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Abstract

Convex sparsity-promoting regularizations are ubiquitous in modern statistical learning.
By construction, they yield solutions with few non-zero coefficients, which correspond to
saturated constraints in the dual optimization formulation. Working set (WS) strategies are
generic optimization techniques that consist in solving simpler problems that only consider
a subset of constraints, whose indices form the WS. Working set methods therefore involve
two nested iterations: the outer loop corresponds to the definition of the WS and the inner
loop calls a solver for the subproblems. For the Lasso estimator a WS is a set of features,
while for a Group Lasso it refers to a set of groups. Here we show that the Gauss-Southwell
rule (a greedy strategy for block coordinate descent techniques) leads to fast solvers in this
case. Combined with a working set strategy based on an aggressive use of so-called Gap
Safe screening rules, we propose a solver achieving state-of-the-art performance on sparse
learning problems. Results are presented on Lasso and multi-task Lasso estimators.

1 Introduction

Sparsity-promoting regularization has had a considerable impact on high dimensional statistics both in terms
of applications and on the theoretical side [4]. Yet they come with a cose, since their use requires solving
high-dimensional constrained or non-smooth optimization problems, for which dedicated advanced solvers
are necessary [1].

Various optimization strategies have been proposed to accelerate the solvers for problems such as Lasso or
sparse logistic regression involving `1 regularization, multi-task Lasso, multinomial logistic or group-Lasso
involving `1/`2 mixed-norms [18, 11, 7]. We will refer to these problems as Lasso-type problems [1]. For
these, so-called (block) coordinate descent (BCD) techniques [28, 7, 31, 23], which consist in updating one
coordinate or one block of coordinates at a time, have had massive success. Different BCD strategies exist
depending on how one iterates over coordinates: cyclic rule [7], random [23], or greedy [24, 31]. The later
rule, recently studied by [29, 17, 21] is historically known as the Gauss-Southwell (GS) rule [26].

To scale up generic solvers, one recurrent idea has been to limit the size of the problems solved. This idea
is at the heart of the so-called strong rules [27], but similar ideas can be found earlier in the Lasso literature
[22, 12, 13] and also more recently for example in the BLITZ method [9, 10]. In parallel of these WS
approaches where a BCD solver is run many times, first on a small subproblem then on growing ones, it has
been proposed to employ so called safe rules [5]. While a WS algorithm starts a BCD solver using a subset
of features, eventually ignoring good ones that shall be later considered, safe rules discard (once and for
all) from the full problem some features that are guaranteed to be inactive at convergence. The most recent
versions, called Gap Safe rules, have been applied to a wide range of Lasso-type problems [6, 14, 15].

The main contributions of this paper are 1) the introduction of a WS strategy based on an aggressive use of
Gap Safe rules, and 2) the demonstration that Gauss-Southwell rules combined with precomputation of Gram
matrices can be competitive for the (small) subproblems when looking at running time, and not just in terms
of (block) coordinate updates/epochs as previously done in the literature [17, 25].

The paper is organized as follows: in Section 2, we present how Gap Safe rules can lead to a WS strategy.
We then explain how the Gauss-Southwell rule can be employed to reduce computations. Section 4 presents
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numerical experiments on simulations for GS based inner-solvers, and report time improvements compared
to the present state-of-the-art on real datasets.

Model and notation

We denote by [d] the set {1, . . . , d} for any integer d ∈ N. For any vector u ∈ Rd and C ⊂ [d], (u)C is the
vector composed of elements of u whose index lies in C, and C̄ is the complementary set of C in [d]. We
denote by SrB ⊂ [p] the row support of a matrix B ∈ Rp×q . Let n and p ∈ N be respectively the number of
observations and features and X ∈ Rn×p the design matrix. Let Y ∈ Rn×q be the observation matrix, where
q stands for the number of tasks or classes considered. The Euclidean (resp. Frobenius) norm on vectors
(resp. matrices) is denoted by ‖·‖ (resp. ‖·‖F , and the j-th row (resp. k-th column) of B by Bj,: (resp. B:,k).
The row-wise `2,1 group-norm of a matrix B is written ‖B‖2,1 =

∑
j‖Bj,:‖. The dual norm of ‖·‖2,1 norm

is the `∞/`2 norm ‖B‖2,∞ = maxj ‖Bj,:‖. We denote by ‖B‖2,0 the number of non-zero rows of B.

