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Abstract

We describe and analyze a simple algorithm for principal component analysis,
SVR-PCA, which uses computationally cheap stochastic iterations, yet converges
exponentially fast to the optimal solution. In contrast, existing algorithms suffer
either from slow convergence, or computationally intensive iterations whose run-
time scales with the data size. The algorithm builds on a recent variance-reduced
stochastic gradient technique, which was previously analyzed for strongly convex
optimization, whereas here we apply it to the non-convex PCA problem, using a
very different analysis.

Principal Component Analysis (PCA) is one of the most common tools for unsupervised data
analysis and preprocessing. In its simplest possible form1, we are given a dataset of n instances
x1, . . . ,xn in Rd, and are interested in finding a unit vector v which minimizes
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The optimal solution is given by the largest eigenvector w = v1 of the covariance matrix
1
n

∑n
i=1 xix

>
i .

When the data size n and the dimension d are modest, this problem can be solved exactly by com-
puting the d× d covariance matrix, and performing an eigendecomposition. However, the required
runtime is O(nd2 + d3), which is prohibitive in large-scale applications. Moreover, even storing a
d × d matrix in memory can be impossible when d is very large. One possible approach is using
iterative methods such as power iteration or the Lanczos method [4]. If the covariance matrix has an
eigengap λ between its first and second eigenvalues, then these algorithms can be shown to produce
a unit vector which is ε-far from v1 (or −v1) after O

(
log(1/ε)
λp

)
iterations (where p = 1 for power

iterations, and p = 1/2 for the Lanczos method). However, each iteration involves multiplying one
or more vectors by the covariance matrix, which requiresO(nd) time (by passing through the entire
data). Thus, the total runtime is O

(
dn log(1/ε)

λp

)
. When λ is small, this runtime is equivalent to

many passes over the data, which can be prohibitive for large datasets.

An alternative to these deterministic algorithms are stochastic and incremental algorithms (e.g. [7,
10, 11] and more recently, [1, 9, 2]), which utilize the structure of the covariance method. In contrast
to the algorithms above, these algorithms perform much cheaper iterations by choosing some xi
(uniformly at random or otherwise), and updating using only xi. In general, the runtime of each
iteration is justO(d). On the flip side, due to their stochastic and incremental nature, the convergence
rate (when known) is quite slow, and the number of required iterations can be prohibitive when a
high-accuracy solution is required.

1Our approach can be extended to more general cases.
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In this work, we propose a new stochastic PCA algorithm, denoted as SVR-PCA 2, which under
suitable assumptions, has provable runtime of

O
(
d

(
n+

1

λ2

)
log

(
1

ε

))
,

where λ is the eigengap parameter. This algorithm combines the advantages of the previously dis-
cussed approaches, while avoiding some of their pitfalls: On one hand, the runtime depends only
logarithmically on the accuracy ε, so it is suitable to get high-accuracy solutions; While on the other
hand, the runtime scales as the sum of the data size n and a factor involving the eigengap parameter
λ, rather than their product. This means that the algorithm is still applicable when λ is relatively
small. In fact, as long as λ ≥ Ω(1/

√
n), this runtime bound is better than those mentioned earlier,

and equals dn up to logarithmic factors: Proportional to the time required to perform a single scan
of the data.

SVR-PCA builds on a recently-introduced technique for stochastic gradient variance reduction,
which has been previously studied (see [5] as well as [8, 6]). However, the setting in which we
apply this technique is quite different from previous works, which crucially relied on the strong
convexity of the optimization problem (at least locally), and often assume an unconstrained domain.
In contrast, our algorithm attempts to minimize the function in Eq. (1), which is nowhere convex,
let alone strongly convex (in fact, it is concave everywhere), and over a non-convex domain. As a
result, the analysis in previous papers is inapplicable, and we require a new and different analysis to
understand the performance of the algorithm.

The pseudo-code of our algorithm appears as Algorithm 1 below. We refer to a single execution of
the inner loop as an iteration, and each execution of the outer loop as an epoch. Thus, the algorithm
consists of several epochs, each of which consists of running m iterations. We note that the runtime
of each iteration is O(dn), and the runtime of each epoch, besides the iterations, is dominated by
computing ũ in O(dn) time.

