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Abstract

We present an algorithm for minimizing a sum of functions that combines the
computational efficiency of stochastic gradient descent (SGD) with the second or-
der curvature information leveraged by quasi-Newton methods. We unify these
approaches by maintaining an independent Hessian approximation for each con-
tributing function in the sum. We maintain computational tractability and limit
memory requirements even for high dimensional optimization problems by stor-
ing and manipulating these quadratic approximations in a shared, time evolving,
low dimensional subspace. Each update step requires only a single contributing
function or minibatch evaluation (as in SGD), and each step is scaled using an
approximate inverse Hessian and little to no adjustment of hyperparameters is re-
quired (as is typical for quasi-Newton methods). This algorithm contrasts with
earlier stochastic second order techniques that treat the Hessian of each contribut-
ing function as a noisy approximation to the full Hessian, rather than as a target
for direct estimation. We experimentally demonstrate improved convergence on
seven diverse optimization problems. The algorithm is released as open source
Python and MATLAB packages.
This paper is a condensed version of a paper published at ICML 2014 [33].

1 Introduction

A common problem in optimization is to find a vector x∗ ∈ RM which minimizes a function F (x),
where F (x) is a sum of N computationally cheaper differentiable subfunctions fi (x),

F (x) =

N∑
i=1

fi (x) , (1)

x∗ = argmin
x

F (x) . (2)

There are two general approaches to efficiently optimizing a function of this form. The first is to use
a quasi-Newton method [10], of which BFGS [7, 12, 13, 30] or LBFGS [20] are the most common
choices. The second approach is to use Stochastic Gradient Descent (SGD) [26, 6] or a more recent
variant [4, 27, 21, 22, 1]. Combining quasi-Newton and stochastic gradient methods could improve
optimization time, and reduce the need to tweak optimization hyperparameters. This problem has
been approached from a number of directions [28, 34, 23, 9, 35, 19, 16, 8, 29, 11, 5]. All of these
approaches treat the Hessian on a subset of the data as a noisy approximation to the full Hessian. To
reduce noise in the Hessian approximation, they rely on regularization and very large minibatches to
descend F (x). Thus, each update step requires the evaluation of many subfunctions and/or yields a
highly regularized (i.e. diagonal) approximation to the full Hessian.

We develop a novel second-order quasi-Newton technique that treats the full Hessian of each sub-
function as a direct target for estimation, and maintains a separate quadratic approximation of each
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subfunction. This approach differs from all previous work, which in contrast treats the Hessian of
each subfunction as a noisy approximation to the full Hessian. Our approach allows us to combine
Hessian information from multiple subfunctions in a more natural and efficient way. Moreover, we
develop a novel method to maintain computational tractability and limit the memory requirements of
this quasi-Newton method in the face of high dimensional optimization problems (large M ). We do
this by storing and manipulating the subfunctions in a shared, adaptive low dimensional subspace,
determined by the recent history of the gradients and iterates.
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Figure 1: A cartoon illustrating the proposed optimization technique. (a) The objective func-
tion F (x) (solid blue line) consists of a sum of two subfunctions (dashed blue lines), F (x) =
f1 (x) + f2 (x). At learning step t − 1, f1 (x) and f2 (x) are approximated by quadratic functions
gt−11 (x) and gt−12 (x) (red dashed lines). The sum of the approximating functions Gt−1 (x) (solid
red line) approximates the full objective F (x). The green dots indicate the parameter values at
which each subfunction has been evaluated (b) The next parameter setting xt is chosen by mini-
mizing the approximating function Gt−1 (x) from the prior update step. (c) After each parameter
update, the quadratic approximation for one of the subfunctions is updated using a second order
expansion around the new parameter vector xt. The constant and first order term in the expansion
are evaluated exactly, and the second order term is estimated by performing BFGS on the subfunc-
tion’s history. In this case the approximating subfunction gt1 (x) is updated (long-dashed red line).
This update is also reflected by a change in the full approximating function Gt (x) (solid red line).
Optimization proceeds by repeating these two illustrated update steps. In order to remain tractable
in memory and computational overhead, optimization is performed in an adaptive low dimensional
subspace determined by the history of gradients and iterates.

