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Abstract

In this paper, we present a distributed greedy pursuit method for non-convex sparse learning
under cardinality constraint. Given the training samples randomly partitioned across multiple
machines, the proposed method alternates between local inexact optimization of a Newton-
type approximation and centralized global results aggregation. Theoretical analysis shows
that for a general class of objective functions with Lipschitze continues Hessian, the method
converges linearly with contraction factor scales inversely with data size. Numerical results
confirm the high communication efficiency of our method when applied to large-scale sparse
learning tasks.

1 Introduction

Setup. We are interested in distributed computing methods for solving the following cardinality-constrained
empirical risk minimization (ERM) problem:

min
w∈Rp

F (w) =
1

m

m∑
j=1

Fj(w) =
1

mn

m∑
j=1

n∑
i=1

f(w;xji, yji), subject to ‖w‖0 ≤ k, (1)

where f is a convex loss function, ‖w‖0 represents the number of non-zero entries in w, and we assume
the training data D = {D1, D2, ..., Dm} with N = nm samples is evenly and randomly distributed over m
machines; each machine j locally stores and accesses n training sample Dj = {xji, yji}ni=1. We refer to the
above model as `0-ERM in this paper. Due to the presence of cardinality constraint, the problem is non-convex
and NP-hard in general.

Related work. Iterative hard thresholding (IHT) methods have demonstrated superior scalability in solv-
ing (1) [1, 2]. It is known from [2] that if F (w) is L-smooth and µs-strongly convex over s-sparse with
some sparsity level k = O

(
L2

µ2
s
k̄
)

, IHT-style methods reach the estimation error level ‖w(t) − w̄‖ =

O
(√

k‖∇F (w̄)‖∞/µs
)

afterO
(
L
µs

log
(

µs‖w(0)−w̄‖√
k‖∇F (w̄)‖∞

))
rounds of iteration. A distributed implementation

of IHT was considered in [4] for compressive sensing. However, the linear dependence of the iteration
complexity on the restricted condition number L/µs makes it inefficient in ill-conditioned settings.

Significant interest has recently been dedicated to designing distributed algorithms that have flexibility to adapt
to the communication-computation tradeoffs [3, 7, 6]. There is a recent surge of developing Newton-type algo-
rithm for distributed model learning [6, 5]. It was proved in [6] that if F (w) is quadratic with condition number
L/µ, the communication complexity (in high probability) to reach ε-precision is O

(
L2

µ2n log(mp) log
(

1
ε

))
,

which has an improved dependence on the condition number L/µ which could scale as large as O(
√
mn) in

regularized learning problems.

Open problem. Despite the attractiveness of distributed approximate/inexact Newton-type methods in classical
regularized ERM learning, it still remains unclear whether this type of methods generalize equally well, both
in theory and practice, to the non-convex `0-ERM model as defined in (1).
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Our contribution. In this paper, we give an affirmative answer to the above open question by developing
a novel DANE-type distributed greedy pursuit method. We show for our method that the parameter esti-
mation error bound ‖w(t) − w(0)‖ = O

(√
k‖∇F (w̄)‖∞/µs

)
can be guaranteed in high probability after

O

(
1

1− L
µs

√
log(mp)

n

log
(

µs‖w(0)−w̄‖√
k‖∇F (w̄)‖∞

))
rounds of communication. Comparing to the bound of distributed

IHT [4], this bound has much improved dependence on restricted condition number when data size is suffi-
ciently large. In sharp contrast, the required sample complexity in [7] for `1-regularized distributed learning is
n = O

(
s2L2 log p

µ2
s

)
which is clearly inferior to ours.