Algorithm 1 SVR-PCA
Parameters: Step size η, epoch length m
Input: Data set {xi}ni=1, Initial unit vector w̃0

for s = 1, 2, . . . do
ũ = 1

n

∑n
i=1 xix

>
i w̃s−1

w0 = w̃s−1
for t = 1, 2, . . . ,m do

Pick it ∈ {1, . . . , n} uniformly at random
w′t = wt−1 + η

(
xitx

>
it

(wt−1 − w̃s−1) + ũ
)

wt = 1
‖w′

t‖
w′t

end for
w̃s = wm

end for

To understand the structure of the algorithm, it is helpful to consider first the well-known Oja’s
algorithm for stochastic PCA optimization [10], on which our algorithm is based. In our setting,
this rule consists of repeatedly sampling a data point xit at random, and performing the update
w′t = wt−1 + ηtxitx

>
it
wt−1 , wt = 1

‖w′
t‖
wt. Letting A = 1

n

∑n
i=1 xix

>
i , this is equivalent to

w′t = (I + ηtA)wt−1 + ηt
(
xitx

>
it −A

)
wt−1 , wt =

1

‖w′t‖
wt. (2)

Thus, at each iteration, the algorithm performs a power iteration (using a shifted and scaled version
of the matrix A), adds a stochastic zero-mean term ηt

(
xitx

>
it
−A

)
wt−1, and projects back to the

unit sphere. Recently, [3] gave a rigorous finite-time analysis of this algorithm, showing that if
ηt = O(1/t), then under suitable conditions, we get a convergence rate of O(1/T ).

The reason for the relatively slow convergence rate of this algorithm is the constant variance of
the stochastic term added in each step. Inspired by recent variance-reduced stochastic methods

2SVR stands for “Stochastic variance-reduced”.
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for convex optimization [5], we change the algorithm in a way which encourages the variance of
the stochastic term to decay over time. Specifically, we can rewrite the update of our SVR-PCA
algorithm as

w′t = (I + ηA)wt−1 + η
(
xitx

>
it −A

)
(wt−1 − ũ) , wt =

1

‖w′t‖
wt. (3)

Comparing Eq. (3) to Eq. (2), we see that our algorithm also performs a type of power iteration,
followed by adding a stochastic term zero-mean term. However, our algorithm picks a fixed step size
η, which is more aggressive that a decaying step size ηt. Moreover, the variance of the stochastic
term is no longer constant, but rather controlled by ‖wt−1 − ũ‖. As we get closer to the optimal
solution, we expect that both ũ and wt−1 will be closer and closer to each other, leading to decaying
variance, and a much faster convergence rate, compared to Oja’s algorithm.

A formal analysis of the algorithm appears in the following theorem, whose proof is omitted in this
extended abstract:
Theorem 1. Let v1 be an eigenvector of A = 1

n

∑n
i=1 xix

>
i corresponding to the largest singular

value. Suppose that the maxi ‖xi‖2 (and hence the spectral norm of A) is at most r; That A has
singular values s1 > s2 ≥ . . . ≥ sd, where s1 − s2 = λ for some λ > 0; And that 〈w̃0,v1〉 ≥ 1√

2
.

Let δ, ε ∈ (0, 1) be fixed. If we run the algorithm with any epoch length parameter m and step size
η, such that

η ≤ c1δ2λ , m ≥ c2 log(2/δ)

ηλ
, mη2 +

√
mη2 log(2/δ) ≤ c3, (4)

(where c1, c2, c3 designates positive numerical constants), and for T =
⌈
log(1/ε)
log(2/δ)

⌉
epochs, then with

probability at least 1− 2 log(1/ε)δ, it holds that 〈w̃T ,v1〉2 ≥ 1− ε.