The estimator that we consider from now on is defined as a solution of the (primal) problem

B̂(λ) ∈ arg min
B∈Rp×q

1

2
‖Y −XB‖2F + λ‖(B)‖2,1 := P(λ)(B) , (1)

with λ > 0 the regularization parameter controlling the trade-off between data fitting and regularization. The
associated dual problem reads (see for instance [14])

Θ̂(λ) = arg max
Θ∈∆X

1
2 ‖Y ‖

2
F −

λ2

2 ‖Θ−
Y
λ ‖

2
F := D(λ)(Θ) . (2)

where ∆X = {Θ ∈ Rn×q : ‖X>Θ‖2,∞ ≤ 1} is the dual feasible set. The duality gap is defined by
G(λ)(B,Θ) := P(λ)(B)−D(λ)(Θ), for Θ ∈ ∆X

1.

2 From screening rules to working sets

The idea behind safe screening rules is to safely discard features from (1) as soon as it is guaranteed that the
associated regression coefficients will be zero at convergence. The Gap Safe rules proposed in [14] for the
multi-task regression read as follows: for a pair of primal-dual variables B and Θ, it is safe to discard feature
j in the optimization problem (1) if:

∥∥X>:,jΘ∥∥+ ‖X:,j‖
√

2

λ2
G(λ)(B,Θ) < 1⇔ dj(Θ) :=

1−
∥∥X>:,jΘ∥∥
‖X:,j‖

>

√
2

λ2
G(λ)(B,Θ) . (3)

In other words, the duality gap value allows to define a threshold that is compared to dj(Θ) in order to safely
discard feature j. A natural idea to eliminate more features, while sacrificing safety, is to use the dj’s to
prioritize features. One way is to introduce r ∈ [0, 1] and only consider j if:

dj(Θ) ≤ r
√

2

λ2
G(λ)(B,Θ) . (4)

1When the dependency on X is needed, we write P(X,λ)(B), for P(λ)(B)
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This can be considered in an iterative strategy:
starting from an initial value of B0 (e.g., 0 ∈
Rp×q or an approximate solution obtained for a
close λ′,one can obtain a feasible Θ0 ∈ ∆X .
Given the primal-dual pair (B0,Θ0) one can
compute dj for all features and select the ones
to be added to the working set W1. Then an
inner solver can be started on W1. Assum-
ing the inner solver returns a primal dual pair
(B̃t, ξt) ∈ Rpt×q × Rn×q , where pt is the size
of Wt, one can obtain a pair (Bt, ξt) by consid-
ering that (Bt)Wt,: = B̃t and (Bt)W̄t,: = 0. Θt

is then obtained from Θt−1 and ξt as in [9]. We
now to detail how to use dj’s to constructWt. A
first strategy is to set a parameter r and then con-
sider all features that satisfy (4). Yet this strategy
does not offer a flexible control of the size ofWt.
A second strategy, which we use here, is to limit
the number of features that shall enterWt. Con-
straining the size of Wt to be at most twice the
size of SrBt−1

, we keep inWt the blocks with in-
dices in SrBt−1

and add to it the ones in S̄rBt−1

with the smallest dj(Θt). The iterative WS strat-
egy is summarized in Algorithm 1. When com-
bined with the BCD inner solver described in
Section 3, we call it A5G (for AGGressive Gap,
Greedy with Gram).

Algorithm 1: A5G
input: X,Y, λ, p0 = 100, ε = 10−6, ε = 0.3
Init : ξ0 = Y/λ,Θ0 = 0n,q,B0 = 0p,q ,
for t = 1, . . . , T do

αt =
max {α ∈ [0, 1] : (1− α)Θt−1 + αξt−1 ∈ ∆X}

Θt = (1− αt)Θt−1 + αtξt−1

// global gap:

gt = G(X,λ)(Bt−1,Θt)
if gt ≤ ε then

Break
for j = 1, . . . , p do

Compute dtj = (1− ‖X>:,jΘt‖)/‖X:,j‖
// safe screening:

Remove jth column of X if dtj >
√

2gt/λ2

// keep active features:

Set (dt)SrBt−1
= −1

// clipping:
pt = max(p0,min(2 ‖Bt−1‖2,0 , p))
Wt =

{
j ∈ [p] : dtj among pt lowest values of dt

}
// Approximately solve sub-problem:

GetB̃t, ξt ∈ Rpt×q×∆X:,Wt
s.t.G(X:,Wt ,λ)(B̃t, ξt)≤εgt

Set Bt ∈ Rp×q s.t.(Bt)Wt,: = B̃t (Bt)W̄t,: = 0.
return Bt

3 Block Coordinate Descent (BCD) as inner solver

We now address the choice of the inner solver to minimize (1) once the WS has been defined. We minimize
P(λ)(B) = f(B) + λ

∑p
j=1‖Bj‖, where f(B) = ‖Y −XB‖2F /2. In this section, Bj ∈ R1×q is the

jth row of B. In classical BCD algorithms, a block (line) jk is chosen according to a particular selection
rule, then updated with:Bkjk = Tjk,Ljk (Bk−1) = prox λ

L‖·‖

(
Bj − 1

L∇jf(B)
)

, with Lj = ‖X:,j‖2 and for

z ∈ Rq, µ > 0, proxµ‖·‖(z) = arg minx∈Rq
1
2‖z − x‖

2 + µ‖x‖ = BST(z, µ) :=
(

1 − µ
‖z‖

)
+
z, where for

any real number a, (a)+ = max(0, a).