2 Algorithm

The algorithm is described in detail in Appendix A. In brief, it consists of the following:

We define a series of functions Gt (x) intended to approximate F (x),

Gt (x) =

N∑
i=1

gti (x) , (3)

where the superscript t indicates the learning iteration. Each gti (x) serves as a quadratic approxi-
mation to the corresponding fi (x),

gti (x) = fi
(
xt
)

+
(
x− xt

)T
f ′i
(
xt
)

+
1

2

(
x− xt

)T
Ht
i

(
x− xt

)
≈ fi (x) . (4)

The functions gti (x) are stored, and one of them is updated per learning step.

Optimization is performed by alternating between: minimizing the quadratic approximate objective
function Gt−1 (x) in order to select the next iterate xt; and evaluating a single subfunction j at xt
and updating the corresponding quaratic approximation gtj (x). This is illustrated in Figure 1. The
approximate Hessian term Ht

i is set by running BFGS on the stored history for subfunction i.

The dimensionality M of x ∈ RM is typically large. As a result, the memory and computational
cost of working directly with the matrices Ht

i ∈ RM×M is typically prohibitive, as is the cost of
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storing the history terms ∆f ′ and ∆x required by BFGS. To reduce the dimensionality from M
to a tractable value, all history is instead stored and all updates computed in a lower dimensional
subspace, with dimensionality between Kmin and Kmax. This subspace is constructed such that it
includes the most recent gradient and position for every subfunction, and thus Kmin ≥ 2N . This
guarantees that the subspace includes both the steepest gradient descent direction over the full batch,
and the update directions from the most recent parameter update. The subspace is represented by the
orthonormal columns of a matrix Pt ∈ RM×Kt

, (Pt)
T
Pt = I. Kt is the subspace dimensionality

at optimization step t.

At each optimization step, an additional column is added to the subspace, expanding it to include
the most recent gradient direction. This is done by first finding the component in the gradient
vector which lies outside the existing subspace, and then appending that component to the current
subspace. In order to prevent the subspace from growing too large, whenever Kt > Kmax the
subspace is collapsed to only include the most recent gradient and position measurements from each
subfunction. This collapse is performed by way of a QR decomposition on the most recent gradients
and iterates.

The only portion of this algorithm with non-negligible computational cost is the projection of the
gradients and iterates in to and out of the low dimensional subspace. This overhead is discussed in
detail in the appendix.

3 Experimental Results

Open source Python and MATLAB code which implements the proposed technique, and
which directly generates the plots in this paper, is provided at https://github.com/
Sohl-Dickstein/Sum-of-Functions-Optimizer.

We compared our optimization technique to several competing optimization techniques for seven
objective functions. The results are illustrated in Figures 2 and 3. SFO refers to Sum of Functions
Optimizer, and is the new algorithm presented in this paper. SAG refers to Stochastic Average Gra-
dient method, with the trailing number providing the Lipschitz constant. SGD refers to Stochastic
Gradient Descent, with the trailing number indicating the step size. ADAGrad indicates the Ada-
Grad algorithm, with the trailing number indicating the initial step size. LBFGS refers to the limited
memory BFGS algorithm. LBFGS minibatch repeatedly chooses one tenth of the subfunctions, and
runs LBFGS for ten iterations on them. Hessian-free refers to Hessian-free optimization.

For SAG, SGD, and ADAGrad the hyperparameter was chosen by a grid search. The best hyperpa-
rameter value, and the hyperparameter values immediately larger and smaller in the grid search, are
shown in the plots and legends for each model in Figure 2. In SGD+momentum the two hyperpa-
rameters for both step size and momentum coefficient were chosen by a grid search, but only the
best parameter values are shown. The grid-searched momenta were 0.5, 0.9, 0.95, and 0.99, and the
grid-searched step lengths were all integer powers of ten between 10−5 and 102. For Hessian-free,
the hyperparameters, source code, and objective function are identical to those used in [23], and the
training data was divided into four “chunks.” For all other experiments and optimizers the training
data was divided into N = 100 minibatches (or subfunctions).