It is easy to verify that for any fixed δ, Eq. (4) holds for any sufficiently large m on the order of 1
ηλ ,

as long as η is chosen to be sufficiently smaller than λ/r2. Therefore, by running the algorithm for
m = Θ

(
(r/λ)

2
)

iterations per epoch, and T = Θ(log(1/ε)) epochs, we get accuracy ε with high
probability 1− 2 log(1/ε)δ. Since each iteration requires O(d) time to implement, and each epoch
requires an additional O(dn) time to compute ũ, we get a total runtime of

O
(
d

(
n+

( r
λ

)2)
log

(
1

ε

))
, (5)

establishing an exponential convergence rate. If λ/r ≥ Ω(1/
√
n), then the runtime is

O(dn log(1/ε)) – up to log-factors, proportional to the time required just to scan the data once.

The theorem assumes that we initialize the algorithm with w̃0 for which 〈w̃0,v1〉 ≥ 1√
2

. This is
not trivial, since if we have no prior knowledge on v1, and we choose w̃0 uniformly at random from
the unit sphere, then it is well-known that |〈w̃0,v1〉| ≤ O(1/

√
d) with high probability. Thus, the

theorem should be interpreted as analyzing the algorithm’s convergence after an initial “burn-in”
period, which results in some w̃0 with a certain constant distance from v1. This period requires a
separate analysis, which we leave to future work. However, since we only need to get to a constant
distance from v1, the runtime of that period is independent of the desired accuracy ε. Moreover,
since the variance-reduction technique only kicks in once we are relatively close to the optimum,
there is no reason not to use some different stochastic algorithm with finite-time analysis, such as
Oja’s algorithm (e.g. [3]) to get to this constant accuracy, from which point our algorithm and
analysis takes over. In any case, we note that some assumption on 〈w̃0,v1〉 being bounded away
from 0 must hold: If we initialize the algorithm with w̃0 such that 〈w̃0,v1〉 = 0, then the algorithm
may fail to converge (a similar property holds for power iterations, and follows from the non-convex
nature of the optimization problem).

Finally, we note that in the context of strongly convex optimization problems, the variance-reduced
technique we use leads to algorithms with runtime O

(
d
(
n+ 1

λ

)
log
(
1
ε

))
, where λ is the strong

convexity parameter of the problem [5]. Comparing this with our algorithm’s runtime, and drawing
a parallel between strong convexity and the eigengap in PCA problems, it is tempting to conjecture
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that the 1/λ2 in our runtime analysis can be improved to 1/λ. However, we don’t know if this is
true, or whether the 1/λ2 factor is necessary in our setting.

We now turn to present a preliminary experiment, which demonstrates the performance of the SVR-
PCA algorithm (additional experiments were performed, but are omitted in this extended abstract).
We constructed several synthetic datasets, , where 50,000 examples are drawn i.i.d. from a Gaussian
distribution in R1000, with zero mean and covariance matrix I + λeie

>
i . The spectrum of this

matrix equals (1 + λ, 1, 1, . . . , 1), corresponding to an eigengap of roughly λ (in practice, due to
finite sample effects, the eigengap of the data covariance matrix is slightly different). Each dataset
corresponds to a different value of λ. We used a fixed choice of parameters, where m = n and η =
0.05/

√
n. This choice ofm ensures that at each epoch, the runtime is about equally divided between

the stochastic updates and the computation of ũ. The choice of η is motivated by our theoretical
analysis, which requires η on the order of 1/(r

√
n) in the regime where m should be on the order

of n. For comparison, we also implemented Oja’s algorithm, using several different step sizes. All
algorithms were initialized from the same same random vector, chosen uniformly at random from
the unit ball. Again, compared to our analysis, this makes things harder for our algorithm, since we
require it to perform well also in the ‘burn-in’ phase. The results are displayed in figure 1, and we
see that for all values of λ considered, SVR-PCA converges much faster than all versions of Oja’s
algorithm, on which it is based, even though we did not tune its parameters. Moreover, since the
y-axis is in logarithmic scale, we see that the convergence rate is indeed exponential in general.
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Figure 1: Results for synthetic data. Each plot represents a run on a single dataset with eigengap
λ, and compares the performance of SVR-PCA to Oja’s algorithm with different step sizes ηt. In
each plot, the x-axis represents the number of data accesses divided by the data size (assuming 2n
accesses per epoch for SVR-PCA, to perform n iterations plus computing ũ), and the y-axis equals
log10

(
1− w>Aw

v>
1 Av1

)
, where w is the vector obtained so far.
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