Notation and definitions. We denote Hk(x) as a truncation operator which preserves the top k (in magnitude)
entries of vector x and forces the remaining to be zero. The notation supp(x) represents the index set of
nonzero entries of x. We conventionally define ‖x‖∞ = maxi |[x]i| and define xmin = mini∈supp(x) |[x]i|. For
an index set S, we define [x]S and [A]SS as the restriction of x to S and the restriction of rows and columns
of A to S, respectively. For an integer n, we abbreviate the set {1, ..., n} to [n]. For any integer s > 0, we
say f(w) is restricted µs-strongly-convex and Ls-smooth if ∀w,w′ with ‖w − w′‖0 ≤ s, µs2 ‖w − w

′‖2 ≤
f(w)− f(w′)− 〈∇f(w′), w −w′〉 ≤ Ls

2 ‖w −w
′‖2. Suppose that f(w) is twice continuously differentiable.

We say f(w) has Restricted Lipschitz Hessian with constant βs ≥ 0 (or βs-RLH) if ∀w,w′ with ‖w−w′‖0 ≤ s,∥∥∇2
SSf(w)−∇2

SSf(w′)
∥∥ ≤ βs‖w − w′‖, where we have used the abbreviation∇2

SSf := [∇2f ]SS .

2 Distributed Inexact Newton-type Pursuit

2.1 Algorithm

The Distributed Inexact Newton-type PurSuit (DINPS) algorithm is outlined in Algorithm 1. Starting from
an initial k-sparse approximation w(0), the procedure generates a sequence of intermediate k-sparse iterate
{w(t)}t≥1 via distributed local sparse estimation and global synchronization among machines. More precisely,
each iteration loop of DINPS can be decomposed into the following three consequent main steps:

Map-reduce gradient computation. In this first step, we evaluate the global gradient ∇F (w(t−1)) =
1
m

∑m
j=1∇Fj(w(t−1)) at the current iterate via simple map-reduce averaging and distribute it to all machines

for local computation.

Local inexact sparse approximation. In this step, each machine j constructs at the current iterate a local
objective function as in (2), and then inexactly estimate a local k-sparse solution satisfying (3). This inexact
sparse optimization step can be implemented using IHT-style algorithms which have been witnessed to offer
fast and accurate solutions for centralized `0-estimation [8].

Centralized results aggregation. The master machine simply assigns to w(t) the first received k-sparse local
output w(t)

jt
at the current round of iteration. Such an aggregation scheme is by nature asynchronous and hence

robust to computation-power imbalance and communication delay.

The simplest way of initialization is to set w(0) = 0, i.e., starting the iteration from scratch. Since the
data samples are assumed to be evenly and randomly distributed on machines, another reasonable option of
initialization is to minimize one of the local `0-ERM problems, say w(0) ≈ arg min‖w‖0≤k F1(w), which
is expected to be reasonably close to the global solution. A similar local initialization strategy was also
considered for EDSL [7].

2.2 Main results

Deterministic result. The following is a deterministic result on the parameter estimation error bound of
DINPS when the objective functions is twice differentiable with restricted Lipschitz Hessian.

Theorem 1. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that each component Fj(w) is µ3k-
strongly-convex and has β3k-RLH. Let H̄j = ∇2Fj(w̄) and H̄ = 1

m

∑m
j=1 H̄j . Assume that maxj ‖H̄j −

ηH̄‖ ≤ θµ3k/4 for some θ ∈ (0, 1) and ε ≤ kη2‖∇F (w̄)‖2∞
2µ3k

. Assume that ‖w(0) − w̄‖ ≤ θ
(1+η)β3k

and

‖∇F (w̄)‖∞ ≤ θµ3k

8.94η(1+η)β3k

√
k

. Set γ = 0, then ‖w(t) − w̄‖ ≤ 5.47η
√
k‖∇F (w̄)‖∞

(1−θ)µ3k
after
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Algorithm 1: Distributed Inexact Newton-type PurSuit (DINPS)
Input :Loss functions {Fj(w)}mj=1 distributed over m different machines, sparsity level k, parameter γ ≥ 0

and η > 0. Typically set γ = 0 and η = 1.
Initialization Set w(0) = 0 or estimate w(0) ≈ arg min‖w‖0≤k F1(w).
for t = 1, 2, ... do

