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Abstract

We consider the problem of estimating the inverse of a covariance matrix of a
normal distribution, assuming that it is sparse. To this end, an l1 regularized log-
determinant optimization problem is solved. We present a multilevel framework
for accelerating existing solvers of this problem. Taking advantage of the sparse-
ness of the matrix, we create a multilevel hierarchy of similar problems, which
are traversed in order to accelerate the optimization process. Our numerical ex-
periments demonstrate the efficiency of the multilevel framework for solving both
medium and large scale instances of this problem.

1 Introduction
Estimating the parameters of a multivariate Gaussian (Normal) distribution is a common problem
in many applications in machine learning, computational biology, and others [1]. Given a set of
samples {xi}mi=1 ∈ Rn where xi ∼ N (µ,Σ) , the objective is to estimate the mean µ ∈ Rn, and
either the covariance matrix Σ ∈ Rn×n or its inverse Σ−1. Both the mean µ and the covariance
Σ are often estimated using the maximum likelihood estimator (MLE). The MLE is obtained by
maximizing the Gaussian probability density function, which immediately leads to the estimation
µ̂ = 1

m

∑m
i=0 xi for the mean. Following this, the estimation for Σ−1 is obtained by solving

min
A�0

f(A) = min
A�0
− log(detA) + tr(SA), (1)

where S = 1
m

∑m
i=0(xi − µ̂)(xi − µ̂)T . This leads to the covariance MLE estimation Σ̂MLE = S,

which is also called the empirical covariance matrix.

However, if the number of samples is smaller than the problem dimension, i.e., m < n, then S in
(1) is rank deficient, whereas the true Σ is assumed to be positive definite, hence full-rank. Still, one
can reasonably estimate Σ−1 assuming that it is sparse [4]. For this purpose, we follow [2, 1, 3],
and minimize (1) with a sparsity-promoting l1 prior:

min
A�0

F (A) = min
A�0

f(A) + λ‖A‖1, (2)

where f(A) is the smooth and convex MLE functional in (1), ‖A‖1 ≡
∑

i,j |aij |, and λ > 0 is a
regularization parameter. The function F (A) in (2) is non-smooth and convex. Many methods were
recently developed for solving (2)—see [2, 3, 5, 6, 7, 8, 9, 11, 12, 15] and references therein.

In this work we introduce a multilevel framework for accelerating existing solvers for (2). Our
approach extends the approach of [14] which introduced this idea for the solution of the LASSO
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problem (l1 regularized least squares minimization). In this approach, the convergence of common
iterative methods is accelerated using a nested hierarchy of smaller versions of the problem. Using
the sparsity of the matrix A, the dimension of the problem (2) is reduced by ignoring ostensibly
irrelevant variables in the matrix, which are kept zero. That is, each reduced problem is defined by
(2), restricted to a specially chosen subset of variables, resulting in a nested hierarchy of problems.
The algorithm then performs sub-space correcting iterations using existing methods over each of the
low dimensional problems in turn, that aim to activate the variables that comprise the support of a
true minimizer. Under suitable conditions, this algorithm converges to the global minimizer of (2).

2 Iterative proximal Newton methods for sparse inverse covariance
estimation

The current state-of-the-art, [7, 8, 9, 12, 15], involve a “proximal Newton” approach [16], where
only the smooth part f(A) in (2) is replaced by its quadratic approximation to obtain the Newton
descent direction. The non-smooth l1 term remains intact and the resulting Newton problem is
an l1 regularized quadratic minimization, also known as LASSO [13]. To obtain this quadratic
approximation, the gradient and Hessian of f(A) are needed, and are given by

∇f(A) = S −A−1, ∇2f(A) = A−1 ⊗A−1, (3)

where⊗ is the Kronecker product. Given an iterate matrix A(k), the Newton direction ∆ problem is
given by

min
∆∈Rn×n

f(A(k)) + tr((S −W )∆) +
1

2
tr(∆W∆W ) + λ‖A(k) + ∆‖1, (4)

where W = (A(k))−1 is the inverse of the k-th iterate. This problem may be solved using an
iterative “shrinkage” method for the LASSO problem [17]. After obtaining a solution to (4), the
iterated solution is updated using a step-length obtained by linesearch. This guarantees the positive
definiteness of A(k+1) and ensures the sufficient reduction in the objective of (2).