A detailed description of all target objective functions is included in Appendix D. The logistic re-
gression and Ising model / Hopfield objectives are convex, and are plotted relative to their global
minimum. The global minimum was taken to be the smallest value achieved on the objective by any
optimizer. In Figure 3, a twelve layer neural network was trained on cross entropy reconstruction
error for the CURVES dataset. This objective, and the parameter initialization, was chosen to be
identical to an experiment in [23].
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Figure 2: A comparison of SFO to competing optimization techniques for six objective functions.
The bold lines indicate the best performing hyperparameter for each optimizer. Note that unlike all
other techniques besides LBFGS, SFO does not require tuning hyperparameters (for instance, the
displayed SGD+momentum traces are the best out of 32 hyperparameter configurations). The ob-
jective functions shown are (a) a logistic regression problem, (b) a contractive autoencoder trained
on MNIST digits, (c) an Independent Component Analysis (ICA) model trained on MNIST digits,
(d) an Ising model / Hopfield associative memory trained using Minimum Probability Flow, (e) a
multi-layer perceptron with sigmoidal units trained on MNIST digits, and (f) a multilayer convo-
lutional network with rectified linear units trained on CIFAR-10. The logistic regression and MPF
Ising objectives are convex, and their objective values are plotted relative to the global minimum.

100 101 102 103

Effective Passes Through Data

102

103

Fu
ll 

Ba
tc

h 
Ob

je
ct

iv
e

Hessian-free
SFO

Figure 3: A comparison of SFO to Hessian-free optimization for a twelve layer neural network
trained on the CURVES dataset. This problem is identical to an experiment in [23], and the Hessian-
free convergence trace was generated using source code from that same paper. SFO converges in
approximately one tenth the number of effective passes through the data as Hessian-free optimiza-
tion.
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Appendix
A Algorithm Full Description

Our goal is to combine the benefits of stochastic and quasi-Newton optimization techniques. We
first describe the general procedure by which we optimize the parameters x. We then describe the
construction of the shared low dimensional subspace which makes the algorithm tractable in terms
of computational overhead and memory for large problems. This is followed by a description of
the BFGS method by which an online Hessian approximation is maintained for each subfunction.
Finally, we end this section with a review of implementation details.

A.1 Approximating Functions

We define a series of functions Gt (x) intended to approximate F (x),

Gt (x) =

N∑
i=1

gti (x) , (5)

where the superscript t indicates the learning iteration. Each gti (x) serves as a quadratic approx-
imation to the corresponding fi (x). The functions gti (x) will be stored, and one of them will be
updated per learning step.

A.2 Update Steps

As is illustrated in Figure 1, optimization is performed by repeating the steps:

1. Choose a vector xt by minimizing the approximating objective function Gt−1 (x),

xt = argmin
x

Gt−1 (x) . (6)

Since Gt−1 (x) is a sum of quadratic functions gt−1i (x), it can be exactly minimized by a
Newton step,

xt = xt−1 − ηt
(
Ht−1)−1 ∂Gt−1 (xt−1)

∂x
, (7)

where Ht−1 is the Hessian of Gt−1 (x). The step length ηt is typically unity, and will be
discussed in Section ??.

2. Choose an index j ∈ {1...N}, and update the corresponding approximating subfunction
gti (x) using a second order power series around xt, while leaving all other subfunctions
unchanged,

gti (x) =


gt−1i (x) i 6= j fi (xt)

+ (x− xt)
T
f ′i (xt)

+ 1
2 (x− xt)

T
Ht
i (x− xt)

 i = j
. (8)

The constant and first order term in Equation 8 are set by evaluating the subfunction and gradient,
fj (xt) and f ′j (xt). The quadratic term Ht

j is set by using the BFGS algorithm to generate an online
approximation to the true Hessian of subfunction j based on its history of gradient evaluations (see
Section A.4). The Hessian of the summed approximating function Gt (x) in Equation 7 is the sum
of the Hessians for each gtj (x), Ht =

∑
jH

t
j .
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A.3 A Shared, Adaptive, Low-Dimensional Representation

The dimensionality M of x ∈ RM is typically large. As a result, the memory and computational
cost of working directly with the matrices Ht

i ∈ RM×M is typically prohibitive, as is the cost of
storing the history terms ∆f ′ and ∆x required by BFGS (see Section A.4). To reduce the dimen-
sionality from M to a tractable value, all history is instead stored and all updates computed in a
lower dimensional subspace, with dimensionality between Kmin and Kmax. This subspace is con-
structed such that it includes the most recent gradient and position for every subfunction, and thus
Kmin ≥ 2N . This guarantees that the subspace includes both the steepest gradient descent direction
over the full batch, and the update directions from the most recent Newton steps (Equation 7).

