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Abstract
A connection between distributed ADMM and lifted Markov chains was recently
proposed for a non-strictly-convex consensus problem parametrized by a graph [1].
This was followed by a conjecture that ADMM is faster than GD by a square root
factor in its convergence time, in close analogy to the mixing speedup achieved by
lifting several Markov chains. Nevertheless, a proof is still lacking. Here we fully
characterize distributed over-relaxed ADMM for this same problem in terms of the
topology of the graph. More specifically, we relate its convergence rate with the
mixing time of random walks on the graph. A consequence of our results is a proof
of the aforementioned conjecture, which, interestingly, is valid for any graph, even
those whose random walks cannot be accelerated via Markov chain lifting.

1 Introduction

Many problems in statistics and machine learning involve solving an optimization problem. In this
current age of ever increasing datasets, traditional in-memory methods do not scale, so distributed
algorithms play a fundamental role. The Alternating Direction Method of Multipliers (ADMM) is
one such excellent example, since it is extremely versatile, e.g. does not require differentiability of
the objective, it is often easy to implement and it is easily distributed [2].

In this paper we analyze how the exact and optimally tuned asymptotic convergence rate of a
distributed implementation of over-relaxed ADMM depends on the topology of an underlying
network, through which several agents solve local problems and share messages with the goal of
solving an optimization problem. We define the asymptotic convergence rate, τ , of an algorithm by

log τ ≡ lim
t→∞

max
‖z0‖≤1

{
t−1 log ‖z? − zt‖

}
, (1)

where t = 0, 1, . . . is the iteration time and zt is the current estimate of the solution, which is
assumed to converge to z?. The optimally tuned asymptotic rate of convergence, τ∗, is the minimum
of τ over algorithm’s parameters.

Our over-relaxed ADMM scheme is the same as in [1] and it depends on the over-relaxed parameter
0 < γ < 2 and the penalty parameter ρ > 0. We also compare ADMM with gradient descent
(GD) which depends on the step-size parameter α > 0. Note that GD can also be implemented in
a distributed way: each agent computes the gradient of part of the objective, sharing it with other
agents that need this gradient to update their local copies of zt.

Given an optimization problem parameterized by a network G, one of our motivations is to understand
whether ADMM is more or less sensitive to the topology of G than GD. In other words, if τA and τG
are the convergence rates of ADMM and GD, respectively, we want to compare τ?A(G) and τ?G(G).
Another motivation comes from an interesting idea first presented at NIPS OPT2016 Workshop [1]
which relates distributed ADMM to lifted Markov chains [3]. Based on a lifting relation it was
conjectured that

1− τ?A ≥ C
√

1− τ?G (2)
for some constant C. The inequality (2) was supported by empirical evidence but its proof was
lacking, since for the problem considered in [1] existing bounds on the convergence rate could not be
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directly applied. Here we aim to solve this conjecture and, in particular, show that (2) is valid for any
graph G, even graphs whose Markov chains do not accelerate via lifting.

Consider an undirected, connected, and simple graph G = (V, E), where V is the set of vertices and
E the set of edges. We study the following consensus problem over G (was also studied in [1]):

min
z∈R|V|

{
f(z) =

1

2

∑
(i,j)∈E

(zi − zj)2
}
. (3)

The reason behind (3) is to make the analysis independent of properties of the objective function other
than G, such as its curvature or scaling factors. Note that the communication network over which
distributed ADMM and GD solve (3) is essentially equal to G itself. Problem (3) is deceptively simple;
it has trivial solution xi = xj if i and j belong to the same connected component of G. However, it
is not immediately obvious to which of these infinitely many possible solutions a given distributed
algorithm will converge to. Different agents of a distributed algorithm have to communicate to agree
on a final solution, and the speed at which they reach consensus is a non-trivial problem. For instance,
if we solve (3) through ADMM we have one agent per term of the objective function, and each agent
has local copies of all the variables involved. The final solution is a vector where each component
equals the average of the initial values of these local variables. Therefore, unsuspectingly, we have
solved a non-trivial distributed-average consensus problem, although in different form than typically
studied; see e.g. [4, 5]. Moreover, the objective function (3) naturally appears in several interesting
problems. A classical example is the graph interpolation problem [6], where one solves (3) subject to
zi = ci for i ∈ V ′ where V ′ ⊂ V and ci is a fixed constant. Our analysis of ADMM applied to (3)
may provide insights into graph interpolation and other important problems.

2 Related Work

Our results cannot be derived from existing literature on the convergence of ADMM. First, most
results only compute non-optimal upper bounds on the global convergence, as opposed to (1). Second,
our convergence rate for (3) is linear, while most results with linear rates assume strong convexity;
see e.g. [7, 8, 9, 10]. Linear rates are proven without strong convexity in [11], but they are not tight
enough for our purposes. Many results avoid strong convexity by focusing on the convergence rate of
the objective rather than the iterates; see e.g. [12, 13].

