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Abstract

Expectation-maximization (EM) is an iterative algorithm for finding the maximum likelihood
or maximum a posteriori estimate of the parameters of a statistical model with latent
variables or when we have missing data. In this work, we view EM in a generalized
surrogate optimization framework and analyze its convergence rate under commonly-used
assumptions. We show a lower bound on the decrease in the objective function value on
each iteration, and use it to provide the first convergence rate for non-convex functions in
the generalized surrogate optimization framework and, consequently, for the EM algorithm.
We also discuss how to improve EM by using ideas from optimization.

1 Introduction

Expectation-maximization (EM) [2] is one of the most cited statistics papers of all time and is a popular tool
in machine learning. It is widely used to fit datasets with missing values or to fit models with latent variables.
Some of the cannonical applications include mixture models, hidden Markov models, semi-supervised learning,
and fitting generative models when there are missing values in the data. EM only converges to a stationary
point, which may not be a local maxima [6], but it tends to perform well in practice. However, not much is
known about its convergence rate.

The original EM paper by Dempster et al. [2] contained an error in their proof of the convergence of EM,
which was subsequently fixed by Wu [6] who showed that it is guaranteed to converge to a stationary point
under suitable continuity assumptions. Wu [6] and Figueiredo et al. [7] also discuss convergence to a local or
global maxima under stronger assumptions. However, they do not provide convergence rates. Salakhutdinov et
al. [5] adopt an optimization perspective similar to ours. They show that if the ratio of missing information to
observed data is small, then in a neighbourhood of an optima, EM typically displays superlinear convergence.
Balakrishanan et al. [4] analyze EM in the limit of infinite data and in the case of a finite set of samples. If
the initial estimate λ0 is in a neighbourhood of an optima, and the gradient of the Q-function is bounded in
this neighbourhood, then with infinte data they show that the sequence of iterates produced by EM converges
linearly. For the case with finite samples, they provide similar results with some additional assumptions. The
assumptions in these previous works are quite strong, and in this work we use milder assumptions and a
simpler argument. Indeed, most of our assumptions are standard in optimization literature. For example, the
first of our assumptions is that the function EM is minimizing is bounded below. The other assumption is that
the surrogate functions (Section 2) are strongly-convex. Alternatively, we could assume that the surrogates
have a Lipschitz-continuous gradient, and that the gradient of the surrogate and the function agree. The
strong-convexity assumption leads to a convergence rate in terms of the iterates, while the latter leads to a rate
in terms of the gradient norm. We discuss the assumptions used in this work and the previous work in the next
section.

Our main contribution is that we provide the first convergence rate for non-convex functions in a generalized
version of Mairal’s surrogate optimization framework [1] and, consequently, a non-asymptotic convergence
rate for many common variations of the EM algorithm. The rest of the paper is organized as follows. First, we
generalize the definition of first-order surrogate functions [1] and show that EM is a surrogate optimization
algorithm in this framework. Then, we proceed to show a lower bound on the progress made by EM on each
iteration, and use this bound to derive a O( 1

t ) convergence rate in terms of the squared difference between
successive iterates produced by the EM algorithm. We also propose a similar convergence rate in terms of the
norm of the gradient of the objective under different assumptions. Finally, we propose some future research
directions that can utilize ideas from optimization to improve EM.
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2 Surrogate optimization

Mairal [1] defines first-order surrogate functions and presents a surrogate optimization framework for solving
the following problem: suppose Λ ⊂ Rd is convex, and f : Rd → R is continuous and bounded below; solve
for

λ∗ ∈ arg min
λ∈Λ

f(λ).

In this section, we generalize Mairal’s definition of first-order surrogate functions and view EM in this
generalized framework.
Definition (Surrogate functions). Let f and g be functions from Rd → R. We say that g is a surrogate of f
near λk ∈ Λ if it satisfies:

• Majorization: ∀λ′ ∈ arg minλ∈Λ g(λ), f(λ′) ≤ g(λ′). If f(λ) ≤ g(λ) for all λ ∈ Λ, then g is
called a majorant function;

• Smoothness: Denote the approximation error as h = g − f . Then, the functions agree at λk so that
h(λk) = 0.