3.1 Greedy / Gauss-Southwell strategies

Following [17], we introduce a variant of the Gauss-Southwell (GS) rule. Contrary to static selection strate-
gies such as the cyclic [3, 2] (jk = k (mod p)) and the random one [16] (where jk is drawn uniformly
in [p]) these variants aim at identifying the “best” block to be updated. The GS-r variant picks the block
maximizing the length of the update: jk ∈ arg maxj∈[p]‖Tj,Lj (Bk−1)− Bk−1

j ‖. To reduce the cost of this
rule, we use a variant, GS-rB, which looks for the best features only in batches of size B, chosen in a cyclic
fashion (experiments are done with B = 10)

3.2 Gram matrix precomputation

As it selects the best block for each update, the GS-rB rule decreases the number of epochs needed to reach
convergence. Yet, the heavier computation to pick the block can cancel this benefit. However, when the Gram
matrix Q = [Q1, . . . , Qp] = X>X is stored (which is possible since the subproblems are small), it becomes
tractable to maintain the gradients Hk = X>(XBk − Y ) ∈ Rp×q . The BCD steps becomes

δBj ← BST
(

Bk−1
j − 1

Lj
Hk−1
j , λLj

)
− Bk−1

j

Bkj ← Bk−1
j + δBj if δBj 6= 0

Hk ← Hk−1 +QjδBj if δBj 6= 0

. (5)

3



0.00 0.05 0.10 0.15 0.20

Time (s)

10−5

10−3

10−1
G

ap
Cyclic w/o WS

A5G

Blitz

Figure 1: Duality gap as a function of
time for the Lasso on the standard Leukemia
dataset (n = 72, p = 7129) using λ =
0.01‖X>Y ‖2,∞. Methods compared are the
cyclic BCD from scikit-learn (Cyclic
w/o WS), the C++ implementation of BLITZ
as well as our WS approach with the GS-rB
rule (B = 10) with precomputation of the
Gram matrix. Both WS approaches outper-
form the plain BCD solver.
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Figure 2: Duality gap as a function of
time for the multi-task Lasso on MEG data
(n = 302, p = 7498, q = 181) for
λ = 0.1‖X>Y ‖2,∞. The cyclic BCD from
scikit-learn is compared to the WS ap-
proach with the GS-rB rule (B = 10) with
precomputation of the Gram matrix. The
proposed WS approach outperforms the plain
BCD solver.

If the update is 0, the only computation required is the first line, which is O(q) since the gradients are stored.
If the value of Bj changes, the additional costs are the update of Bj and a rank one update of the gradients.
This low cost make the use of GS-rB rule possible to accelerate the subproblems resolution.

4 Experiments

First we consider the Lasso problem which allows us to compare our implementation to the state-of-the-
art C++ implementation of BLITZ by [9]. We only compare to BLITZ, since extensive experiments in [9]
indicated that it is currently the fastest solver for the Lasso. Figure 1 presents the duality gap as a function
of time on the Leukemia dataset. Our implementation reaches comparable performance with the BLITZ
C++ implementation, which is itself significantly better than the scikit-learn implementation [20] (no
working set strategy) and faster than the GLMNET R Package according to [9].

Figure 2 presents results for multi-task Lasso problems, relevant to brain imaging with magneto- and elec-
troencephalography (M/EEG) [30]. Y and B are multivariate time-series. Here, n = 302 corresponds to the
number of sensors, q = 181 to the number of time instants and p = 7498 to the number of brain locations.
The multi-task Lasso allows to identify brain activity stable on a short time interval [19]. In this experiment,
we use data (from the MNE dataset, see [8]) following an auditory stimulation in the left ear, in fixed orienta-
tion setting. We set λ = 0.1λmax, which leads to 24 blocks with non-zero coefficients at convergence (i.e., 24
active brain locations).

5 Conclusion and future work

We have proposed a connection between Gap Safe screening rules and working set (WS) strategies, such
as BLITZ, to tackle many sparse learning problems, such as `2,1 regularized regression. We have shown
that in the context of small subproblems, precomputing the Gram matrix allows the Gauss-Southwell rule to
reach comparable performance to cyclic updates, not only in terms of epochs but also in terms of computing
time. To our knowledge, our implementation is the first to demonstrate timing performance for GS rules.
In particular, a GS variant we coined GS-rB, relying on restricting the search of the best update to small
batches of blocks has provided the best compromise. Among possible improvements, more refined batch GS
strategies could be investigated. Additionally, improving the efficiency of the stopping criterion strategies
would be another venue for future research. Finally, the impact of the growth of the WS size would benefit
from further studies.