/* Map-reduce gradient evaluation */

(S1) Compute ∇F (w(t−1)) = 1
m

∑m
j=1∇Fj(w(t−1)) and broadcast it to all workers;

/* Local sparse optimization: */
(S2) for all the workers j = 1, ...,m in parallel do

(i) Construct a local objective function:

Pj(w;w(t−1) | η, γ) := 〈η∇F (w(t−1))−∇Fj(w(t−1)), w〉+
γ

2
‖w − w(t−1)‖2 + Fj(w); (2)

(ii) Estimate a k-sparse w(t)
j via approximately solving min‖w‖0≤k Pj(w;w(t−1), η, γ) up to sparsity

level k̄ ≤ k and ε-precision, i.e., for any k̄-sparse vector w̄:

Pj(w
(t)
j ;w(t−1) | η, γ) ≤ Pj(w̄;w(t−1) | η, γ) + ε; (3)

end
/* Centralized results aggregation: */

(S3) Set w(t) = w
(t)
jt

as the first received local solution;
end
Output :w(t).

t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖
η
√
k‖∇F (w̄)‖∞

)
rounds of iteration.

Proof sketch. The proof is rooted on the following key inequality:

‖w(t) − w̄‖ ≤2 maxj ‖H̄j − ηH̄‖
µ3k

‖w(t−1) − w̄‖+
(1 + η)β3k

2
‖w(t−1) − w̄‖2 +

4.47η
√
k

µ3k
‖∇F (w̄)‖∞.

Given this inequality, we can prove by induction that ‖w(t) − w̄‖ ≤ θ
(1+η)β3k

holds for all t ≥ 0, which then

implies the recursive form ‖w(t) − w̄‖ ≤ θ‖w(t−1) − w̄‖+ 4.47η
√
k

µ3k
‖∇F (w̄)‖∞.

Remark. The main message conveyed by Theorem 1 is: Provided that w(0) is properly initialized and
the estimation error level

√
k‖∇F (w̄)‖∞ is sufficiently small, DINPS for RLH objectives exhibits linear

convergence behavior with contraction factor θ = O(maxj ‖H̄j − ηH̄‖/µ3k).

Stochastic result. We now turn to a stochastic setting where the samples are uniformly randomly distributed
over m machines.

Corollary 1. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that the samples are uniformly randomly
distributed on m machines and each component Fj(w) is µ3k-strongly-convex and has β3k-RLH. Assume
‖∇2f(w>xji, yji)‖ ≤ L holds for all j ∈ [m] and i ∈ [n]. Let H̄j = ∇2Fj(w̄) and H̄ = 1

m

∑m
j=1 H̄j .

Set γ = 0 and η = 1. Assume that ε ≤ k‖∇F (w̄)‖2∞
2µ3k

. Assume that ‖w(0) − w̄‖ ≤ θ
2β3k

and ‖∇F (w̄)‖∞ ≤
θµ3k

17.88ηβ3k

√
k

. For any δ ∈ (0, 1), if n > 512L2 log(mp/δ)
µ2
3k

, then with probability at least 1− δ, Algorithm 1 will

output solution w(t) satisfying ‖w(t) − w̄‖ ≤ 5.47
√
k‖∇F (w̄)‖∞

(1−θ)µ3k
after

t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖√
k‖∇F (w̄)‖∞

)
rounds of iteration with θ = L

µ3k

√
512 log(mp/δ)

n .

3



0 2 4 6 8 10
Communication Round

0.05

0.1

0.5

1

Dist-IHT
DINPS(m=2)
DINPS(m=4)
DINPS(m=8)

(a) Flr with different m values. N = 104.
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Dist-IHT(N=2x105)

DINPS(N=5x104)

DINPS(N=105)
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(b) Flr with different N values. m = 10.

Figure 1: Linear regression (denoted by Flr) model training convergence, given varied number of machines
(m) and training samples (N ). The convergence of Flr model training is evaluated by ‖w − w̄‖/‖w̄‖.