For the results in this paper, Kmin = 2N and Kmax = 3N . The subspace is represented by the
orthonormal columns of a matrix Pt ∈ RM×Kt

, (Pt)
T
Pt = I. Kt is the subspace dimensionality

at optimization step t.

A.3.1 Expanding the Subspace with a New Observation

At each optimization step, an additional column is added to the subspace, expanding it to include
the most recent gradient direction. This is done by first finding the component in the gradient vector
which lies outside the existing subspace, and then appending that component to the current subspace,

qorth = f ′j
(
xt
)
−Pt−1

(
Pt−1

)T
f ′j
(
xt
)
, (9)

Pt =

[
Pt−1

qorth

||qorth||

]
, (10)

where j is the subfunction updated at time t. The new position xt is included automatically, since
the position update was computed within the subspace Pt−1. Vectors embedded in the subspace
Pt−1 can be updated to lie in Pt simply by appending a 0, since the first Kt−1 dimensions of Pt
consist of Pt−1.

A.3.2 Restricting the Size of the Subspace

In order to prevent the dimensionality Kt of the subspace from growing too large, whenever Kt >
Kmax, the subspace is collapsed to only include the most recent gradient and position measurements
from each subfunction. The orthonormal matrix representing this collapsed subspace is computed
by a QR decomposition on the most recent gradients and positions. A new collapsed subspace is
thus computed as,

P′ = orth
([
f ′1

(
xτ

t
1

)
· · · f ′N

(
xτ

t
N

)
xτ

t
1 · · ·xτ

t
N

])
, (11)

where τ ti indicates the learning step at which the ith subfunction was most recently evaluated, prior
to the current learning step t. Vectors embedded in the prior subspace P are projected into the
new subspace P′ by multiplication with a projection matrix T = (P′)

T
P. Vector components

which point outside the subspace defined by the most recent positions and gradients are lost in this
projection.

Note that the subspace P′ lies within the subspace P. The QR decomposition and the projection ma-
trix T are thus both computed within P, reducing the computational and memory cost (see Section
B.1).

A.4 Online Hessian Approximation

An independent online Hessian approximation Ht
j is maintained for each subfunction j. It is com-

puted by performing BFGS on the history of gradient evaluations and positions for that single sub-
function1.

1We additionally experimented with Symmetric Rank 1 [10] updates to the approximate Hessian, but found
they performed worse than BFGS. See Figure D.1.
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Optimizer Computation per pass Memory use

SFO O
(
QN +MN2

)
O (MN)

SFO, ‘sweet spot’ O (QN) O (MN)
LBFGS O (QN +ML) O (ML)
SGD O (QN) O (M)
AdaGrad O (QN) O (M)
SAG O (QN) O (MN)

Table A.1: Leading terms in the computational cost and memory requirements for SFO and several
competing algorithms. Q is the cost of computing the value and gradient for a single subfunction,
M is the number of data dimensions, N is the number of subfunctions, and L is the number of
history terms retained. “SFO, ‘sweet spot”’ refers to the case discussed in Section B.1.1 where the
minibatch size is adjusted to match computational overhead to subfunction evaluation cost. For this
table, it is assumed that M � N � L.

A.4.1 History Matrices

For each subfunction j, we construct two matrices, ∆f ′ and ∆x. Each column of ∆f ′ holds the
change in the gradient of subfunction j between successive evaluations of that subfunction, including
all evaluations up until the present time. Each column of ∆x holds the corresponding change in the
position x between successive evaluations. Both matrices are truncated after a number of columns
L, meaning that they include information from only the prior L + 1 gradient evaluations for each
subfunction. For all results in this paper, L = 10 (identical to the default history length for the
LBFGS implementation used in Section 3).

A.4.2 BFGS Updates

The BFGS algorithm functions by iterating through the columns in ∆f ′ and ∆x, from oldest to
most recent. Let s be a column index, and Bs be the approximate Hessian for subfunction j after
processing column s. For each s, the approximate Hessian matrix Bs is set so that it obeys the
secant equation ∆f ′s = Bs∆xs, where ∆f ′s and ∆xs are taken to refer to the sth columns of the
gradient difference and position difference matrix respectively.