4



References

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-inducing norms.
Foundations and Trends in Machine Learning, 4(1):1–106, 2012.

[2] A. Beck, E. Pauwels, and S. Sabach. The cyclic block conditional gradient method for convex optimiza-
tion problems. SIAM J. Optim., 25(4):2024–2049, 2015.

[3] A. Beck and L. Tetruashvili. On the convergence of block coordinate type methods. SIAM J. Imaging
Sci., 23(4):651–694, 2013.

[4] P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Ann.
Statist., 37(4):1705–1732, 2009.

[5] L. El Ghaoui, V. Viallon, and T. Rabbani. Safe feature elimination in sparse supervised learning. J.
Pacific Optim., 8(4):667–698, 2012.

[6] O. Fercoq, A. Gramfort, and J. Salmon. Mind the duality gap: safer rules for the lasso. In ICML, pages
333–342, 2015.

[7] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. Ann. Appl.
Stat., 1(2):302–332, 2007.

[8] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian
Brodbeck, Lauri Parkkonen, and Matti S. Hämäläinen. MNE software for processing MEG and EEG
data. NeuroImage, 86:446 – 460, Feb 2014.

[9] T. B. Johnson and C. Guestrin. Blitz: A principled meta-algorithm for scaling sparse optimization. In
ICML, pages 1171–1179, 2015.

[10] T. B. Johnson and C. Guestrin. Unified methods for exploiting piecewise linear structure in convex
optimization. In NIPS, pages 4754–4762, 2016.

[11] K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic regres-
sion. J. Mach. Learn. Res., 8(8):1519–1555, 2007.

[12] M. Kowalski, P. Weiss, A. Gramfort, and S. Anthoine. Accelerating ISTA with an active set strategy. In
OPT 2011: 4th International Workshop on Optimization for Machine Learning, page 7, 2011.

[13] M. Loth. Active Set Algorithms for the LASSO. PhD thesis, Université des Sciences et Technologie de
Lille - Lille I, 2011.

[14] E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon. Gap safe screening rules for sparse multi-task and
multi-class models. In NIPS, pages 811–819, 2015.

[15] E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon. Gap safe screening rules for sparsity enforcing
penalties. Technical report, 2016.

[16] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J.
Optim., 22(2):341–362, 2012.

[17] J. Nutini, M. W. Schmidt, I. H. Laradji, M. P. Friedlander, and H. A. Koepke. Coordinate descent
converges faster with the Gauss-Southwell rule than random selection. In ICML, pages 1632–1641,
2015.

[18] M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable selection in least squares
problems. IMA J. Numer. Anal., 20(3):389–403, 2000.

[19] W. Ou, M. Hämaläinen, and P. Golland. A distributed spatio-temporal EEG/MEG inverse solver. Neu-
roImage, 44(3):932–946, Feb 2009.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12:2825–2830, 2011.

[21] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin. Coordinate friendly structures, algorithms and applications.
arXiv preprint arXiv:1601.00863, 2016.

[22] V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and
efficient algorithms. In ICML, pages 848–855, 2008.

[23] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized
loss minimization. Math. Program., 155(1):105–145, 2016.

5



[24] S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection using sparse logistic
regression. Bioinformatics, 19(17):2246–2253, 2003.

[25] H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin. A primer on coordinate descent algorithms. arXiv preprint
arXiv:1610.00040, 2016.

[26] R. V. Southwell. Relaxation methods in engineering science - a treatise on approximate computation.
The Mathematical Gazette, 25(265):180–182, 1941.

[27] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani. Strong rules for
discarding predictors in lasso-type problems. J. Roy. Statist. Soc. Ser. B, 74(2):245–266, 2012.

[28] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. J.
Optim. Theory Appl., 109(3):475–494, 2001.

[29] P. Tseng and S. Yun. Block-coordinate gradient descent method for linearly constrained nonsmooth
separable optimization. J. Optim. Theory Appl., 140(3):513, 2009.

[30] D. P. Wipf, J. P. Owen, H. Attias, K. Sekihara, and S. S. Nagarajan. Estimating the location and
orientation of complex, correlated neural activity using MEG. In NIPS, pages 1777–1784. 2008.

[31] T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat.,
pages 224–244, 2008.

6


	Introduction
	From screening rules to working sets
	Block Coordinate Descent (BCD) as inner solver
	Greedy / Gauss-Southwell strategies
	Gram matrix precomputation

	Experiments
	Conclusion and future work

