
Accelerated Parallel Optimization Methods for
Large Scale Machine Learning

Haipeng Luo
Princeton University

haipengl@cs.princeton.edu

Patrick Haffner and Jean-François Paiement
AT&T Labs - Research

{haffner,jpaiement}@research.att.com

Abstract

The growing amount of high dimensional data in different machine learning appli-
cations requires more efficient and scalable optimization algorithms. In this work,
we consider combining two techniques, parallelism and Nesterov’s acceleration,
to design faster algorithms for L1-regularized loss. We first simplify BOOM [11],
a variant of gradient descent, and study it in a unified framework, which allows
us to not only propose a refined measurement of sparsity to improve BOOM, but
also show that BOOM is provably slower than FISTA [1]. Moving on to parallel
coordinate descent methods, we then propose an efficient accelerated version of
Shotgun [3], improving the convergence rate from O(1/t) to O(1/t2). Our al-
gorithm enjoys a concise form and analysis compared to previous work, and also
allows one to study several connected work in a unified way.

1 Introduction

Many machine learning problems boil down to optimizing specific objective functions. In this paper,
we consider the following generic optimization problem associated with L1-regularized loss:

min
w∈Rd

F (w) = min
w∈Rd

n∑
i=1

`(xTi w, yi) + λ‖w‖1,

where (xi, yi)i=1,...,n represent n training examples of the task, each with feature vector xi ∈ Rd
and label/response yi, and ` is a smooth convex loss function with respect to its first argument. This
objective function is the heart of several important machine learning problems, including Lasso [21]
where `(ŷ, y) = 1

2‖ŷ− y‖
2, and sparse logistic regression [14] where `(ŷ, y) = ln(1 + exp(−yŷ)).

Much effort has been put into developing optimization methods for this model, ranging from coordi-
nate minimization [5], randomized coordinate descent [18], stochastic gradient descent [2, 17], dual
coordinate ascent [19], to higher order methods such as interior point methods [6], L-BFGS [15], to
name a few. However, the need for faster and more scalable algorithms is still growing due to the
emergence of applications that make use of massive amount of high dimensional data (e.g. [20]).

One direction to design faster algorithms is to utilize parallel computations on shared memory multi-
processors or on clusters. Some methods parallelize over examples [7, 10, 22], while others paral-
lelize over features [3, 16]. As the references of the latter approach argue, it is sometimes more
preferable to parallelize over features for L1-regularized loss, which will thus be the focus of this
work.

Another direction to design more efficient algorithms is to make use of the curvature of the objective
function to obtain faster theoretical convergence rate. It is well known that for smooth objective
functions, vanilla gradient descent only converges at a suboptimal rate O(1/t), while Nesterov’s
acceleration technique would allow the optimal rate O(1/t2) [13]. Recent progress along this line
includes generalizing Nesterov’s acceleration to randomized coordinate descent [12, 8]. Even if

1

Input: normalized data matrix X, smoothness parameter β, regularization parameter λ.
Set step size η = 1/(cβ), where
• Option 1 (FISTA): c = ρ , where ρ is the spectral radius of XTX.
• Option 2 (BOOM): c = κ, where κ = maxi κi and κi = |{j : Xij 6= 0}|.
• Option 3 (Our Method): c = κ̄, where κ̄ = maxj

∑n
i=1 κiX

2
ij .

Initialize w1 = u1.
for t = 1, 2, . . . do (in parallel for each coordinate)
wt+1 = Pλη (ut − η∇f(ut)) .
ut+1 = (1− γt)wt+1 + γtwt.

Algorithm 1: Parallel Accelerated Gradient Descent

the objective is not smooth, algorithms that still enjoy the same fast convergence rate have been
proposed for functions that are a sum of a smooth part and a simple separable non-smooth part, such
as the L1-regularized loss we consider here (see for instance the FISTA algorithm [1]).

In this work we aim to combine both of the techniques mentioned above, that is, to design paralleliz-
able accelerated optimization algorithms. Similar work includes [11, 4]. We start by revisiting and
improving BOOM [11], a parallelizable variant of accelerated gradient descent that tries to utilize
the sparsity and elliptical geometry of the data. We first give a simplified form of BOOM which
allows one to clearly see the the connection between BOOM and FISTA, and also to study these
algorithms in a unified framework. Surprisingly, we show that BOOM is actually provably slower
than FISTA when data is normalized, which is an equivalent way of utilizing the elliptical geometry.
Moreover, we also propose a refined measurement of sparsity that improves the one used in BOOM.

