration complexity analysis of a simple online
algorithm for solving the GEV problem without inversion.

2 Characterization of Stationary and Saddle Points
Recall that we consider the min-max problem minX maxY L(X,Y ) in (2). By KKT conditions of the primal
and dual variables,X and Y at a stationary point satisfy∇XL(X,Y ) = 0 and∇Y L(X,Y ) = 0. This indicates
Y = D(X) , X>AX at a stationary point. Denote the gradient by ∇L ,

[
∇XL(X,Y )
∇Y L(X,Y )

]
=

[
2BXY − 2AX
X>BX − Ir

]
.

Our aim is to find the set of stationary points of L(X,Y ) and further distinguish unstable ones and convex-
concave saddle points defined as follows:
Definition 1. Given the Lagrangian function L(X,Y ), (X,Y ) is called: (1) A stationary point of L(X,Y ),
if ∇L = 0; (2) An unstable stationary point of L(X,Y ), if (X,Y ) is a stationary point and for any
neighborhood B ⊆ Rd×r of X , there exist X1, X2 ∈ B such that L(X1, Y )|Y=D(X1) ≤ L(X,Y )|Y=D(X) ≤
L(X2, Y )|Y=D(X2) and λmin(∇2

XL(X,Y )|Y=D(X)) < 0; (3) A convex-concave saddle point, or a minimax
point of L(X,Y ), if (X,Y ) is a stationary point and (X,Y ) is a global optimum to (1), i.e. (X,Y ) =

arg minX̃ maxỸ L(X̃, Ỹ ).

In general, it requires to solve an expensive large system∇L = 0 for finding stationary points. Here, we apply
a symmetry property for functions with an invariant group to facilitate a more efficient characterization. We
focus on nonsingular B, and the extension to singular B is analogous.
2.1 Invariant Group and Symmetry Property
It is straightforward that L(X,Y ) has an invariant group G = {Ψ ∈ Rr×r : ΨΨ> = Ψ>Ψ = Ir}. Further
consider orthogonal decomposition Rd×r = U ⊕ V , where ⊕ is the direct sum, U = {U ∈ Rd×r1} and
V = {V ∈ Rd×(r−r1) : V >U = 0 for all U ∈ U}. Given V ∈ V , a subgroup of G is induced as
GU (V ) = {gU : gU (V ) = g(U ⊕ V ), g ∈ G, U ∈ U}. Denote the eigendecomposition of B−1/2AB−1/2 =

O†Λ†(O†)>, where B−1 is the inverse of B and Λ† is a diagonal matrix with eigenvalues λ†1 ≥ · · · ≥ λ†d.
Then we characterize the stationary point of L(X,Y ) as follows.
Theorem 2 (Symmetry Property). Suppose A and B are symmetric, B is nonsingular with the subspace pair
(US ,VS̃) defined as US =

{
U ∈ Rd×s : U = O†:,S ,S ⊆ [r] with |S| = s ≤ r

}
and VS̃ =

{
V ∈ Rd×(r−s) :

V = O†
:,S̃
, S̃ ⊆ [d]\[r] with |S̃| = r − s, |S| = s ≤ r

}
. Then X is a stationary point, i.e., ∇L = 0, if and

only if X = B−1/2X̃ for any X̃ ∈ GUS (V ) with any V ∈ VS̃ .

From Theorem 2, given a subset of eigenvectors corresponding to top r eigenvalues of B−1/2AB−1/2, a
stationary point is formed by taking its direct sum with a subset of eigenvectors corresponding to bottom d− r
eigenvalues, followed by the invariant group operation via G. Such a symmetry property allows us to find all
stationary points in a recursive fashion. The symmetry property is also discussed in [18], but they consider
an unconstrained problem and use a fixed point of the invariant group. Due to the min-max structure of our
problem, a fixed point of the invariant group does not help, which motivates us to consider a more general
symmetry property.
2.2 Unstable Stationary vs. Saddle Point
We then characterize whether a stationary point is unstable or a convex-concave saddle point. Specifically,
denote the Hessian matrix HX , ∇2

XL(X,Y )|Y=D(X). Then we analyze the eigenspace of HX , where X is
an unstable stationary point if HX has both positive and negative eigenvalues or positive semi-definite; or X
corresponds to the min-max global optimum if HX is negative semi-definite. Since B is nonsingular, we can
reparameterize (1) as

X̃∗ = argminX̃∈Rd×r − tr(X̃>ÃX̃) s.t. X̃>X̃ = Ir, (3)
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where X̃ = B1/2X and Ã = B−1/2AB−1/2. Given a stationary point X̃ of (3), we can obtain a stationary
point of (1) by X = B−1/2X̃ . The following lemma distinguishes the saddle point of the min-max problem,
i.e., the global optimum of (1), and unstable stationary points, respectively.