Proof sketch. Based on [6, Lemma 2] we can show that maxj ‖Hj −H‖ ≤ θµ3k/4 holds with probability at
least 1− δ. The condition on n guarantees θ ∈ (0, 1).
Remark. Corollary 1 indicates that in the considered statistical setting, the contraction factor θ can be
arbitrarily small given that the sample size n = O

(
L2 log(mp)

µ2
3k

)
is sufficiently large. This sample size

complexity is clearly superior to the corresponding n = O
(
k2L2 log p

µ2
3k

)
complexity established in [7] for

distributed `1-regularized sparse learning.

3 Experiment

We evaluate the empirical performance of DINPS on a set of simulated sparse linear regression tasks. A
syntheticN×p design matrix is generated with each data sample xi drawn from Gaussian distributionN (0,Σ)

with Σj,k =

{
1 if j = k

1.5−
|j−k|

10 otherwise
. A sparse model parameter w̄ ∈ Rp is generated with the top k̄ entries

uniformly randomly valued in interval (0, 0.1) and all the other entries set to be zero. The response variables
{yi}Ni=1 are generated by yi = w̄>xi + εi with εi ∼ N (0, 0.01). A distributed implementation of IHT (which
we refer to as Dist-IHT) [4] is considered as a baseline algorithm for communication efficiency comparison.
We set p = 1000. k value and parameter update step-sizes are chosen by grid search for optimal performance.

We first fix the training sample number to be N = 104 and vary the number of machines to be m = 2, 4, 8.
The convergence curves of the considered algorithms in terms of round of communication are shown in
Figure 1(a). Since Dist-IHT collects the gradient update from all workers before conducting gradient descent
and hard-thresholding on master machine, its convergence behavior is irrelevant to the number of machines.
In our DINPS algorithm, we adopt a more greedy parameter update strategy by solving a `0-constrained
minimization problem on worker machines. As a result, it requires much fewer number of communication
rounds between worker and master than Dist-IHT. We have also tested with the case when the number of
machines is fixed as m = 10, and the number of training sample is varying to be N = 5 × 104, 105 and
2 × 105. Figure 1(b) shows the convergence curves of the considered algorithms. Again we observe the
superior communication efficiency of DINPS over Dist-IHT.

4 Conclusion

As a novel inexact Newton-type greedy pursuit method for distributed `0-ERM, DINPS has improved depen-
dence on the restricted condition number than the prior distributed IHT methods.
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Abstract

This supplementary document contains the technical proofs of algorithm analysis in 10th
NIPS Workshop on Optimization for Machine Learning submission entitled “Distributed
Inexact Newton-type Pursuit for Non-convex Sparse Learning”.

A A key lemma

The following lemma is key to our analysis.

Lemma 1. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that each component Fj(w) is µ3k-strongly-
convex and ηF (w)− Fj(w)− γ

2 ‖w‖
2 has α3k-RLG.

‖w(t) − w̄‖ ≤ 2α3k

γ + µ3k
‖w(t−1) − w̄‖+

3.47η
√
k

γ + µ3k
‖∇F (w̄)‖∞ +

√
2ε

γ + µ3k
.

Moreover, assume that each Fj(w) has β3k-RLH. Let H̄j = ∇2Fj(w̄) and H̄ = 1
m

∑m
j=1 H̄j . Then

‖w(t) − w̄‖ ≤2(γ + maxj ‖H̄j − ηH̄‖)
γ + µ3k

‖w(t−1) − w̄‖+
(1 + η)β3k

2
‖w(t−1) − w̄‖2 +

3.47η
√
k

γ + µ3k
‖∇F (w̄)‖∞

+

√
2ε

γ + µ3k
.