The authors of [4, 5] study ADMM for the consensus problem f(z) =
∑
i∈V

∑
(zi − ci)2, subject

to zi = zj if (i, j) ∈ E , where ci > 0 are constants. This problem is strongly convex and it is not
equivalent to (3). Several papers consider f(z) =

∑
i fi(z) with ADMM updates that are insensitive

to whether or not fi(z) depends on a subset of the components of z; see [14, 15, 16, 17, 18] and
references therein. These papers solve minz

∑
i fi(z) over a communication network by recasting

this problem as minimizing
∑
i fi(xi) subject to xi = xj if (i, j) are edges in the network. In our

setting, distributed ADMM is a message-passing algorithm where the messages between agents i
and j are related only to the variables shared by functions fi and fj . Thus, our ADMM scheme is
different. Several of these works try to understand how topology affects convergence, for example
[15, 16, 17, 18]. Among these, the results of [16, 17] are applicable to non-strongly-convex objectives
but do they do not prove linear convergence rates for the variables we intend to optimize.

For quadratic problems, known ADMM rates and optimal parameters are more explicit/tight; see
e.g. [19, 20, 21, 22, 23, 24, 25]. However, the required assumptions do not hold for the non-strongly
convex problem (3). Moreover, there are very few results directly comparing τ∗A and τ∗G. An explicit
comparison is provided in [26], but assumes strong convexity and their scheme is not fully distributed.
The work [27] considers non-strongly-convex quadratic problems, and to the best of our knowledge
this is the only work, such as we do here, analyzes ADMM in terms of complex eigenvalues of the
recursion matrix. However, they do not provide optimal bounds in terms of the graph G. The work
[28] also study ADMM for non-strictly-convex quadratic problems, but their error rate is defined
differently than (1) and it is not clear if both are comparable. Moreover, they provide generic bounds
which are not optimally tuned to the case of problem (3).

Our work makes connections between ADMM, GD, and (lifted) Markov chains. Lifted Markov
chains were previously employed to speedup convergence time of distributed averaging and gossip
algorithms [29, 30, 31], however, these algorithms are not related to ADMM.
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3 Main results

Due to lack of space we state our theorems in the case where G has at least one even cycle and
conductance Φ ≤ 1/2, i.e. random walks on G mix slowly, which is the most interesting case. We
have similar results for any choice of G.
Theorem 1 (Optimal convergence rate of ADMM). Assume that the graph G has at least one cycle
of even length, and conductance Φ ≤ 1/2. LetW be the transition matrix of a random walk on G,
and denote its second largest eigenvalue by ω? = λ2(W). The best possible convergence rate of
ADMM and its optimal parameters are given by

τ?A = γ? − 1, γ? =
4

3−
√

(2− ρ?)/(2 + ρ?)
, ρ? = 2

√
1− (ω?)2. (4)

One can show that (4) is always an upper bound for τ∗A regardless of the topology of G. Note that ω∗
is directly related to the mixing time of a random walk on G [32]. We now give a sketch of the proof
of Theorem 1. Full details will be presented in a longer version of this paper.

Proof sketch. From [1, Thm. 1] we know that the convergence rate of ADMM, τA, is equal to the
second largest eigenvalue, in absolute value, of TA = I−γ(A+B−2BA), whereA = (I+ρ−1Q)−1

with Q = diag(. . . , Qe, . . . ) block diagonal, Qe = ( 1 0
0 1 ) for e ∈ E , and B = S(S>S)S> where

S is a 2|E| × |V| matrix such that, ordering the edges in E , if the rth term in (3) depends on zi,
then S2r−1,y = S2r,y = 1 and zero otherwise. Note that the largest eigenvalue of TA is one and is
responsible for the non-strong-convexity and the infinite number of solutions of (3).

By direct substitution one can check that TA = (1− γ
2 )I + γ

ρ+2U , where U = Ω + ρ
2 B̃, B̃ = B̃> =

2B − I , Ω = B̃R, and R = R> = I −Q. In particular, Ω is orthogonal, B̃2 = I , and R2 = I . The
second largest eigenvalue (in absolute value) of TA, and thus τA, can be determined once we know
the spectrum of U . After we know τA, we can optimize it over γ and ρ to finish the proof.

Note that if ρ = 0 then U = Ω is orthogonal and its eigenvalues lie on the unit circle in the complex
plane. We thus expect that, for ρ sufficiently small, the eigenvalues of U lie in a perturbation of this
circle. It turns out that we can say much more than this.

