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Abstract

Finding the reduced-dimensional structure is critical to understanding complex networks.
Existing approaches such as spectral clustering are applicable only when the full network
is explicitly observed. In this paper, we focus on the online factorization and partition of
implicit large-scale networks based on observations from an associated random walk. We
formulate this into a nonconvex stochastic factorization problem and propose an efficient
and scalable stochastic generalized Hebbian algorithm. The algorithm is able to process
dependent state-transition data dynamically generated by the underlying network and learn
a low-dimensional representation for each vertex. By applying a diffusion approximation
analysis, we show that the continuous-time limiting process of the stochastic algorithm
converges globally to the “principal components" of the Markov chain and achieves a nearly
optimal sample complexity. Once given the learned low-dimensional representations, we
further apply clustering techniques to recover the network partition. We show that when
the associated Markov process is lumpable, one can recover the partition exactly with high
probability. We apply the proposed approach to model the traffic flow of Manhattan as
city-wide random walks. By using our algorithm to analyze the taxi trip data, we discover a
latent partition of the Manhattan city that closely matches the traffic dynamics.

1 Introduction
Network data arise in many applications and research areas, including but not limited to social science,
economics, transportation, finance, power grid, artificial intelligence, etc. Examples include protein-protein
interaction networks [9], phone communication networks [15], collaboration networks [4], and the gravitational
interaction network of dark matter particles in cosmology [17, 12, 14]. Due to the highly complex nature
of these networks, many efforts have been devoted to investigating their reduced-order representations from
high-dimensional data (e.g. [6, 18, 16, 5]).
In this paper, we focus on learning from the dynamic “state-transition” data, which are snapshots of a random
walk associated with the implicit network. For example, records of taxi trips can be used to reveal the traffic
dynamics of a metropolitan. Each trip can be viewed as a fragmented sample path realized from a city-wide
Markov chain that characterizes the traffic dynamics [11, 3]. None of the existing works has considered how to
recover the latent network partition of an urban area from the taxi trip data. For another example, reinforcement
learning applications such as autonomous driving and game AI are modeled as Markov decision processes
[20], which unfortunately suffer from the curse of dimensionality of the state space. Given trajectories of
game snapshots or a game simulator, it is of vital interest to identify the low-dimensional representation of the
“state” of game. For the general problem of finding reduced-order representations, popular approaches such
as principal component analysis and spectral clustering do not utilize the Markov nature of state-transition
data. Existing computational methods often require explicit knowledge and pre-computation of large matrices,
which cannot scale to large-scale problems and is not even possible for online learning applications. Efficient
methods are in demand.
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Motivated by the need to analyze state-transition data, we propose an efficient and scalable approach for
online factorization and partition of implicit complex networks. We start by employing a stochastic gradient-
type algorithm, namely the generalized Hebbian algorithm (GHA), and tailor it towards processing Markov
transition data. Then we show that the GHA learns low-dimensional representations of the network in an
online fashion, and by further applying clustering techniques, we can recover the underlying partition structure
with high probability. Our analysis is based on a diffusion approximation approach, which is widely used
in stochastic analysis of complicated discrete processes such as queueing networks (see [7] for more related
literature on diffusion approximation). By properly rescaling of time, we approximate the discrete-time
dynamics generated by the GHA algorithm using its continuous-time limiting process, which is the solution to
an ordinary differential equation (ODE). Though the stochastic optimization problem is highly nonconvex, we
show that the limiting stochastic process of the GHA converges geometrically to the global optima, even if
the initial solution is chosen uniformly at random. We further show that the process after sufficiently large
time is well approximated by an Ornstein-Uhlenbeck process, whose stochastic fluctuation can be precisely
characterized. Despite of the spherical geometry and many unstable equilibria of the optimization problem,
we establish global convergence with a near-optimal sample complexity guarantee in an asymptotic manner.
Our work is partly motivated by [21], which establishes the connection between networks and a class of
lumpable Markov chains. It proposes an optimization framework to identify the partition structure when the
transition matrix is known a priori. Our method is also related to the class of online eigenvalue decomposition
methods for representation learning [1, 10, 22, 2, 8]. However, none of the existing methods and analysis are
applicable to Markov transition data and online network partition.
Notation: We denote [n] = {1, 2, . . . , n}. Given two matrices U ∈ Rm×r1 ,V ∈ Rm×r2 with orthonormal
columns, where 1 ≤ r1 ≤ r2 ≤ m, we denote the principle angle between two matrices by Θ (U ,V ) =

diag
[

cos−1
(
σ1(U>V )

)
, cos−1

(
σ2(U>V )

)
, . . ., cos−1

(
σr1(U>V )