Proof. Recall that w(t) = w
(t)
jt

. By assumption we know that Fjt(w) is µ3k-strongly-convex. Obviously,
Pjt(w;w(t−1) | η, γ) is (γ + µ3k)-strongly-convex. Let S(t) = supp(w(t)) and S̄ = supp(w̄). Consider
S = S(t) ∪ S(t−1) ∪ S̄. Then

Pjt(w
(t);w(t−1) | η, γ)

≥Pjt(w̄;w(t−1) | η, γ) + 〈∇P (w̄;w(t−1) | η, γ), w(t) − w̄〉+
γ + µ3k

2
‖w(t) − w̄‖2

=Pjt(w̄;w(t−1) | η, γ) + 〈∇SP (w̄;w(t−1) | η, γ), w(t) − w̄〉+
γ + µ3k

2
‖w(t) − w̄‖2

ξ1
≥Pjt(w(t);w(t−1) | η, γ)− ε− ‖∇SP (w̄;w(t−1) | η, γ)‖‖w(t) − w̄‖+

γ + µ3k

2
‖w(t) − w̄‖2

,

where “ξ1” follows from the definition of w(t) as an approximate k-sparse minimizer of Pjt(w;w(t−1) | η, γ)
up to precision ε. By rearranging both sides of the above inequality with proper elementary calculation we get

‖w(t) − w̄‖

≤ 2

γ + µ3k
‖∇SPjt(w̄;w(t−1) | η, γ)‖+

√
2ε

γ + µ3k

=
2

γ + µ3k
‖η∇SF (w(t−1))−∇SFjt(w(t−1)) + γ(w̄ − w(t−1)) +∇SFjt(w̄)‖+

√
2ε

γ + µ3k

=
2

γ + µ3k
‖η∇SF (w(t−1))− η∇SF (w̄)− (∇SFjt(w(t−1))−∇SFjt(w̄)) + γ(w̄ − w(t−1)) + η∇SF (w̄)‖

+

√
2ε

γ + µ3k

≤ 2

γ + µ3k

∥∥∥(η∇SF (w(t−1))−∇SFjt(w(t−1))− γw(t−1)
)
− (η∇SF (w̄)−∇SFjt(w̄)− γw̄)

∥∥∥
+

2η

γ + µ3k
‖∇SF (w̄)‖+

√
2ε

γ + µ3k

ζ1
≤ 2α3k

γ + µ3k
‖w(t−1) − w̄‖+

2η
√

3k

γ + µ3k
‖∇F (w̄)‖∞ +

√
2ε

γ + µ3k
,
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where ζ1 is according to the assumption that ηF (w)− Fjt(w) has α3k-RLG. This shows the validity of the
first part.

Next we prove the second part. Similar to the above argument, we have

‖w(t) − w̄‖ ≤ 2

γ + µ3k
‖∇SPjt(w̄;w(t−1) | η, γ)‖+

√
2ε

γ + µ3k

≤ 2

γ + µ3k

∥∥∥γ(w(t−1) − w̄) + η∇SF (w(t−1))− η∇SF (w̄)− (∇SFjt(w(t−1))−∇SFjt(w̄))
∥∥∥

+
2η

γ + µ3k
‖∇SF (w̄)‖+

√
2ε

γ + µ3k

≤ 2

γ + µ3k

∥∥∥γ(w(t−1) − w̄) + η∇2
SSF (w̄)(w(t−1) − w̄)−∇2

SSFjt(w̄)(w(t−1) − w̄)
∥∥∥

+
2η

γ + µ3k
‖∇SF (w̄)‖+ η

∥∥∥∇SF (w(t−1))−∇SF (w̄)−∇2
SSF (w̄)(w(t−1) − w̄)

∥∥∥
+
∥∥∥∇SFjt(w(t−1))−∇SFjt(w̄)−∇2

SSFjt(w̄)(w(t−1) − w̄)
∥∥∥+

√
2ε

γ + µ3k

≤ 2

γ + µ3k

(
γ + ‖η∇2

SSF (w̄)−∇2
SSFjt(w̄)‖

)
‖w(t−1) − w̄‖+

2η

γ + µ3k
‖∇SF (w̄)‖

+
(1 + η)β3k

2
‖w(t−1) − w̄‖2 +

√
2ε

γ + µ3k

≤2(γ + maxj ‖H̄j − ηH̄‖)
γ + µ3k

‖w(t−1) − w̄‖+
(1 + η)β3k

2
‖w(t−1) − w̄‖2

+
2η
√

3k

γ + µ3k
‖∇F (w̄)‖∞ +

√
2ε

γ + µ3k
.