Moving on to parallel coordinate descent algorithms, we then propose an accelerated version of the
Shotgun algorithm [3]. Shotgun converges as fast as vanilla gradient descent while only updating
a small subset of coordinates per iteration (in parallel). Our accelerated version even improves
the convergence rate from O(1/t) to O(1/t2), that is, the same convergence rate as FISTA while
updating much fewer coordinates per iteration. Our algorithm is a unified framework of accelerated
single coordinate descent [12, 8], multiple coordinate descent and full gradient descent. However,
instead of directly generalizing [12, 8] or the very recent work [4], we take a different route to present
Nesterov’s acceleration technique so that our method enjoys a simpler form that makes use of only
one auxiliary sequence and our analysis is also much more concise. We discuss how these algorithms
are connected and which one is optimal under different circumstances. We finally mention several
computational tricks to allow highly efficient implementation of our algorithm.

2 Gradient Descent: Improving BOOM

In this section, we investigate algorithms that make use of a full gradient at each round. Specifically,
we revisit, simplify and improve the BOOM algorithm [11].

There are essentially two forms of Nesterov’s acceleration technique, one which follows the original
presentation of Nesterov and uses two auxiliary sequences of points, and the other which follows
the presentation of FISTA and uses only one auxiliary sequence. BOOM falls into the first category.
To make the algorithm more clear and the connection to other algorithms more explicit, we will
first translate BOOM into the second form. Before doing so, to make things even more concise we
assume that the data is normalized. Specifically, let X be an n by d matrix such that the ith row is
xTi . We assume each column of X is normalized such that

∑n
i=1X

2
ij = 1 for all j ∈ {1, . . . , d}. It

is clear that this is without loss of generality (see further discussion at the end of this section).

Now we are ready to present our simplified version of BOOM (see Algorithm 1, Option 2). Here,
β is the smoothness parameter of the loss function such that its second derivative `′′(ŷ, y) (with
respect to the first argument) is upper bounded by β for all ŷ and y. For instance, β = 1 for square
loss used in Lasso and β = 1/4 for logistic loss. γt is the usual coefficient for Nesterov’s technique
which satisfies: γt = (1− θt)/θt+1, with θ0 = 0, θt+1 = 1

2 (1 +
√

1 + 4θ2t). Finally, the shrinkage
function P is defined as Pa(w)j = sign(wj) max{|wj | − a, 0}. One can see that BOOM explicitly
makes use of the sparsity of the data, and uses κ, a measurement of sparsity, to scale the gradient.

2

When written in this form, it is clear that BOOM is very close to FISTA (see Algorithm 1, Option
1). The only difference is that BOOM replaces ρ with the sparsity κ. The questions are, whether
this slight modification results in a faster algorithm? Does BOOM converges faster by utilizing the
sparsity of the data? The following lemma and theorem answer these questions in the negative.
Lemma 1. Let ρ, κ̄ and κ be defined as in Algorithm 1. Then we have ρ ≤ κ̄ ≤ κ.

Proof. Let z be a unit eigenvector of XTX with respect to the eigenvalue ρ. One has ρ = zT (ρz) =

zT (XTXz) = ‖Xz‖22 =
∑n
i=1

(∑
j:Xij 6=0Xijzj

)2
. By Cauchy-Schwarz inequality, we continue

ρ ≤
n∑
i=1

 ∑
j:Xij 6=0

12
∑

j:Xij 6=0

X2
ijz

2
j

 =

n∑
i=1

κi d∑
j=1

X2
ijz

2
j

 =

d∑
j=1

(
z2j

n∑
i=1

κiX
2
ij

)
≤ κ̄ ≤ κ,

where the last two equalities make use of the fact that
∑
j z

2
j = 1 and

∑
iX

2
ij = 1 respectively.

Theorem 1. Suppose F (w) admits a minimizer w∗. As long as c ≥ ρ, Algorithm 1 insures F (wt)−
F (w∗) ≤ 2cβ‖w1 −w∗‖2/t2 after t iterations. In other words, to reach ε accuracy, Algorithm 1
needs Tε = O(

√
cβ/ε) iterations.

We omit the proof of Theorem 1 since it is a direct generalization of the original proof for FISTA.
Together with Lemma 1, this theorem suggests that we should always choose FISTA over BOOM if
we know ρ, since it uses a larger step size and converges faster. In practice, computing ρ might be
time consuming. However, a useful side product of Lemma 1 is that it proposes a refined measure-
ment of sparsity κ̄, which is clearly also easy to compute at the same time. We include this improved
variant in Option 3 of Algorithm 1. Note that for any fixed j, X2

1j , . . . , X
2
nj forms a distribution,

and thus κ̄ should be interpreted as the maximum weighted average sparsity of the data.

