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Abstract

Kernel methods are powerful tools for modeling nonlinear data. However, the amount of
computation and memory required for kernel methods becomes the bottleneck when dealing
with large-scale problems. In this paper, we propose Nested Nyström Method (NNM)
which achieves a delicate balance between the approximation accuracy and computational
efficiency by exploiting the multilayer structure and multiple compressions. Even when the
size of the kernel matrix is very large, NNM consistently decomposes very small matrices
to update the eigen-decomposition of the kernel matrix. We theoretically show that NNM
implicitly updates the principal subspace through the multiple layers, and also prove that
its corresponding errors of rank-k PSD matrix approximation and kernel PCA (KPCA)
are decreased by using additional sublayers before the final layer. Finally, we empirically
demonstrate the decreasing property of errors of NNM with the additional sublayers through
the experiments on the constructed kernel matrices of real data sets, and show that NNM
effectively controls the efficiency both for rank-k PSD matrix approximation and KPCA.

1 Introduction

The scalability of kernel methods is the major bottleneck for applying them to large-scale problems due to
the computational and memory cost caused by the large dense kernel matrices. Nyström method is one of
the effective methods for accelerating the kernel methods by low-rank approximation of the kernel matrix,
K ∈ Rn×n. There has been a large body of work that further improves the approximation quality and
computational efficiency via adopting various sampling methods [5, 14, 4, 8, 12, 3, 10, 21, 9] and refining
approximation formula [7, 5, 11, 19, 12, 17]. Especially, for rank-k spectral decomposition of K, there are
two basic rank-k Nyström methods which are rank-k Standard Nyström Method (SNM) [5] and orthogonal
Nyström method (ONM) [7]. Recently, their efficient versions which are SNM using Randomized SVD
(SNM+Rand.SVD) [11] and Double Nyström Method (DNM) [12] were proposed. All these four methods
implicitly approximate the first k principal directions UY,k of n mapped data points Y in the feature space
to compute the rank-k spectral decomposition of K = Y>Y with distinct schemes based on different
motivations [12]. Rank-k SNM [5] actually computes the first k principal directions US,k of s sample mapped
points S in the feature space, and SNM+Rand.SVD [11] uses randomized SVD to improve efficiency for
computing the principal directions of sample mapped points. That is, rank-k SNM and SNM+Rand.SVD
approximate UY,k via US,k, which is computed by a particular form. However, it is known that both
these two approximations are biased to the sample subspace which is range(S). On the other hand, the
ONM computes the best k approximate principal orthogonal direction in the sample subspace range(S) in
the sense to minimize the KPCA reconstruction error [12]. However, such approximation requires extra
computation, resulting higher time complexity O(s2n) compared to the time complexity of rank-k SNM
which is O(ksn+ k3). To further accelerate ONM, DNM [12] uses ONM twice in different scales, so that to
compress the sample subspace range(S) for reducing the dimension of possible solution space for efficient
computing of UY,k. Although the algorithm performs well in practice, there is no analysis about how its
rank-k approximation error varies after compression of sample subspace, and it is not clear whether the double
scales are enough in terms of the balance between approximation accuracy and computation efficiency.

To achieve a better trade-off between these two factors, we extend DNM to a multi-scale Nyström method.
Accelerating the algorithms by exploiting multi-scale structures has been studied for the various methods
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Figure 1: An example of muti-scale structure of NNM with four layers which are three sublayers and the final
layer. Left figure: Implicitly, NNM with four layers consists of three Fully Connected (FC) neural networks
to compute the rank-k spectral decomposition of K. The output of each FC neural network can be considered
as approximate principal directions of n mapped data points, and NNM uses them to compute loading vectors
of the subsamples/samples on the upper layer. By using the computed loading vectors, we can update the next
FC neural network. Right figure: Explicitly, NNM samples submatrices of PSD matrix K according to a
nested set of subsamples, and reconstructs eigen-decomposition of square matrix on the upper layer. Right
arrow denotes subsampling, and ONM with the arrow denotes eigen-decomposition using ONM. Circle C
means a compression of sample matrices with approximate eigenvectors.