In addition to satisfying the secant equation, Bs is chosen such that the difference between it and the
prior estimate Bs−1 has the smallest weighted Frobenius norm2. This produces the standard BFGS
update equation

Bs = Bs−1 +
∆f ′s∆f

′T
s

∆f ′Ts ∆xs
− Bs−1∆xs∆xTs Bs−1

∆xTs Bs−1∆xs
. (12)

The final update is used as the approximate Hessian for subfunction j, Ht
j = Bmax(s).

B Properties

B.1 Computational Overhead and Storage Cost

Table A.1 compares the cost of SFO to competing algorithms. The dominant computational costs
are the O (MN) cost of projecting the M dimensional gradient and current parameter values into
and out of the O (N) dimensional active subspace for each learning iteration, and the O (Q) cost of
evaluating a single subfunction. The dominant memory cost isO (MN), and stems from storing the
active subspace Pt. Table B.1 provides the contribution to the computational cost of each component
of SFO. Figure A.1 plots the computational overhead per a full pass through all the subfunctions
associated with SFO as a function of M and N . If each of the N subfunctions corresponds to a
minibatch, then the computational overhead can be shrunk as described in Section B.1.1.

2The weighted Frobenius norm is defined as ||E||F,W = ||WEW||F . For BFGS, W = B
− 1

2
s [24]. Equiv-

alently, in BFGS the unweighted Frobenius norm is minimized after performing a linear change of variables to
map the new approximate Hessian to the identity matrix.
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(c)

Figure A.1: An exploration of computational overhead and optimizer performance, especially as the
number of minibatches or subfunctions N is adjusted. (a) Computational overhead required by SFO
for a full pass through all the subfunctions as a function of dimensionality M for fixed N = 100.
(b) Computational overhead of SFO as a function of N for fixed M = 106. Both plots show
the computational time required for a full pass of the optimizer, excluding time spent computing
the target objective and gradient. This time is dominated by the O

(
MN2

)
cost per pass of N

iterations of subspace projection. CPU indicates that all computations were performed on a 2012
Intel i7-3970X CPU (6 cores, 3.5 GHz). GPU indicates that subspace projection was performed on
a GeForce GTX 660 Ti GPU. (c) Optimization performance on the two convex problems in Section
3 as a function of the number of minibatches N . Note that near maximal performance is achieved
after breaking the target problem into only a small number of minibatches.

Without the low dimensional subspace, the leading term in the computational cost of SFO would be
the far larger O

(
M2.4

)
cost per iteration of inverting the approximate Hessian matrix in the full M

dimensional parameter space, and the leading memory cost would be the far larger O
(
M2N

)
from

storing an M ×M dimensional Hessian for all N subfunctions.
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B.1.1 Ideal Minibatch Size

Many objective functions consist of a sum over a number of data points D, where D is often larger
than M . For example, D could be the number of training samples in a supervised learning problem,
or data points in maximum likelihood estimation. To control the computational overhead of SFO
in such a regime, it is useful to choose each subfunction in Equation 5 to itself be a sum over a
minibatch of data points of size S, yieldingN = D

S . This leads to a computational cost of evaluating
a single subfunction and gradient of O (Q) = O (MS). The computational cost of projecting this
gradient from the full space to the shared N dimensional adaptive subspace, on the other hand, is
O (MN) = O

(
M D

S

)
. Therefore, in order for the costs of function evaluation and projection to be

the same order, the minibatch size S should be proportional to
√
D, yielding

N ∝
√
D. (13)

The constant of proportionality should be chosen small enough that the majority of time is spent
evaluating the subfunction. In most problems of interest,

√
D � M , justifying the relevance of

the regime in which the number of subfunctions N is much less than the number of parameters
M . Finally, the computational and memory costs of SFO are the same for sparse and non-sparse
objective functions, while Q is often much smaller for a sparse objective. Thus the ideal S (N ) is
likely to be larger (smaller) for sparse objective functions.

Note that as illustrated in Figure A.1c and Figure 2 performance is very good even for small N .

B.2 Convergence

Concurrent work by [21] considers a similar algorithm to that described in Section A.2, but with
Ht
i a scalar constant rather than a matrix. Proposition 6.1 in [21] shows that in the case that each

gi majorizes its respective fi, and subject to some additional smoothness constraints, Gt (x) mono-
tonically decreases, and x∗ is an asymptotic stationary point. Proposition 6.2 in [21] further shows
that for strongly convex fi, the algorithm exhibits a linear convergence rate to x∗. A near identical
proof should hold for a simplified version of SFO, with random subfunction update order, and with
Ht
i regularized in order to guarantee satisfaction of the majorization condition.