Check by substitution that U−1 =
(
1− ρ2/4

)−1 (
Ω> − ρ

2 B̃
)
. Defining ΩS = 1

2

(
Ω + Ω>

)
we

have that ΩS = 1
2

(
U + (1− ρ2/4)U−1

)
. This last equation allows us to relate the spectrum of ΩS

with the spectrum of U . In particular, one can prove that, for all eigenvalues λ(ΩS) not in {−1, 1},
λ(ΩS)± i

√
1− ρ2/4− λ2(ΩS) is an eigenvalue of U . One can also prove that any eigenvalue of U

must be of this form for some λ(ΩS). Furthermore, it turns out that the spectrum of ΩS is (with the
exception of a few eigenvalues and different multiplicities) the same as the spectrum of the transition
matrixW . Therefore, we conclude that the eigenvalues λ(TA) and λ(W) are, in general, related by

λ(TA) =
(

1− γ

2

)
+

γ

2 + ρ

(
λ(W)± i

√
1− ρ2

4
− λ2(W)

)
. (5)

From this expression (and after computing a few other special eigenvalues) we find τA, hence we
optimize it over γ and ρ. See Figure 1 (left) for an illustration.

Our next theorem basically proves the conjecture of [1] relating τ?A and τ?G.
Theorem 2 (ADMM speedup). Assume that G has an even length cycle and Φ ≤ 1/2, such that
Theorem 1 holds. Then, there is C = 1−O

(√
δ
)

such that

C
(
1− τ?G

)
≤
(
1− τ?A

)2 ≤ 2∆C
(
1− τ?G

)
, (6)

where ∆ = dmax/dmin is the ratio of the maximum to the minimum degree of G. Here δ = 1− ω? is
the spectral gap.

Notice that the upper bound in (6) implies that ADMM cannot improve much more than this square
root factor. However, this upper bound becomes more loose for very irregular graphs, which have
∆ � 1, compared to regular graphs, which have ∆ = 1. Moreover, as mentioned before, since
Theorem 1 provides an upper bound on τ?A regardless of the topology of G, the lower bound in (6)
still remains valid for any graph.
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G
(a) (b) (c) (d)

Φ 1/3 1/2 1 1/5

ω? 1/2 1/3 −1/3
√
97−1
12

ρ? 1.1732 1.886 2 1.351
γ? 1.464 1.414 4/3 1.659
τ?A 0.464 0.414 1/3 0.536
Thm. 1 3 3 7 7

Figure 1: Left: Illustration supporting Theorem 1. Right: Application of Theorem 1.

Proof sketch. If is straightforward to check that the convergence rate of GD is controlled by the
second largest eigenvalue , in absolute value, of I − αL, where L is the laplacian of G. This implies
that τ∗G = minα max

{
|1− α ¯̀|, |1− α `?|

}
= (¯̀− `?)/(¯̀+ `?), where ¯̀ is the largest eigenvalue

of L and `? is the second smallest and nonzero eigenvalue of L.

If τ∗G was a function of ω∗ we could eliminate ω∗ and write τ∗A as a function of τ∗G. The situation is
a little more complicated but we can get around this by relating ω∗, ` and ¯̀using of the following
bounds [33, Lemmas 2.12 and 2.21]: `?/dmax ≤ 1 − ω∗ ≤ `?/dmin and dmax ≤ ¯̀≤ 2dmax. The
proof now follows from these bounds and the expressions for τ∗G above and τ∗A in (4).

4 Numerical results

Figure 1 (left) supports the proof of Theorem 1. Over-relaxed ADMM for problem (3) evolves
according to a linear system controlled by the eigenvalues of the transition matrix TA. The proof boils
down to relating the eigenvalues of TA with the eigenvalues of the transition matrixW of the graph
G; see (5). In the Figure we plot the eigenvalues of TA in the complex plane for a randomly generated
graph G. From (5) we see that for ρ = 0 the eigenvalues lie on a circle, with center (1 − γ/2).
As ρ increases each complex conjugate pair moves vertically towards the real-axis, shrinking the
radius of the circle. When they reach it, they split left and right. To compute τ∗A, we need to keep
track of the eigenvalues marked in red and green, which are the second largest in absolute value
(the largest is λ(TA) = 1). The red eigenvalues are obtained from (5) with λ(W) being the second
largest eigenvalue ofW , and the green eigenvalue is equal to 1− γ. Finally, we need to choose ρ∗
and γ∗ such that the absolute value of the red eigenvalues equals the absolute value of the green
eigenvalue when both are as small as possible. More specifically, we need to choose ρ∗ such that the
red eigenvalues have just touched the real-axis and choose γ∗ such that 1− γ∗ equals the magnitude
of the red eigenvalues.

We refer the reader to Figures 3, 4 and 5 from [1] for an illustration of Theorem 2. These Figures
were used by [1] to support their conjecture, which we have now proved.

In the Table of Figure 1 (right) we illustrate two settings where Theorem 1 is valid, items (a) and (b),
and two settings where we need analogs of Theorem 1 (which we will present in a longer version of
this paper), items (c) and (d). The convergence rate τ∗A was computed numerically and compared
with Theorem 1.

5 Final Remarks

We have analyzed distributed over-relaxed ADMM for a consensus problem that cannot be directly
solved using existing results. We were able to related the convergence rate of ADMM with random
walks over its communication network. Our analysis also solved the conjecture proposed by [1]
relating ADMM, GD and Markov chain lifting. In future work, we plan to search for other consensus
problems, parametrized by a graph, for which analogous results hold.
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