Generality of Feature Normalizing. One might doubt that our results hold merely because of the
normalization assumption of the data. Indeed, authors of [11] emphasize that one of the advantages
of BOOM is that it utilizes the elliptical geometry of the feature space, which does not exist any
more if each feature is normalized. However, one can easily verify that the outputs of the following
two methods are completely identical: 1) apply BOOM directly on the original data; 2) scale each
feature first so that the data is normalized, apply BOOM, and at the end scale back each coordinate
of the output accordingly. Therefore, feature normalization does not affect the behavior of BOOM
at all. Put it differently, feature normalization is an equivalent way to utilize the elliptical geometry
of the data. Note that the same argument does not hold for FISTA. Indeed, while our results show
that FISTA is provably faster than BOOM, experiments in [11] show the opposite on unnormalized
data. This suggests that we should always normalize the data before applying FISTA.

3 Coordinate Descent: Accelerated Shotgun

Updating all coordinates in parallel is not realistic, either because of a limited number of cores in
multi-processors or communication bottlenecks in clusters. Therefore in this section, we shift gears
and consider algorithms that only update a subset of the coordinates at each iterations. To simplify
presentation, we assume there is no regularization (i.e. λ = 0) and again data is normalized. We
propose a generalized and accelerated version of the Shotgun algorithm1 [3] (see Algorithm 2).

What Shotgun does is to perform coordinate descent on several randomly selected coordinates (in
parallel), with the same step size as in the usual (single) coordinate descent. If the number of updates
per iteration P is well tuned, Shotgun converges as fast as doing a full gradient descent, even if it
updates much fewer coordinates. The main difference between shotgun and our accelerated version
is that as usual accelerated methods, our algorithm maintains an auxiliary sequence ut at which we
compute gradients. However, ut+1 is not just (1 − γt)wt+1 + γtwt as in Algorithm 1. Instead, a
small step back has to be taken, which is reflected in the extra term ct(ut−wt+1) where constant ct
will be specified later in Theorem 2. Intuitively, this step back is to reduce the momentum due to the
fact that we are not updating all coordinates. Another important generalization of Shotgun is that we

1Note that Shotgun has already been successfully accelerated with Coordinate Descent Newton method [3],
but no analysis of the convergence rate is provided for this heuristic method.

3

Input: number of parallel updates P , step size coefficient η, smoothness parameter β
Initialize w1 = u1.
for t = 1, 2, . . . , do

pick a random subset St of {1, . . . , d} such that |St| = P .
for j = 1 to d do

wt+1,j =

{
ut,j − η

β∇f(ut)j if j ∈ St;
ut,j else.

ut+1 = (1− γt)wt+1 + γtwt + ct(ut −wt+1).

Algorithm 2: Accelerated Shotgun

introduce an extra step size coefficient η, which allows us to unify several algorithms (see further
discussion below). Note that η is fixed to 1 in the original Shotgun. We now state the convergence
rate of our Algorithm in the following theorem.
Theorem 2. Suppose F (w) admits a minimizer w∗. If P and η > 0 are such that η2 (1 + σ) < 1

where σ = (P−1)(ρ−1)
d−1 (recall ρ is the spectral radius of XTX), constant γt is defined as in Section

2, and ct = θt
θt+1

(
1− 2P

d

(
1− η

2 (1 + σ)
))
, then the following holds for any t > 1,

ES1:t−1 [F (wt)]− F (w∗) ≤ βd2‖w1 −w∗‖2

t2P 2η
(
1− η

2 (1 + σ)
) , (1)

where the expectation is with respect to the random choices of subsets S1, . . . , St−1.

The complete proof of Theorem 2 can be found in the long version of this work [9]. Here
we focus on explaining how to interpret this result and how to choose parameters P and η.
First, note that to reach ε accuracy (i.e. E[F (wt)] − F (w∗) ≤ ε), Algorithm 2 requires Tε =

O
(
d
P

√
β/
(
εη
(
1− η

2 (1 + σ)
)))

iterations. For any fixed P , one can verify that η∗ = 1/(1 + σ)

is the optimal choice for η to minimize Tε. Plugging η∗ back in Tε and minimizing over P , one can
check that P = d is the best choice. In this case, since σ = ρ− 1, η∗ = 1/ρ and ct = 0, Algorithm
2 actually degenerates to FISTA and Tε = O(

√
ρβ/ε), recovering the results in Theorem 1 exactly.

Of course, at the end it is not the number of iterations, but the total computational complexity that
we care about most. Suppose we implement the algorithm without using any parallel computation.
Then as we will discuss later, the time complexity for each iteration would be O(nP) (recall n
is the number of examples), and the total complexity O(TεnP) is minimized when η = 1 and
P = 1, leading to O(nd

√
β/ε). In this case, our algorithm degenerates to an accelerated version

of randomized (single) coordinate descent. Note that this essentially recovers the algorithms and
results in [12, 8], but in a much simpler form (and analysis).