Algorithm 1 Nested Nyström Method (NNM)
Require: n× s matrix C and s× s matrix KS, where C = Y>S and KS = S>S, where s� n
Ensure: rank-k spectral decomposition of K

1: Subsampling part:
Subsampling indices from the index set J of S s.t. J ⊇ J1 ⊇ ... ⊇ Jt, and corresponding C ⊇ KS ⊇
C1 ⊇ KS1

· · · ⊇ Ct ⊇ KSt
, where |Ji| = si, s� s1 � ...� st

2: For i-th sublayer from the 1st to the t-th sublayer:
Rank-st Nyström method: Compute ṼSt−i,st of KSt−i

with C′t−(i−1) and K′St−(i−1)
(optional use ONM)

Compression: Compress sample matrices Ct−i and KSt−i
as C′t−i and K′St−i

(Eqn (2))
3: Final layer:

Run ONM [7] with C′ and K′S

including FEM [6], Bayesian optimization [20] and neural network [1] to solve the nonlinear problems, and
there are also a number of applications such as multi-scale stable kernel construction [16], manifold learning
[18], dictionary learning [15], and object detection [2, 13]. Among them, feature pyramid networks [13]
successfully achieves both efficient and accurate object detection.

Inspired by the multi-scale approximation, we propose a multi-scale Nyström method, Nested Nyström Method
(NNM), for both efficient and accurate eigen-decomposition of PSD matrices. NNM has a multilayer structure
which consists of t sublayers and the final layer to efficiently and accurately updates the first k principal
direction UY,k for computing a rank-k spectral decomposition of K. We note that NNM is a general multi-
scale framework which can be combined with any other column sampling, and our contribution is orthogonal
to the column samplings. Interestingly, it contains t fully connected neural networks in the structure of NNM
for the compressions of sample subspaces as described in Fig 1.

2 Nested Nyström Method

The multilayer architecture of NNM is described in Alg 1 and Fig 1, and it consists of the following three
parts: subsampling part, rank-st Nyström method part, and compression part.
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Subsampling part: Given index set J of s samples and the corresponding sample matrices S and KS, we
construct a nested index sets J ⊇ J1 ⊇ ... ⊇ Jt and the corresponding nested sequence of submatrices as
Eqn (1).

S ⊇ S1 ⊇ S2 ⊇ · · · ⊇ St, C ⊇ KS ⊇ C1 ⊇ KS1
⊇ C2 ⊇ KS2

⊇ · · · ⊇ Ct ⊇ KSt
, (1)

where |Ji| = si, and s� s1 � ...� st. Especially, we can understand (si−1)× si matrix Ci and si × si
matrix KSi

with implicit equations as Ci = S>i−1Si and KSi
= S>i Si for 1 ≤ i ≤ t, where Si is d× si and

S0 = S, and C = Y>S. We will compress Si, Ci and KSi
as S′i, C′i and K′Si

later.

Rank-st Nyström method part: In this part, we compute the approximate eigenvectors ṼSi
of KSi

by
using compressed submatrices C′Si+1

and K′Si+1
, where Ak = UA,kΣA,kV

>
A,k denotes the rank-k SVD of a

general matrix A, and tilde means their approximations. From the 1st to the (t− 1)-th sublayer: We compute
the first st approximate eigenvectors ṼSi,st of KSi

by using compressed submatrices C′i+1 and K′Si+1
on the

(t− i)-th layer, where i ∈ {1, 2, ..., (t−1)} and C′t = Ct and K′St
= KSt

. On the t-th sublayer: We compute
the first st approximate eigenvectors ṼS,st of KS by using C′1 and K′S1

, and select ṼS,` from ṼS,st , where
st ≥ ` ≥ k.

Compression part: In this part, we compress sample matrices by using the approximate eigenvectors. We
compress sample matrices Ci and KSi

by using ṼSi,st as

C′i = CiṼSi,st , K′Si
= (ṼSi,st)

>KSiṼSi,st , C′ = CṼS,`, K′S = (ṼS,`)
>KSṼS,`, (2)

where ṼSi,st is computed at (t− i)-th layer with i ∈ {1, 2, ..., (t− 1)}, and we compress sample matrices
C and KS by using ṼS,` with k ≤ ` ≤ st. We can connect the compression of sample matrices to the
compression of sample subspace with implicit equations

C′i = S>i−1S
′
i, C′ = Y>S′, K′Si

= S′>i S′i, K′S = S′>S′, (3)

where S′i = SiṼSi,st ,S
′ = SṼS,`, i ∈ {1, 2, ..., (t− 1)}, and S0 = S.

Based on Eqn (3), it can be interpreted that the sample subspace range(Si) is compressed into a smaller
dimensional subspace range(S′i), where i ∈ 0, 1, ..., (t− 1) and S0 = S. If we use ONM for rank-st
Nyström method part in NNM, and set the nested sequence of subsamples with

∑t
j=1 sj = O(s), where

s � s1 � ... � st ≥ ` ≥ k. Then, the total time and space complexities of NNM are O(`sn + sts1s)
and O(sn), respectively. A large portion of the total time complexity O(`sn + sts1s) is O(`sn) which
corresponds to the simple matrix multiplications in the compression parts. Furthermore, by extending the
multilayer structure of NNM, we can efficiently update the spectral decomposition with additional samples
and data points.