C Computational Complexity

Here we provide a description of the computational cost of each component of the SFO algorithm.
See Table B.1. The computational cost of matrix multiplication for N × N matrices is taken to be
O
(
N2.4

)
.

C.1 Function and Gradient Computation

By definition, the cost of computing the function value and gradient for each subfunction is O (Q),
and this must be doneN times to complete a full effective pass through all the subfunctions, yielding
a total cost per pass of O (QN).

C.2 Subspace Projection

Once per iteration, the updated parameter values xt must be projected from the N dimensional
adaptive low dimensional subspace into the full M dimensional parameter space. Similarly, once
per iteration the gradient must be projected from the fullM dimensional parameter space into theN
dimensional subspace. See Section A.3. Additionally the residual of the gradient projection must be
appended to the subspace as described in Equation 10. Each of these operations has cost O (MN),
stemming from multiplication of a parameter or gradient vector by the subspace matrix Pt. They are
performed N times per effective pass through the data, yielding a total cost per pass of O

(
MN2

)
.

C.3 Subspace Collapse

In order to constrain the dimensionality Kt of the subspace to remain order O (N), the subspace
must be collapsed every O (N) steps, or O (1) times per pass. This is described in Section A.3.2.
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The collapsed subspace is computed using a QR decomposition on the history terms (see Equation
11) within the current subspace, with computational complexity O

(
N3
)
. The old subspace matrix

P is then projected into the new subspace matrix P′, involving the multiplication of a O (M ×N)
matrix with aO (N ×N) projection matrix, with corresponding complexityO

(
MN1.4

)
. The total

complexity per pass is thus O
(
MN1.4 +N3

)
.

C.4 Minimize Gt (x)

Gt (x) is minimized by an explicit matrix inverse in Equation 7. Computing this inverse has cost
O
(
N2.4

)
, and must be performed N times per effective pass through the data.

With only small code changes, this inverse could instead be updated each iteration using the Wood-
bury identity and the inverse from the prior step, with cost O

(
N2
)
. However, minimization of

Gt (x) is not a leading contributor to the overall computational cost, and so increasing its efficiency
would have little effect.

C.5 BFGS

The BFGS iterations are performed in the O (L) dimensional subspace defined by the columns of
∆f ′ and ∆x. Since BFGS consists of L rank two updates of an O (L× L) matrix, the cost of
performing BFGS iterations is O

(
L3
)
. See Section A.4.2. The cost of using a QR decomposition

to compute the L dimensional subspace defined by the columns of ∆f ′ and ∆x is O
(
NL2

)
, and

the cost of projecting the L history terms of length N into the subspace is O
(
NL1.4

)
. BFGS

is performed N times per effective pass through the data. The total cost of BFGS is therefore
O
(
N2L2 +NL3

)
.

In the current implementation, the full BFGS chain for a subfunction is recomputed every iteration.
However, BFGS could be modified to only compute the rank two update to the prior Hessian ap-
proximation at each iteration. This would sacrifice the history-dependent initialization described in
Section ??. The resulting complexity per iteration would instead beO

(
N2
)
, and the computational

complexity per pass would instead beO
(
N3
)
. BFGS is also not a leading contributor to the overall

computational cost, and so increasing its efficiency would have little effect.

D Objective Functions

A more detailed description of the objective functions used for experiments in the main text follows.

D.1 Logistic Regression

We chose the logistic regression objective, L2 regularization penalty, and training dataset to be
identical to the protein homology test case in the recent Stochastic Average Gradient paper [27], to
allow for direct comparison of techniques. The one difference is that our total objective function
is divided by the number of samples per minibatch, but unlike in [27] is not also divided by the
number of minibatches. This different scaling places the hyperparameters for all optimizers in the
same range as for our other experiments.

D.2 Autoencoder

We trained a contractive autoencoder, which penalizes the Frobenius norm of the Jacobian of the
encoder function, on MNIST digits. Autoencoders of this form have been successfully used for
learning deep representations in neural networks [25]. Sigmoid nonlinearities were used for both
encoder and decoder. The regularization penalty was set to 1, and did not depend on the num-
ber of hidden units. The reconstruction error was divided by the number of training examples per
minibatch. There were 784 visible units, and 256 hidden units.