We will use Sρ(f, λk) to denote the set of such surrogates that are ρ-strongly-convex. In this setting Mairal
defines the following surrogate optimization framework:

Algorithm 1 Mairal’s Surrogate Optimization Scheme
Input: λ0 ∈ Λ, number of iterations t.
for k = 1 to t do

Compute a surrogate function gk of f near λk−1.
Update solution λk ∈ arg minλ∈Λ gk(λ).

end for
Output final estimate λt.

However, in contrast to the definition of surrogate functions in Mairal [1], we do not require h to be differ-
entiable and∇h(λk) = 0. Thus, we are only requiring that the surrogate be a zero-order surrogate function
rather than a first-order surrogate.

2.1 EM as a surrogate optimization algorithm

In EM we want to find parameters λ ∈ Λ to maximize the likelihood, P (X|λ) =
∑
z
P (X, z|λ), of data X

where we have written the likelihood in terms of missing data or latent variables z. We can equivalently
minimize the negative log-likelihood (NLL), so our goal is to find

λ∗ ∈ arg min
λ∈Λ

− log
∑
z

P (X, z|λ).

Let λk denote the estimate of the parameters after the kth iteration and define

Q(λ|λk) =
∑
z

P (z|X,λk) logP (X, z|λ).

Using Jensen’s inequality, we get the following well-known upper bound on the NLL

− logP (X|λ) ≤ −Q(λ|λk)− entropy(z|X,λk), (1)

and the iterations of EM are defined as

λk+1 ∈ arg min
λ∈Λ

−Q(λ|λk)− entropy(z|X,λk)

≡ λk+1 ∈ arg min
λ∈Λ

−Q(λ|λk).

We’ll define

f(λ) = − logP (X|λ) = − log
∑
z

P (X, z|λ),

gk(λ) = −Q(λ|λk−1)− entropy(z|X,λk−1).
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To view EM as a surrogate optimization algorithm (Algorithm 1) in our generalized framework, we need
to verify that gk as defined above is indeed a surrogate of f . From Equation (1), we can see that gk is a
majorant of f , and thus it satisfies the majorization condition. It is a well known fact (Dempster et al. [2]) that
hk(λk−1) = 0, where hk = gk − f is the approximation error. In addition, to derive our convergence results,
we will also assume that for all iterations, gk is ρ-strongly-convex.

Previous works that study the convergence rate of EM give fast rates but they make very strong assumptions [4],
[5]. For example, they require the initial estimate of the parameters λ0 to be within some small neighbourhood
of the optimal solution. Additionally, they require the fraction of missing information to be small [5] or other
regularity conditions [4].

In contrast, we make relatively mild assumptions. For example, we first simply assume that the NLL f is
bounded below which is satisfied by most real world datasets (particularly if we include a proper prior on the
parameters). Restricting the iterates λk to stay within a convex set is essentially a non-assumption, since this
set could simply be all of Rd. Beyond that f is bounded below, the only strong assumption that we make is
that the surrogates gk are strongly-convex. But this is satisfied in many important applications. For example,
when the complete-data NLL (− logP (X, z|λ)) is convex and we use a strongly-convex regularizer, then the
surrogate is strongly-convex (even though the objective f itself is non-convex). Even without a regularizer,
in the common case of EM for mixtures of exponential families the surrogate will be strongly-convex if the
mixture probabilities are positive and the covariances of the distributions are positive-definite (both of these
are automatically achieved under standard choices of the prior).

3 Results

We now lower bound the decrease in the objective function value on each iteration of EM. Informally, if
the iterates of EM stay within a convex set and the surrogates are ρ-strongly-convex, then the further away
successive iterates λk−1 and λk are, the greater the decrease in the objective function value. Then, we use this
bound to derive an O( 1

t ) convergence rate in terms of the squared difference between the successive iterates.
We present these results formally in two theorems, the first of which is based on Mairal’s Lemma 2.1 [1] and
the second of which is based on Khan et al.’s Proposition 1 [3].

