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Abstract

Low-rank approximations of data matrices are an important dimensionality re-
duction tool in machine learning and regression analysis. We consider the case
of categorical variables, where it can be formulated as the problem of finding
low-rank approximations to Boolean matrices. In this paper we give what is to
the best of our knowledge the first integer programming formulation that relies
on only polynomially many variables and constraints, we discuss how to solve it
computationally and report numerical tests on synthetic and real-world data.

1 Introduction
A common problem in machine learning and regression analysis is to predict the value of an as of yet
unobserved output variable of interest as a function of m observed input variables called features.
The functional dependence between the input and output variables has to be learned from a set of n
samples, or items, each of whose inputs and outputs are known. When n is small in relation to m,
this task may be affected by overfitting [HTF13], but in applications it is typically observed that the
data is inherently well approximated by a lower dimensional representation, and that reducing the
dimensionality dramatically reduces the overfitting. A classical technique to achieve dimensionality
reduction is linear factor analysis [Jol10, GV89, Mul09]: Given a data matrix X ∈ Rn×m whose
rows correspond to n items and columns to m features, compute C ∈ Rn×k and R ∈ Rk×m such
that the Frobenius norm ‖X − CR‖F of the approximation error is minimal for some fixed rank
k ∈ N. The rank-k approximation CR describes the data matrix using only k implicit features: the
rows of R specify how the observed variables relate to the implicit features, while the rows of C show
how the observed variables of each item can be (approximately) expressed as a linear combination of
the k implicit features.

Many practical data sets contain a mixture of different data types. In this paper we concentrate on
categorical variables. For example, in the data set of congressional votes discussed in the numerical
section of this paper, items correspond to 435 members of congress, and features to votes on 16
different bills. The voting behavior of each member can be represented by two Boolean variables per
bill, a first variable taking the value 1 if the member voted “yes”, and a second variable that takes the
value 1 if they voted “no”. Note that in case of abstentions, both variables take the value 0, indicating
an absence of both categorical features. Such an expansion of categorical variables into Boolean
variables proportional to the number of different categories is both typical and necessary because of
an asymmetry of treating 1s and 0s under Boolean arithmetic.

For Boolean data matrices X ∈ {0, 1}n×m it is natural to require that the factor matrices C and R
are Boolean as well. This requirement introduces an intrinsic difficulty into the problem because
real arithmetic is replaced by arithmetic over the Boolean semiring in which 1 + 1 = 1 holds.
Boolean matrix multiplication is defined as X = C ◦ R ⇐⇒ xi,j =

∨k
`=1 ci,` ∧ r`,j for some
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Boolean matrices X ∈ {0, 1}n×m, C ∈ {0, 1}n×k, R ∈ {0, 1}k×m. Note that for Boolean vectors
a, b ∈ {0, 1}k, it holds that

∨k
`=1 a` ∧ b` = min{1,

∑k
`=1 a`b`}. An optimal rank-k Boolean matrix

approximation for X ∈ {0, 1}n×m and k ∈ N is then given by C ∈ {0, 1}n×k and R ∈ {0, 1}k×m
for which ‖X − C ◦R‖2F is minimal. The Boolean rank of X is defined as the smallest k for which
the approximation error is zero [Kim82]. Note that the Boolean rank of a Boolean matrix X may
differ from its linear algebraic rank. In the following example, inspired by [Mie13], let X =

[
1 1 0
1 1 1
0 1 1

]
be a data matrix of Boolean variables xi,j that indicate if worker i has access to room j. The Boolean

factorization X = C ◦R =
[
1 0
1 1
0 1

]
◦ [ 1 1 0

0 1 1 ] is of exact Boolean rank 2 and reveals that there are two
different roles, one requiring access to rooms 1 and 2, and the other requiring access to rooms 2 and
3, and that worker 2 serves in both roles, whereas workers 1 and 3 serve only in one. In contrast,
treating X as a real matrix renders it of linear algebraic rank 3, and the best rank-2 approximation
X ≈

[
1.207 0.707
1.207 0
1.207 −0.707

] [
0.5 0.707 0.5

0.707 0 −0.707
]

fails to reveal a clear interpretation.

Interpreting X as the node-node incidence matrix of a bipartite graph G, the problem of finding the
Boolean rank of X has an interpretation as a minimum edge covering of G by bi-cliques, which
is a well known NP-complete problem [Orl77]. Correspondingly finding the best Boolean rank-
k approximation of X has an interpretation of minimizing the number of errors in approximate
coverings of G by k bi-cliques.

Boolean rank-k approximation is a problem that is generally solved via heuristics that may [FHMP07,
FHP16] or may not yield a Boolean factorization [dL06, SSU03, TT06, UHZB16]. The method
developed in [BV07, BV10] can be used to find exact Boolean rank-k decompositions, but not
approximations. The method of [GGM04] produces Boolean rank-k approximations but treat the
errors in 1 and 0 asymmetrically. [MMG+06] presents a powerful heuristic for the correct error
term and returns genuinely Boolean factors. Building on methods of [VAW06], the authors of
[LVA08] presented an integer programming model that is closely related to low-rank Boolean matrix
approximation but relies on mining an initial set of patterns from which the approximating factors are
composed. They also provide an integer programming model with an exponential number of variables
and constraints for low-rank Boolean matrix approximation, but do not detail its solution. Our paper
further contributes to this discussion by introducing an integer programming model that relies on
only a polynomial number of variables and constraints that can be solved by CPLEX [CPL17] for
problem sizes that are realistic in applications.