) ]
, where σi(A) is the i-th largest

singular value of matrixA. We also use cos (·) and sin (·) to act on matrices and denote entry-wise functions.
For a matrix V , we denote by V∗j its j-th column vector and by Vi∗ its i-th row vector. We denote by V∗1:r
the sub-matrix of the first r columns. We denote by ‖·‖F the Frobenius norm of a matrix, and denote by ‖·‖2
the Euclidean norm of a vector or the spectral norm of a matrix. We denote by ei ∈ Rs the i-th standard unit
vector for any s ≥ i: (ei)i = 1 and (ei)j = 0 for j 6= i. We also denote by 0m×n ∈ Rm×n the matrix with
all 0 entries.
Networks and Associated Markov Chains: Let G = (S,E) be a connected network with m vertices (a
weighted directed graph), where S = {s1, s2, . . . , sm} denotes the vertex set, E = {wi,j ≥ 0 : i, j ∈ [m]}
denotes the edge set, andwi,j denotes the weight of the edge (si, sj). Consider the random walk that is naturally
associated with the networkG: We denote byP = (pi,j) ∈ Rm×m its probability transition matrix, where each
state of the Markov chain corresponds to a vertex inG. SinceG is a connected network, all states of the Markov
chain are recurrent. The Markov chain generated by the network G satisfies P

[
s(t) = sj

∣∣s(t−1) = si
]

= pi,j .
Suppose that G is undirected (i.e., wij = wji), then ∀i, j : pi,j =

wi,j
wi

and wi =
∑

j∈[m] wi,j . The stationary
distribution of the Markov chain is µi = wi∑

j∈[m] wj
. The corresponding Markov chain is reversible and satisfies

the following detailed balance condition ∀i 6= j, µipi,j = µjpj,i and
∑

i∈[m] µipi,j = µj , i.e.,DP = P>D,
where D = diag (µ1, µ2, . . . , µm). Note that our subsequent analysis does not require the undirectedness
assumption of the underlying network. In this paper, we focus on connected and undirected networks where
µi > 0 for all i ∈ [m]. For a non-connected network, our method still applies with the caveat that it recovers
the structure of a connected component determined by the initial state.
Our Problem of Interest Given a sample trajectory {s(0), s(1), . . . , s(t), . . .} of state transitions of the un-
known Markov chain, our objective is to develop an online learning method to extract reduced-order information
about the Markov chain and recover the latent network partition.
We are interested in complex networks that can be approximated using reduced-order representations. To be
general, we consider networks with associated Markov chains nearly low-rank, which is defined as follows:

Definition 1 (Nearly Low-Rank Markov Chains). A Markov chain with transition matrix P is nearly low-rank
if there exist matrices F1,F2 ∈ Rm×m, where rank(F1) = r and ‖F2‖2 < σr (F1) such that

DP = F1 + F2 and F>1 F2 = 0m×m, (1)
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and F1 = UΣV >, where Σ = diag (σ1, σ2, . . . , σr) is a diagonal matrix with 1 ≥ σ1 ≥ σ2 ≥ . . . ≥ σr > 0,
and U ,V ∈ Rm×r are matrices with orthonormal columns.

Consider the following representation matrix M := D−1V ∈ Rm×r, each row of which can be viewed
as an r-dimensional representation of a vertex of G. The matrix M gives a set of approximate “principal
components" of the Markov chain, which has a similar spirit as spectral clustering [6]. Note that Markov
chains that are nearly low-rank are not necessarily reversible. When a Markov chain is both nearly low-rank
and reversible, the conditions in Definition 1 shall hold with U = V .

In particular, we also consider an important special case of nearly low-rank Markov chains - “lumpable”
Markov chains, which is introduced by [13] and formally in [21] as follows.

Definition 2 (Special Case: Lumpable Markov chains [21]). A reversible Markov chain on states S with
transition matrix P is lumpable with respect to the partition S = S1 ∪ S2 . . . ∪ Sr if the top r eigenvectors of
DP are piecewise constant with respect to the S1, . . . , Sr.

We can view S1,...,Sr as“meta states” of the Markov chain. When the lumpability condition holds, the
transitions between these sets satisfy the strong Markov property, i.e., for any sk, sh ∈ Si, ∀ j,∑

s`∈Sj

pk,` =
∑
s`∈Sj

ph,`.

Intuitively speaking, the meta states suffice to characterize the macro dynamics of a complex Markov chain.
When the Markov chain is lumpable, it is nearly-low rank as in Definition 1 with U = V . In this case, the
matrix U becomes a block matrix. For any i, j ∈ [r], the vector U∗i restricted on coordinates Sj has constant
values across all entries. The work [21] showed when the Markov chain is lumpable with respect to a partition
S = S1 ∪S2 . . .∪Sr, one can recover the exact partition by clustering its r-dimensional representations (rows
ofM = D−1V ). An example of a network and its lumpable Markov chain is given in the full version of this
paper.

2 Method for Dynamic Network Partition
Recall that we are interested in learning from Markov transition data. In particular, consider the scenario
where we only observe state-to-state transitions of a Markov process over S: s(1), s(2), s(3), . . . , s(n−1), s(n),
. . ., without knowing the transition matrix P in advance. For notational convenience, we simplify the notation
of the states to S = {1, 2, . . .m}.

2.1 A Nonconvex Optimization Model for Markov Chain Factorization
To handle the dependency of the Markov process, we need to downsample the data. Specifically, we divide the
trajectory of n state transitions into b blocks with block size τ for some τ ≥ 2:

s(1), s(2), ..., s(τ)︸ ︷︷ ︸
the 1−st block

, s(τ+1), s(τ+2), ..., s(2τ)︸ ︷︷ ︸
the 2−nd block

, . . . , s(b−1)τ+1, s(b−1)τ+2, . . . s(bτ)︸ ︷︷ ︸
the b−th block

.