Theorem 1 (Lower bound). Let gk ∈ Sρ(f, λk−1), and λk ∈ arg minλ∈Λ gk(λ). Then,

f(λk) ≤ f(λk−1)− ρ

2
‖λk − λk−1‖22.

Proof. Using that λk minimizes gk and that gk is ρ-strongly-convex, it follows that for all λ ∈ Λ,

gk(λk) +
ρ

2
‖λ− λk‖22 ≤ gk(λ).

Now using that gk is a majorant, we get

f(λk) +
ρ

2
‖λk − λ‖22 ≤ gk(λk) +

ρ

2
‖λk − λ‖22

≤ gk(λ)

= f(λ) + hk(λ).

Setting λ = λk−1 and using that hk(λk−1) = 0 from the definition of surrogate functions gives

f(λk) +
ρ

2
‖λk − λk−1‖22 ≤ f(λk−1) + hk(λk−1)

ρ

2
‖λk − λk−1‖22 ≤ f(λk−1)− f(λk), (2)

which can be re-arranged to get the result.

Theorem 2 (Convergence rate). Let gk ∈ Sρ(f, λk−1), and λk ∈ arg minλ∈Λ gk(λ). Then,

min
k∈{1,2,...,t}

‖λk − λk−1‖22 ≤
2(f(λ0)− f(λ∗))

ρt
.
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Proof. Summing up (2) for all k and telescoping the sum we get
t∑

k=1

ρ

2
‖λk − λk−1‖22 ≤

t∑
k=1

f(λk−1)− f(λk)

= f(λ0)− f(λt)

≤ f(λ0)− f(λ∗).

Taking the min over all iterations, we get

min
k∈1,2,...,t

‖λk − λk−1‖22 ·
ρt

2
≤ f(λ0)− f(λ∗)

min
k∈{1,2,...,t}

‖λk − λk−1‖22 ≤
2(f(λ0)− f(λ∗))

ρt
.

Due to the non-convexity of f , the above rate does not necessarily hold for the last iteration. However, it holds
for the average or the minimum value of ‖λk − λk−1‖22. Additionally, the above results do not rely on the
differentiability of the original function or its surrogates.

4 Discussion

Although our analysis is quite general and relies on relatively mild assumptions, it would be interesting to
see if some assumptions, like strong-convexity of the surrogates, can be relaxed, or if we can derive stronger
convergence results using the same set of assumptions for “nice” scenarios like mixtures of exponential family
distributions. Our convergence rate is in terms of the squared difference between the iterates. If we make
a different assumption that gk is a first-order surrogate function [1] so that the approximation error hk is
differentiable and ∇hk is L-Lipschitz continuous, and that the gradients agree, ie. ∇hk(λk−1) = 0, then
we can derive a similar convergence rate in terms of the norm of the gradient of f . The differentiability
will typically follow from using an NLL f that is differentiable on its domain. The assumption that ∇hk
is L-Lipschitz continuous is weak provided that our iterates λk are not diverging to an infinite value, or
converging to a point on the boundary of the domain. In common cases of mixtures of exponential families,
it is true that ∇hk(λk−1) = 0. The convergence proof under these assumptions essentially relies on the
observation that since λk is a global minimizer of gk, gk(λk) ≤ gk(λk−1 − 1

L∇g(λk−1)). Using the standard
gradient descent progress bound (Theorem 1, Karimi et al. [8]), and that hk(λk−1) = 0 and∇hk(λk−1) = 0,
we can follow the proofs of the above theorems and arrive at the result that

min
k∈{1,2,...,t}

‖∇f(λk−1)‖22 ≤
2L(f(λ0)− f(λ∗))

t
.

Similar to [5] and [6], we view EM in an optimization framework. Doing so allows future work to use
numerical optimization techniques to develop improved variants of EM. In particular, accelerated EM and an
SVRG version of EM could be worth exploring with these tools.
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