2 Problem Formulation
For a given Boolean matrix X ∈ {0, 1}n×m and integer parameter k, we next describe how to
construct two Boolean matrices C ∈ {0, 1}n×k and R ∈ {0, 1}k×m so as to minimize the approxi-
mation error ‖X − C ◦ R‖2F =

∑
i∈N,j∈M |xi,j − Ci ◦ Rj |, where Ci and Rj denote the i-th row

of C and j-th column of R, and N := {1, . . . , n}, M := {1, . . . ,m} and K := {1, . . . , k}.
In the IP formulation below we denote the McCormick envelope [Mcc76] of a, b ∈ [0, 1] by
MC(a, b) := {y ∈ R : a ≥ y, b ≥ y, y ≥ a + b − 1, y ≥ 0} ⊆ [0, 1]. Note that when
a, b ∈ {0, 1}, then MC(a, b) only contains the point ab ∈ {0, 1}, allowing us to express the non-
linear relationship y = ab in terms of linear constraints only. Optimal factors C,R may now be
computed by solving the following binary integer program,

(BP) min
ξ,z,c,r,y

n∑
i=1

m∑
j=1

ξi,j ,

s.t. xi,j − zi,j ≤ ξi,j , zi,j − xi,j ≤ ξi,j , ∀i ∈ N ; j ∈M, (1)

zi,j ≤
k∑
`=1

yi,`,j , yi,`,j ≤ zi,j , ∀i ∈ N ; j ∈M ; ` ∈ K, (2)

yi,`,j ∈MC(ci,`, r`,j), ∀i ∈ N ; j ∈M ; ` ∈ K, (3)
ξi,j , zi,j , ci,`, r`,j , yi,`,j ∈ {0, 1}, ∀i ∈ N ; j ∈M ; ` ∈ K, (4)

where variables ci,` and r`,j denote the coefficients of C and R respectively, variables zi,j the
coefficients of Z = C ◦R, ξi,j the elements of Ξ = |X − Z|, and yi,`,j the product of the variables
ci,` and r`,j . Constraints (4) ensure that all variables take {0, 1} values in any feasible solution.
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Constraints (1) imply that |xi,j − zi,j | ≤ ξi,j for all i ∈ N, j ∈M and due to the objective function,
it is easy to see that |xi,j − zi,j | = ξi,j in any optimal solution, as desired. Furthermore, any integral
solution satisfies yi,`,j = ci,`r`,j for all i ∈ N, j ∈ M, ` ∈ K due to constraints (3) and therefore
constraints (2) imply that zi,j = min{1,

∑k
`=1 yi,`,j} = min{1,

∑k
`=1 ci,`r`,j}, as desired.

2.1 Improved Formulation
Note that (BP) uses O(kmn) constraints and variables. To the best of our knowledge, previous IP
models for the Boolean rank-k approximation problem from the literature all required an exponential
number of constraints [LVA08]. We remark that the second set of constraints (2), yi,`,j ≤ zi,j , may
be summed and replaced by constraints

∑
` yi,`,j ≤ kzi,j (i ∈ N, j ∈ M) without changing the

feasible set. Even though this formulation has fewer constraints, we found it to be less effective in
computations because it caused greater branching in the code. However, the formulation (BP) can be
significantly improved in other ways to make more efficacious use of the computational power of
commercial solvers such as CPLEX [CPL17]. We next describe these ideas.

Relaxation of Integrality Constraints. First note that, due to the nature of McCormick envelopes,
the variables yi,`,j are guaranteed to take integer values when ci,`, r`,j ∈ {0, 1}. Consequently, the
integrality constraint on y may be relaxed. Further note that if all y variables are integral, then for
any fixed i ∈ N, j ∈M , (2) either implies that zi,j = 0 (if yi,`,j = 0 for all ` ∈ K) or that zi,j = 1
(if at least one yi,`,j = 1 for some ` ∈ K). Therefore, z-variables may also be treated as continuous.
Finally, since |xi,j − zi,j | = ξi,j holds at all optimal solutions, the integrality of the ξ variables can
also be relaxed. Consequently, only the r and c variables need to be declared integral which leads to
a mixed integer programming formulation with k(n+m) binary variables only, which is obtained by
replacing constraints (4) by

ξi,j , zi,j , yi,`,j ∈ [0, 1], ci,`, r`,j ∈ {0, 1}, ∀i ∈ N ; j ∈M ; ` ∈ K. (5)

Deleting Redundant Constraints. Note that for any i ∈ N and j ∈ M the variable zi,j takes a
binary value in any feasible solution, and since the input data parameter xi,j is binary as well, one of
the two constraints (1) is redundant. Specifically, we may replace (1) by{

zi,j = ξi,j , if xi,j = 0,

1− zi,j = ξi,j , if xi,j = 1.
(6)

This in turn implies that only one of the constraints (2) that involve zi,j is non-redundant, and that (2)
may be replaced by {

yi,`,j ≤ zi,j , if xi,j = 0,

zi,j ≤
∑k
`=1 yi,`,j , if xi,j = 1.