This proves the second part.

B Proof of Theorem 1

Proof. We first claim that ‖w(t) − w̄‖ ≤ θ
(1+η)β3k

holds for all t ≥ 0. This can be shown by induction.

Obviously the claim holds for t = 0. Now suppose that ‖w(t−1) − w̄‖ ≤ θ
(1+η)β3k

for some t ≥ 1. Since
γ = 0, according to Lemma 1 we have

‖w(t) − w̄‖ ≤ 2 maxj ‖H̄j − ηH̄‖
µ3k

‖w(t−1) − w̄‖+
(1 + η)β3k

2
‖w(t−1) − w̄‖2 +

3.47η
√
k

γ + µ3k
‖∇F (w̄)‖∞

+

√
2ε

γ + µ3k

ζ1
≤ θ

2
‖w(t−1) − w̄‖+

(1 + η)β3k

2
‖w(t−1) − w̄‖2 +

4.47η
√
k

µ3k
‖∇F (w̄)‖∞

≤ θ‖w(t−1) − w̄‖+
4.47η

√
k

µ3k
‖∇F (w̄)‖∞

ζ2
≤ θ

2(1 + η)β3k
+

θ

2(1 + η)β3k
=

θ

(1 + η)β3k
,

where “ζ1” follows from γ = 0 and the assumption on ε, and “ζ2” follows from θ ≤ 0.5 and the condition
of ‖∇F (w̄)‖∞ ≤ θµ3k

8.94η(1+η)β3k

√
k

. Thus by induction ‖w(t) − w̄‖ ≤ θ
(1+η)β3k

holds for all t ≥ 1. Then it
follows from the inequality “ζ1” of the above we can see that for all t ≥ 0,

‖w(t) − w̄‖ ≤ θ‖w(t−1) − w̄‖+
4.47η

√
k

µ3k
‖∇F (w̄)‖∞.

By recursively applying the above inequality we get

‖w(t) − w̄‖ ≤ θt‖w(0) − w̄‖+
4.47η

√
k

(1− θ)(µ3k)
‖∇F (w̄)‖∞

7



Based on the inequality 1− x ≤ exp(−x) we need

t ≥ 1

1− θ
log

(
(1− θ)µ3k‖w(0) − w̄‖
η
√
k‖∇F (w̄)‖∞

)
steps of iteration to achieve the precision of ‖w(t) − w̄‖ ≤ 5.47η

√
k‖∇F (w̄)‖∞

(1−θ)µ3k
. This proves the desired

complexity bound.

C Proof of Corollary 1

Lemma 2 which is based on a matrix concentration bound, indicates that the Hessian Hj is close to H when
sample size is sufficiently large. The same result can be found in [6, Lemma 2].
Lemma 2. Assume that ‖∇2f(w>xji, yji)‖ ≤ L holds for all j ∈ [m] and i ∈ [n]. Then for each j, with
probability at least 1− δ over the samples,

max
j
‖Hj −H‖ ≤

√
32L2 log(mp/δ)

n
,

where Hj = 1
n

∑n
i=1∇2f(w>xji, yji) and H = 1

m

∑m
j=1Hj .

From Lemma 2 we get that maxj ‖Hj − H‖ ≤ θµ3k/4 holds with probability at least 1 − δ. Since
n > 512L2 log(mp/δ)

µ2
3k

, we have θ ∈ (0, 1). By invoking Theorem 1 we get the desired result.
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