Finally, we consider implementing the algorithm using parallel computation. Note that η∗ = 1/(1+
σ) is always at most 1. So we fix η to be 1 (as in the original Shotgun algorithm), leading to
the largest possible step size 1/β and a potentially small P . We assume in this case updating P
coordinates in parallel costs approximately the same time no matter what P is. In other words, we
are again only interested in minimizing Tε. One can verify that the optimal choice here for P is
2
3 (d−1ρ−1 + 1) and Tε = O(ρ

√
β/ε). This improves the convergence rate from O(1/ε) to O(

√
1/ε)

compared to Shotgun, and is almost as good as FISTA (with much less computation per iteration).

Efficient Implementation. We discuss how to efficiently implement Algorithm 2. 1) At first glance
it seems that computing vector u needs to go over all d coordinates. However, one can easily
generalize the trick introduced in [8] to update only P coordinates and compute w and u implicitly.
2) Another widely used trick is to maintain inner products between examples and weight vectors
(i.e. Xw and Xu), so that computing a single coordinate of the gradient can be done in O(n), or
even faster in the case of sparse data. 3) Instead of choosing St uniformly at random, one can also do
the following: arbitrarily divide the set {1, . . . , d} into P disjoint subsets of equal size in advanced
(assuming d is a multiple of P for simplicity), then at each iteration, select one and only one element
from each of the P subsets uniformly at random to form St. This would only lead to a minor change
of the convergence results (indeed, one only needs to redefine σ to be (ρ − 1)P/d). The advantage
of this approach is that it suggests that we can separate the data matrix X by columns and store these
subsets on P machines separately to naturally allow parallel updates at each iteration.

4

References
[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
[2] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in

Neural Information Processing Systems 20, 2008.
[3] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate de-

scent for l1-regularized loss minimization. In Proceedings of the 28th International Conference
on Machine Learning, 2011.

[4] Olivier Fercoq and Peter Richtárik. Accelerated, parallel and proximal coordinate descent.
arXiv preprint arXiv:1312.5799, 2014.

[5] Wenjiang J Fu. Penalized regressions: the bridge versus the lasso. Journal of computational
and graphical statistics, 7(3):397–416, 1998.

[6] Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd, and Dimitry Gorinevsky.
An interior-point method for large-scale l 1-regularized least squares. Selected Topics in Signal
Processing, IEEE Journal of, 1(4):606–617, 2007.

[7] John Langford, Alexander Smola, and Martin Zinkevich. Slow learners are fast. Advances in
Neural Information Processing Systems 22, 2009.

[8] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In 54th Annual Symposium on Foundations of Computer
Science, 2013.

[9] Haipeng Luo, Patrick Haffner, and Jean-François Paiement. Accelerated parallel optimization
methods for large scale machine learning. arXiv preprint arXiv:1411.6725, 2014.

[10] Gideon Mann, Ryan McDonald, Mehryar Mohri, Nathan Silberman, and Daniel D. Walker.
Efficient large-scale distributed training of conditional maximum entropy models. In Advances
in Neural Information Processing Systems 22, 2009.

[11] Indraneel Mukherjee, Kevin Canini, Rafael Frongillo, and Yoram Singer. Parallel boosting
with momentum. ECML PKDD 2013, Part III, LNAI 8190, pages 17–32, 2013.

[12] Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[13] YU. E. Nesterov. A method of solving a convex programming problem with convergence rate
o(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

[14] Andrew Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In
Proceedings of the Twenty-First International Conference on Machine Learning, 2004.

[15] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering, 2nd edition, 2006.

[16] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimiza-
tion. arXiv preprint arXiv:1212.0873, 2012.

[17] Shai Shalev-Shwartz and Nathan Srebro. Svm optimization: inverse dependence on training
set size. In Proceedings of the 25th International Conference on Machine Learning, 2008.

[18] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for l1-regularized loss minimiza-
tion. The Journal of Machine Learning Research, 12:1865–1892, 2011.

[19] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent
for regularized loss minimization. In Proceedings of the 31st International Conference on
Machine Learning, 2014.

[20] Krysta M Svore and CJ Burges. Large-scale learning to rank using boosted decision trees.
Scaling Up Machine Learning: Parallel and Distributed Approaches, 2, 2011.

[21] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B (Methodological), 58(1):267–288, 1996.

[22] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems 23, 2010.

5

	Introduction
	Gradient Descent: Improving BOOM
	Coordinate Descent: Accelerated Shotgun