(7)

Using the same reasoning, one finds that half the constraints that define MC(ci,`, r`,j) are redundant,
so that (3) may be replaced by{

yi,`,j ≥ r`,j + ci,` − 1, yi,`,j ≥ 0, if xi,j = 0,

r`,j ≥ yi,`,j , ci,` ≥ yi,`,j , if xi,j = 1.
(8)

Consequently, approximately half of the constraints in the original formulation can be deleted.

Preprocessing the Input Data. In practice, the matrix X ∈ {0, 1}n×m of input data may contain
rows (or columns) of all zeros. Deleting these rows (or columns) leads to an equivalent problem
whose solution C and R can easily be translated to a solution for the original problem by inserting a
row of zeros to C (respectively a column of zeros to R) in the corresponding place. In addition, X
may contain duplicate rows (or columns). In this case it is sufficient to keep only one copy of each,
solve the problem on the reduced data, and to reinsert the relevant copies of rows of C (respectively
columns of R) in the optimal factors C and R found for the reduced data. In order for this process
to yield the correct result, the objective function of the reduced problem must correspond to the
approximation error of the original problem. Therefore, if row i of X is repeated αi times, and
column j is repeated βj times, then the variable ξi,j that corresponds to the remaining copy of these
rows and columns must be multiplied by αiβj in the objective function of the reduced problem.
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3 Computational Experiments
In this section we report numerical tests of the model (BP) on artificial and real-world datasets. The
model was solved by CPLEX [CPL17] in each instance on a 2015 MacBook Pro with a 3.1 GHz
Intel Core i7 processor and 16 GB of memory. The experiments with artificial data reveal that the
improved formulation leads to significant speed-up.

(a) Synthetic exact rank-5 data, m = 20.

(b) Synthetic noisy rank-5 data, m = 20.

(c) Percentage of approximation error as a
function of the approximating rank.

Figure 1: Computational Experiments.

Artificial Datasets. Artificial datasets were generated by
sampling matrices C ∈ {0, 1}n×κ and R ∈ {0, 1}κ×m
with i.i.d. random coefficients for fixed parameters n,m, κ.
The data matrix X was computed by forming the Boolean
product C ◦ R, which is a matrix with exact Boolean
rank κ, and by randomly flipping µ% of the coefficients.
The sparsity of X was controlled so that xi,j = 1 with
probability 1/2. The results of Figure 1b show how noise
in the data affects the complexity of the problem. Each
experiment was repeated 50 times, and the plot shows
averaged running times and error bars. We observe that the
complexity of the problem grows rapidly with the level of
noise, an effect that occurs partly, but not solely, because
the preprocessing step is less powerful at reducing the
dimension of noisy matrices. This is confirmed by Figure
1a, which shows the effect of the improved formulation
and the preprocessing steps. Each randomly generated
input was used in the full model, the improved model,
and the improved model with a preprocessing step, and
the running times were averaged over 50 repeats of the
experiment.

Real-World Datasets. The SPECT Heart dataset [CK]
describes cardiac Single Proton Emission Computed To-
mography images of 267 patients by 22 binary feature
patterns, providing us a Boolean data matrix of dimension
267 × 22. The Primary Tumor dataset [KC88] contains
observations of 17 categorical variables for 339 patients.
4 of the variables were non-Boolean and were converted
to 11 Boolean variables, resulting in an all Boolean repre-
sentation of the data matrix in dimension 339× 24. The
1984 United States Congressional Voting Records dataset
[Sch87] includes votes for each of the U.S. House of Rep-
resentatives Congressmen on the 16 key votes identified
by the CQA. The 16 categorical variables taking values of
“voted for”, “voted against” or “did not vote”, are converted
into 32 Boolean variables. The resulting Boolean data ma-
trix is of dimension 435 × 32. Rank-k approximations
were computed for all three datasets with k = 1, . . . , 5
separately. Each run was limited to a budget of 2h, after
which the incumbent solution was used as an approxima-
tion and the error reported in Figure 1c. We observe that
even a suboptimal rank-5 approximation correctly reconstructs at least 80% of the data in each case.
If the problems were solved to optimality, the approximation error would decrease in k, but since the
figure shows the approximation errors of suboptimal solutions the curves can be non-monotonic.

4 Conclusions
To the best of our knowledge, the MIP formulation of the optimal low-rank Boolean matrix approx-
imation problem discussed in this paper is the first model that relies on only polynomially many
variables and constraints and constitutes the first exact method that is viable for realistic problem
sizes. Our preliminary computational experiments suggest that our technique is applicable to real
world data sets that were hitherto only approachable via heuristics [MMG+06].
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