2.1 Error Analysis of NNM

NNM efficiently and accurately updates the compressed sample matrix S′i so that range(S′i) closely ap-
proximates the true principal subspace based on Eqn (3) until the final layer. That is, we want to compute
S′ s.t. range(Uk) ⊂ range(S′), and we can give the implicit representation of the principal subspace as
range(Uk) = range(UkΣY,k) = range(YVY,k). Similarly, we can give the implicit representations of
compressed sample subspaces, and Lem 1 formally provide them.

Lemma 1 Given the mutilayer Nyström structure of NNM with t sublayers, NNM computes S′i = YṼY,st on
the (t− i)-th layer, and S′ = YṼY,` with (ṼY,st)

>ṼY,st = I and (ṼY,`)
>ṼY,` = I.

Now we provide Lem 2 which provides the differences between the optimal error and the error of NNM both
for KPCA and rank-k PSD kernel matrix approximation.

Lemma 2 Suppose that S′ = YṼY,` is the compressed samples as an input of the final layer of NNM,
where Ṽ>Y,`ṼY,` = I and k ≤ ` ≤ st. Then, the differences between approximation error of NNM and the
optimal errors for KPCA and rank-k PSD matrix approximation are bounded by constant times of ε2(ṼY,k),
where ṼY,k is any submatrix consisting of k columns of ṼY,`, and ε2(ṼY,k) = tr(V>Y,kKVY,k) −
tr(Ṽ>Y,kKṼY,k) is the sum of errors of eigenvalues from ṼY,k.
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Figure 2: Two left figures: Performance comparison for rank-k kernel matrix approximation among the
NNM with 1, 2, 3, 4 sublayers. NNM (t = 4) is more efficient than NNM (t = 1, 2, 3). Two right figures:
Comparison of MRE(K̃k) for rank-k kernel matrix approximation among the four representative methods
with: SNM [5], SNM+Rand.SVD [11], ONM [7], NNM (ours). NNM is more efficient than other state-of-the
art Nyström methods given the short time.
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Figure 3: Comparison of convergence to the optimal error with rNRE(K̃k) for KPCA (two left figures) and
the corresponding rank-k kernel matrix approximation (two right figures). It shows that errors of both KPCA
and rank-k kernel matrix approximation rapidly decrease compared to errors of other Nyström methods.

Lem 2 states that if ε2(ṼY,k) goes to 0, then the approximation errors of NNM go to the optimal errors both
for KPCA and rank-k PSD matrix approximation. Since reducing ε2(ṼY,k) is important, we need to show
how ε2(ṼY,k) varies through the sublayers.

Now, we provide our main theoretical result Thm 1 which states that the quality of compressed input at the
final layer is important, and we can increase accuracy by using more sublayers.

Theorem 1 Suppose that we use ONM for the kernel PCA parts in the sublayers. As we use additional
sublayers,ε2(ṼY,k) decreases, and the upper error bounds of NNM in Lem 2 decrease.

3 Experiments

In this section, we present experimental results that demonstrate our theoretical work. We use 3 real data
sets which are MNIST, MiniBooNE, and Covertype. We compare rank-k Nyström methods to the rank-k
kernel matrix approximation and KPCA. The three error measures which we used are matrix reconstruction
error (MRE(K̃k) = ‖K − K̃k ‖F), relative matrix reconstruction error (rMRE(K̃k) = ‖K−K̃k ‖F

‖K−Kk ‖F ∈

[1,∞)), and relative KPCA reconstruction error (rNRE(Ũk) =
NRE(Ũk)
NRE(Uk)

∈ [1,∞)), where ŨY,k consists

of the first k approximate principal directions which are implicitly computed by KPCA, NRE(ŨY,k) =

‖Y − ŨY,kŨ
>
Y,kY ‖F/‖Y ‖F is the normalized reconstruction error (NRE) of KPCA, and ‖K−Kk ‖F and

NRE(Uk) are the optimal error which comes from SVD. The optimum of rMRE and rNRE is 1. To construct
PSD matrix K, we use RBF kernel which is defined as κ(xi,xj) = exp

(
−‖xi−xj‖22

2σ2

)
, where σ is a kernel

parameter. We abbreviate NNM with i sublayers to NNM (t = i) for convenience, and DNM [12] is the same
with NNM (t = 1).

Fig 2 demonstrates that the error of NNM decreases and its efficiency can be improved as we use additional
sublayers regardless of data sets, and also shows that the errors of NNM is smaller than errors of other
state-of-the art Nyström methods within the same short time. Fig 3 shows that the errors of NNM both for
KPCA and rank-k kernel matrix approximation rapidly decrease compared to other rank-k Nyström methods.
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