Restricting to an active set. In addition, a crucial step is to restrict the minimization of (4) at each
iteration to an “active set” of variables and keep the rest as zeros [9, 12]. The active set of a matrix
A is defined as

active(A) =
{

(i, j) : Aij 6= 0 ∨ |(S −A−1)ij | > λ
}
. (5)

If one solves (4) with respect only to the variables outside this active set, they all remain zero,
suggesting that it is worthwhile to (temporarily) restrict (4) only to the variables in this active set [9].
This reduces the computational complexity of the LASSO solvers: given the matrix W , the Hessian
term in (4) can be calculated in O(Kn) operations instead of O(n3), where K = |active

(
A(k)

)
|.

This holds for any method for solving the LASSO problem. Algorithm 1 summarizes a generic
proximal Newton method for solving (2). We note that this algorithm is only suitable for small-
scale problems, because it assumes that the inverse of a sparse matrix, which is typically a dense
n× n matrix, fits into memory. Out of all existing methods, only [8, 15] are suitable for large-scale
problems. [8] generally follows Algorithm 1, while [15] is different, but follows related ideas.

Algorithm: A(k+1) ← ProxNewtonInvCov(A(k))

Invert the matrix W = (Ak)−1, and define active(A(k)).
Calculate the direction ∆ by solving (4) restricted to active(A(k)).
Define A(k+1) = A(k) + α∆ by linesearch

Algorithm 1: Proximal Newton iteration for the sparse inverse covariance estimation.

3 A Multilevel acceleration for sparse inverse covariance estimation
Given an iterate A(k), Algorithm 1 solves the Newton problem (4) while considering only the vari-
ables in active(A(k)). This saves a significant amount of computations. However, in [9] it is shown
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that if A(k) is far from the optimal solution A∗, then |active(A(k))| may be several times larger
than number of non-zeros in the solution A∗, since the entries of the gradient of A(k) are typically
large. This may lead to a rather dense A(k+1), which imposes a larger and more difficult Newton
problem, requiring extensive computations. This phenomenon of rather dense iterates is typical for
most methods. As the iterates progress, the number of non zeros in the matrices reduces, until they
converge to that ofA∗. If we knew the non-zeros ofA∗, solving (2) would require less computations.

We next describe our new multilevel framework for solving (2), which aims to save computations
by incrementally choosing the non-zeros of the iterates and preventing dense matrices. At each
multilevel iteration, called a “ML-cycle”, we define a hierarchy of reduced problems, referred to
as coarse problems. Each coarse problem is defined by (2), restricted to a specially chosen subset
of variables. In each ML-cycle we traverse the entire hierarchy of levels, from the coarsest to the
finest, applying an iteration of some method similar to Algorithm 1 on each of the reduced problems.
We henceforth refer to such an iteration as “relaxation”. We iteratively repeat these ML-cycles,
monotonically reducing the objective of (2), until some convergence criterion is satisfied.

Define the reduced problem by limiting problem (2) to a subset of entries, denoted by C

min
A�0

FC(A) = min
A�0, supp(A)∈C

f(A) + λ‖A‖1, (6)

where supp(A) = {(i, j) : (A)ij 6= 0} is the support of A—the set of non-zero entries of A.
To solve problem (6) using Algorithm 1, for example, one may restrict the Newton direction to
active(A) ∩ C instead of active(A).

At any iteration k, in order for A(k) to be a feasible point of (6), we require that supp(A(k)) ⊆ C,
which also implies FC(A(k)) = F (A(k)). Since Algorithm 1 limits the Newton direction to the
active set, we impose C ⊆ active(A(k)). Following these guidelines, we define a hierarchy of
subsets {Cl}Ll=0

active(A(k)) = C0 ⊇ C1 ⊇ ... ⊇ CL = supp(A(k)). (7)

In the ML-cycle, we treat the levels from L to 1 by applying one relaxation for the reduced problem
(6) corresponding to each subset Cl1. Because the subsets {Cl}Ll=0 are nested, the variables on the
coarser levels will overall undergo more relaxations in the ML-cycle. Therefore, in addition to
supp(A(k)), for the coarser levels we select the variables that can reduce the objective f(A) in (2)
the most. These correspond to the variables (i, j) with the largest |(∇f(A(k)))ij |. The size of each
level is chosen to be |Cl+1| = d 1

2 |Cl|e for 0 ≤ l < L − 1. The ratio 1/2 implies that the cost of a
ML-cycle is similar to that of two relaxations. A precise description of the ML-cycle is defined in
Algorithm 2. Any method of the form of Algorithm 1 as well as other similar methods such as [15],
can be incorporated into this multilevel framework.

Algorithm: Ak+1 ←ML-cycle(A(k), Relax(·))
% Relax(): a relaxation method.
Calculate∇f(A(k)), active(A(k)) and define the hierarchy {Cl}Ll=0 in (7).
Set A← A(k)

For l = L...1
Apply A← Relax(A) iteration for the coarse problem FCl defined in (6).