For the k-th block, we select the last two samples and construct Z(k) ∈ Rm×m to be the matrix with one entry
equaling 1 and all other entries equaling 0, i.e.,

Z
(k)

s(kτ−1),s(kτ)
= 1 and Z

(k)

s,s′ = 0 for all (s, s′) 6=
(
s(kτ−1), s(kτ)

)
. (2)

Here we choose a large enough τ such that ∀k ≥ 1, E
[
Z(k)

∣∣s(0)] ≈DP = F1 + F2,where F1 = U>ΣV
and F2 are given in Definition 1. Intuitively, the choice of τ shall be related to how fast the Markov chain
mixes. We will specify the choice of τ in the full version of this paper. Let us formulate the Stochastic
Transition Matrix Decomposition Problem as

(U∗,V ∗) = argmax
Ũ ,Ṽ ∈Rm×r

tr
[
Ũ>EZṼ

]
subject to Ũ>Ũ = Ṽ >Ṽ = Ir. (3)

where the expectation EZ := limn→∞ n−1
∑n

k=1Z
(k) = DP is taken over the invariant distribution of the

Markov chain. Note that U∗ and V ∗ are global optima to (3), and they satisfy U∗ = UO and V ∗ = V O

for some orthonormal matrix O ∈ Rr×r. By using a self-adjoint dilation, we recast (3) into a symmetric
decomposition problem as follows

W ∗ = argmax
W∈R2m×r

tr
[
W>EAW

]
subject to W>W = Ir, (4)

where EA =

[
0m×m EZ
EZ> 0m×m

]
∈ R2m×2m andW = 1√

2

[
U>,V >

]> ∈ R2m×r.

3



2.2 Algorithm for Online Factorization of Markov Chains
To solve (4), we adopt the Generalized Hebbian Algorithm (GHA) which was originally developed for training
neural nets and principal component analysis [19]. GHA, also referred as Sanger’s rule, is essentially a
stochastic primal-dual algorithm. The k-th iteration of GHA takes the form

W (k+1) = W (k) + η(A(k)W (k) −W (k)W (k)>A(k)W (k)).

where η > 0 is the learning rate. Note that the columns of W (k) are not necessarily orthogonal. But when
W (0) has orthonormal columns, then W (k) tends to have orthonormal columns as η → 0. The formal
procedure is presented in Algorithm 1.

Algorithm 1 SGA for Online Factorization of Markov Chains

Input: A stream of Markov transition data s(1), s(2), s(3), . . . , s(n−1), s(n), . . .
Initialize: Sample matrix G ∈ R2m×r with i.i.d. entries fromN (0, 1); W (0) ← QR(G), k ← 0;
Repeat: For every τ state transitions, obtain A(k) using Eqs. (2),(4);

W (k+1) ←W (k) + η
[
A(k)W (k) −W (k)W (k)>A(k)W (k)

]
; k ← k + 1;

Until stopping condition is satisfied
Output [Û ; V̂ ]←

√
2W (k)

Algorithm 1 is a globally convergent method which does not require any warm-up initialization or prior
knowledge. The initial solutionW (0) is drawn uniformly from the set of all orthonormal matrices by applying
a QR decomposition to a matrix with i.i.d. Gaussian entries. Algorithm 1 makes update online and uses O(mr)

space, while a batch method needs O(m2) space to store the explicit transition matrix.

2.3 Recovering The Network Partition from Random Walks
Recall that in Definition 1 the m× r matrixM = D−1V gives a reduced-order representation for each vertex
of the network. As long as we can estimateD,V , we would be able to partition the network by applying a
clustering algorithm such as the k-means. Let us describe the overall procedure:
(1) Run Algorithm 1 on the Markov transition data and obtain [Û ; V̂ ].
(2) Let µ̂ be the empirical estimate of the stationary distribution, i.e., µ̂i =

∑n
k=1 I(s(k) = i)/n. Let D̂ =

diag(µ̂1, µ̂2, . . . , µ̂m). Now each row of M̂ = D̂−1V̂ gives an approximate r-dimensional representation
for the corresponding state/vertex.
(3) Find a set of centers C = {c1, c2, . . . , cr} ⊂ Rr by solving the following problem:

Ĉ = argmin
C

m∑
i=1

min
c∈C

d2(M̂i∗, c), (5)

where d(M̂si∗, cj) = ||M̂si∗ − cj ||2 is the Euclidean distance.
(4) Output the partition by assigning each state to its closest center.

Figure 1: The convergence in subspace angle of 100 sim-
ulations: fixed stepsize (Top) and diminishing step size
(Bottom)

(1) 4 States; (2) 10 States; (3) 15 States;

Figure 2: We apply our approach to partition the taxi
trip data of Manhattan. We obtain informative structures
that preserve the dynamics of the traffic network. Each
color or symbol represents a meta-state.
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