Lemma 3. LetX = B−1/2X̃ for any X̃ ∈ GUS (V ) and any V ∈ VS̃ with S ⊆ [r]. If S = [r] and S̃ = ∅, then
X is a saddle point of the min-max problem. Otherwise, if S ⊂ [r] and S̃ 6= ∅, thenX is an unstable stationary

point with λmin(HX) ≤ 2(λ†
maxS∪S̃

−λ†
minS⊥∩S̃⊥

)

‖X
:,minS⊥∩S̃⊥‖

2
2

and λmax(HX) ≥ 4λ†
minS∪S̃

‖X:,minS∪S̃‖
2
2
, where λ†maxS (λ†minS) is the

smallest (largest) eigenvalue indexed by a set S and S⊥ = [d]\S .

We have from Lemma 3 that when US contains eigenvectors corresponding to top r eigenvalue of
B−1/2AB−1/2, then X = B−1/2X̃ is the global optimum of (1). Otherwise, any other stationary point
is unstable since λ†

maxS⊥∩S̃⊥
− λ†

minS∪S̃
≤ 0. Moreover, when λ†

minS∪S̃
< 0, L(X,Y ) may be concave

at the corresponding stationary point, which is also unstable. Using the manifold terminology, there are
(
d
r

)
smooth curves corresponding to stationary points, where one of them corresponds to the global optima, and the
rest are unstable. It is also important to note that there is no spurious local optimum for the min-max problem
(2), i.e., all local optima are global optima.

3 Stochastic Optimization Algorithms without Matrix Inversion
Motivated by the geometric structure, we apply a stochastic variant of the generalized Hebbian algorithm
(SGHA) [10]. SGHA is an intuitive primal-dual stochastic algorithm with primal update X(k+1) ← X(k) −
η(B(k)X(k)Y (k) − A(k)X(k)) and dual update Y (k+1) ← X(k)>A(k)X(k), where η > 0 is the step size
parameter. Combining two updates, we have a dual-free update

X(k+1) ← X(k) − η
(
B(k)X(k)X(k)> − Id

)
A(k)X(k). (4)

The constraint is naturally handled by the dual update. Thus, we do not need to perform any (approximate)
matrix inversion or projection onto the constraint set at each iteration. The initial solution X(0) ∈ Rd×r only
needs to be chosen as a random matrix with orthonormal columns. We then provide numerical to illustrate the
efficiency of SGHA and a preliminary convergence analysis.
3.1 Numerical Simulations
We set d = 500 with three different settings: (1) Set Aii = 1/100 for all i ∈ [d], and Aij = 0.5/100 for all
i 6= j, and Bij = 0.5|i−j|/3 for all i, j ∈ [d]; (2) Randomly generate a orthonormal matrix U ∈ Rd×d, set
A = Udiag(1, 1, 1, 0.1, ..., 0.1)U> and B = Udiag(2, 2, 2, 1, ..., 1)U>; (3) Randomly generate orthonormal
matrices U, V ∈ Rd×d, set A = Udiag(1, 1, 1, 0.1, ..., 0.1)U> and B = V diag(2, 2, 2, 1, ..., 1)V >. At each

(a) Setting (1) (b) Setting (2) (c) Setting (3)

Figure 1: Plot of errors on: (a) η = 1 × 10−4, r = 1; (b)
η = 5× 10−5, r = 3; (c) η = 2.5× 10−5, r = 3.

iteration of SGHA, we independently sample 40
vectors from N(0, A) and N(0, B), and com-
pute the sample covariance A(k) and B(k) respec-
tively. We repeat the numerical simulations un-
der each setting for 20 times, and present the
results in Figure 1. The horizontal axis corre-
sponds to the number of iterations, and the vertical
axis corresponds to the optimization error defined
as ||B1/2X(t)X(t)>B1/2−B1/2X∗X∗>B1/2||F.
Our results indicate that SGHA convergences to a
global optimum in all settings.

3.2 Convergence Analysis
Before we proceed with our convergence analysis, we first introduce an important assumption.
Assumption 1. (a) A(k)’s and B(k)’s are independently sampled from DA and DB with EA(k) = A and
EB(k) = B � 0; (b) A and B are simultaneously orthogonal diagonalizable, i.e., there exists an orthonormal
matrix O such that A = OΛAO> and B = OΛBO>, where ΛA = diag(λ1, ..., λd) with λj 6= 0 and
ΛB = diag(µ1, ..., µd); (c) A(k) and B(k) satisfy the moment conditions with bounded spectral norms
E||A(k)||22 ≤ C0 and E||B(k)||22 ≤ C1 for generic constants C0 and C1.

Note that Assumption 1.(b) is very strong, which is likely an artifact of our proof technique. To ease the
analysis, we consider r = 1. Even with these restrictions, the analysis is highly involved. For notational
convenience, we define W (k) = O>B

1
2X(k), then (1) can be rewritten as

W ∗ = argmaxW W>ΛW subject to W>W = 1, (5)
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where Λ = (ΛB)−
1
2 ΛA(ΛB)−

1
2 = diag

(
λ1

µ1
, ..., λdµd

)
with λ1

µ1
> λ2

µ2
≥ · · · ≥ λd

µd
. µi and λi are not

necessarily monotonic. We also define gap = λ1

µ1
− λ2

µ2
, µmin = mini=2,...,d µi, and µmax = maxi=2,...d µi.