Apply A← Relax(A) iteration for the whole problem F in (2).
Set A(k+1) ← A

Algorithm 2: ML-cycle for sparse inverse covariance estimation.

4 Numerical Results
In this section we compare the performance of several known methods to our multilevel framework,
for solving both small-scale and large-scale instances of (2). The methods that we show in our

1For level 0, we reconsider all variables again, since a cost of a relaxation on C0 is similar to that of a
relaxation that includes all variables.
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Table 1: Small-scale gene-expression analysis results
Problem n m λ ‖Σ−1∗‖0 QUIC ML(QUIC) DC-QUIC GISTA
Lymph 587 147 0.25 17161 3.1 (10) 2.1 (19) 6.4 (15) 5.69 (314)
ER 692 157 0.35 14940 2.9 (11) 1.7 (14) 1.8 (12) 8.07 (338)
Arabidopsis 834 117 0.40 24442 3.9 (8) 3.4 (16) 7.4 (16) 11.8 (351)
Leukemia 1255 71 0.50 34777 11.1 (11) 5.3 (13) 4.5 (11) 9.4 (109)
Hereditary bc 1869 21 0.55 66285 92.9 (14) 24.5 (18) 36.2 (17) 34.6 (178)

Table 2: Large-scale gene-expression analysis results
Code name n m λ ‖Σ−1∗‖0 BCD-IC ML(BCD) BIG-QUIC
GSE1898 21794 182 0.70 293845 788.3 (7) 287.9 (8) 5080 (12)
GSE20194 22283 278 0.70 197953 452.9 (8) 170.9 (7) 2811 (10)
GSE17951 54675 154 0.78 558929 1622 (6) 812.8 (7) 8230 (9)
GSE14322 104702 76 0.90 4973476 55314 (9) 14164 (9) 127199 (14)

comparison include QUIC [9], DC-QUIC [7] and GISTA [6] for small-scale experiments, and BIG-
QUIC [8], BCD-IC [15] for large-scale experiments. Within our multilevel framework we use QUIC
and BCD-IC, which are denoted by ML(QUIC) and ML(BCD), respectively. For QUIC, BIG-QUIC,
GISTA, and BCD-IC we used the default parameters suggested in the original papers and adapted
the authors’ software for our tests. As a stopping criterion for all methods, we follow [8] and use the
condition: ‖gradSF (A(k))‖1 < 0.01‖A(k)‖1, where gradSF (·) is the minimal norm subgradient.
All solutions achieved by all algorithms correspond to functional values F (A∗) which are identical
up to several significant digits and have an essentially identical support size. All the experiments
were run on a machine with 2 Intel Xeon E-2650 2.0GHz processors with 16 cores, 64GB RAM and
Windows 7 OS.

For the small-scale experiments, we use the gene expression data sets reported in [10]. On the other
hand, we use gene expression data sets from [15] for the large-scale experiments. In this case the
values of λ were chosen as in [15]. These small and large-scale data sets have many variables and
very few samples (m � n). The size of these data sets is large, and thus could be treated only by
BCD-IC [15] and BIG-QUIC [8].

Table 1 presents the timing results (in seconds) and the number of iterations in parentheses (for ML,
we count the relaxations). The ML(QUIC) algorithm shows the best performance in almost all the
tests. The multilevel framework method ML(QUIC) improves the performance of the QUIC method
in all the cases, although the degree of improvement is related to the amount of time spent computing
the Newton direction. In the bigger tests, the performance gap is bigger as the number of non-zeros
in the active set is higher and the Newton direction computation is more expensive.

Table 2 shows the results for these large data sets. Here, the advantage of the multilevel frame-
work is more evident, as ML(BCD) clearly outperforms the other two options by significant factors.
The first reason for this is the smaller Newton direction problems as in the small-scale case. More-
over, BCD-IC (and BIG-QUIC) require many iterative solutions of linear systems—these involve
many matrix-vector multiplications, whose cost is directly controlled by the number of non-zeros
in the matrices. By limiting the sparsity of the solution, the proposed multilevel framework saves
significant computations and improves runtime substantially.

5 Conclusions

In this work, we presented a multilevel framework for the sparse inverse covariance estimation
problem. Variables are treated as part of an hierarchy of coarse problems. This hierarchy enables an
incremental construction of the solution in the number of non-zeros and avoids dense iterates. The
framework applied to distinct methods improves performance in small and large-scale problems.

Acknowledgement: The research leading to these results has received funding from the European Union’s -
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 623212 MC Multiscale Inversion.
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