One can verify that we can rewrite (4) in the SGHA algorithm as follow:

W (k+1) ←W (k) − η
(

(ΛB)
1
2 Λ̂

(k)
B (ΛB)−

1
2W (k)W (k)> − (ΛB)

)
· Λ̃(k)W (k), (6)

where Λ̂
(k)
B = O>B(k)O and Λ̃(k) = O>B−

1
2A(k)B−

1
2O. Consider the random process defined as

w(η)(t) := W (b tη c).
Theorem 4. Suppose Assumption 1 holds. Given a sufficiently small pre-specified error ε > 0, if we
choose a step size η � ε·gap

d·
(

1
µ1
C0·C1+µmaxC1

) , then with probability at least 3
4 , we need a very short time

T = O

[
1

gap·µmin
log
(
d1+µmax/µ1

ε·gap

) ]
such that ||wη(T )−W ∗||22 ≤ ε as η → 0.

Note that our analysis implies that the sample complexity not only depends on the eigengap λ1

µ1
− λ2

µ2
, but also

on µmax

µmin
, which ratio is analogous to the condition number of B (but with µ1 excluded).

Our proof contains two major parts: (1) Given a random initialization, we show that the trajectory of the
limiting process of our algorithm can be approximated by an ODE; (2) To analyze the sample complexity,
we first show that the norm of the solution converges to a constant. Then after proper rescaling of time, the
limiting process can be characterized by an SDE.
ODE Characterization: We use w(η)(t) to demonstrate the ODE characterization for the trajectory of the
limiting process. For notational simplicity, we drop (t) when the context is clear. Instead of showing a global

convergence of w(η) directly, we show the quantity (w
(η)
i )µ1

(w
(η)
1 )µi

converges to an exponential decay function, where

w
(η)
i is the i-th component of w(η).

Lemma 5. Suppose Assumption 1 holds and initial point is away from saddle points, that is, given pre-specified

constants τ and δ < 1
2 , ||w(η)

1 ||1 > τ and ||w(η)
i ||2 > η

1
2−δ. As the stepsize η → 0, quantities (w

(η)
i )µ1

(w
(η)
1 )µi

∀i = 2, ..., d weakly converge to the solution of the ODE dx = x ·
(
µ1µi(

λi
µi
− λ1

µ1
)
)
dt.

Lemma 5 implies the global convergence of the algorithm. Specifically, the solution of ODE is x(t) =

x(0) · exp
(
µ1µi

(
λi
µi
− λ1

µ1

)
t
)
, ∀i ∈ {2, 3, ..., d}, where x(0) is the initial value of (w

(η)
i )µ1

(w
(η)
1 )µi

. This implies as

t→∞, the dominated component of w is w1.
SDE Characterization: ODE approximation of the limiting process implies that after large enough time t,
i.e., for any large enough iterations, the algorithm solution can be arbitrarily close to the optimal. Nevertheless,
to obtain the "convergence rate", we need to study the variance of the trajectory at time t. We notice that
such a variance is of order O(η) and is vanishing under the limit of η → 0. To characterize this variance, we
rescale the updates by a factor of η−

1
2 . After rescaling, the variance is of order O(1). Specifically, we define

z(η) = η−
1
2w(η) to highlight the dependence of η.

Lemma 6. Suppose Assumption 1 holds and initial point is near the optimal point, that is, given pre-specified

constants κ and δ < 1
2 , |w

(η)
1 |

2

||w(η)||22
> 1− κη 1

2−δ. As stepsize η → 0, ||w(η)(t)||2
t→∞−−−→ 1 and i-th component

of z(η), i.e., z(η)i , i = 2, ..., d, weakly converges to the following SDE:

dzi(t) =
(
−λ1

µ1
· µizi + λizi

)
dt+

√
GidB(t), (7)

where B(t) is a standard brownian motion, Gi = E
((

Λ̂B

)
i,1

(
µi
µ1

) 1
2

Λ̃1,1 − µiΛi,1
)2

, and Mi,j is the i-th row and

j-th column entry of a matrix M .

Notice that (7) is a Fokker-Plank equation, whose solution is an Ornstein-Uhlenbeck process as zi(t) =

zi(0) · exp
[
−
(
λ1

µ1
µi − λi

)
t
]

+
√
Gi
∫ t
0

exp
[(
λ1

µ1
µi − λi

)
(s− t)

]
dB(s) with the first term on right hand

side goes to 0 as time t→∞. The remaining part is a pure random walk. Thus, the fluctuation of zi(t) is the
error fluctuation of the limiting process after sufficiently many iterations.
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