11



D.3 Independent Components Analysis

We trained an Independent Components Analysis (ICA) [2] model with Student’s t-distribution prior
on MNIST digits by minimizing the negative log likelihood of the ICA model under the digit images.
Both the receptive fields and the Student’s t shape parameter were estimated. Digit images were
preprocessed by performing PCA whitening and discarding components with variance less than
10−4 times the maximum variance. The objective function was divided by the number of training
examples per minibatch.

D.4 Ising Model / Hopfield Network via MPF

We trained an Ising/Hopfield model on MNIST digits, using code from [17]. Optimal Hopfield
network storage capacity can be achieved by training the corresponding Ising model via MPF [17,
32, 31]. The MPF objective was divided by the number of training examples per minibatch. An L2
regularization penalty with coefficient 0.01 was added to the objective for each minibatch.

D.5 Multilayer Perceptron

We trained a deep neural network to classify digits on the MNIST digit recognition benchmark. We
used a similar architecture to [18]. Our network consisted of: 784 input units, one hidden layer of
1200 units, a second hidden layer of 1200 units, and 10 output units. We ran the experiment using
both rectified linear and sigmoidal units. The objective used was the standard softmax regression
on the output units. Theano [3] was used to implement the model architecture and compute the
gradient.

D.6 Deep Convolutional Network

We trained a deep convolutional network on CIFAR-10 using max pooling and rectified linear units.
The architecture we used contains two convolutional layers with 48 and 128 units respectively,
followed by one fully connected layer of 240 units. This architecture was loosely based on [14].
Pylearn2 [15] and Theano were used to implement the model.

E Implementation Details

Here we expand on the implementation details for SFO. Figure D.1 provides empirical motivation
for several of the design choices made in this paper, by showing the change in convergence traces
when those design choices are changed. Note that even when these design choices are changed,
convergence is still more rapid than for the competing techniques in Figure 2.

E.1 BFGS Initialization

No History An approximate Hessian can only be computed as described in Section A.4 after mul-
tiple gradient evaluations. If a subfunction j only has one gradient evaluation, then its approximate
Hessian Ht

j is set to the identity times the median eigenvalue of the average Hessian of the other
active subfunctions. If j is the very first subfunction to be evaluated, Ht

j is initialized as the identity
matrix times a large positive constant (106).

The First BFGS Step The initial approximate Hessian matrix used in BFGS is set to a scaled
identity matrix, so that B0 = βI. This initialization will be overwritten by Equation 12 for all
explored directions. It’s primary function, then, is to set the estimated Hessian for unexplored direc-
tions. Gradient descent routines tend to progress from directions with large slopes and curvatures,
and correspondingly large eigenvalues, to directions with shallow slopes and curvatures, and smaller
eigenvalues. The typical eigenvalue in an unexplored direction is thus expected to be smaller than
in previously explored directions. We therefore set β using a measure of the smallest eigenvalue in
an explored direction

The scaling factor β is set to the smallest non-zero eigenvalue of a matrix Q, β = minλQ>0 λQ,
where λQ indicates the eigenvalues of Q. Q is the symmetric matrix with the smallest Frobenius
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norm which is consistent with the squared secant equations for all columns in ∆f ′ and ∆x. That is,

Q =
[
(∆x)

+T
(∆f ′)

T
∆f ′(∆x)

+
] 1

2

, (14)

where + indicates the pseudoinverse, and 1
2 indicates the matrix square root. All of the eigenvalues

of Q are non-negative. Q and λQ are computed in the subspace defined by ∆f ′ and ∆x, reducing
computational cost (see Section B.1).

E.2 Enforcing Positive Definiteness

It is typical in quasi-Newton techniques to enforce that the Hessian approximation remain positive
definite. In SFO, at the end of the BFGS procedure, each Ht

i is constrained to be positive definite by
performing an eigendecomposition, and setting any eigenvalues which are too small to the median
positive eigenvalue. The median is used because it provides a measure of “typical” curvature. When
an eigenvalue is negative (or extremely close to 0), it provides a poor estimate of curvature over the
interval required to reach a minimum in the direction of the corresponding eigenvector. Replacing it
with the median eigenvalue therefore provides a more reasonable estimate. If λmax is the maximum
eigenvalue of Ht

i, then any eigenvalues smaller than γλmax are set to be equal to medianλ>0 λ.
For all experiments shown here, γ = 10−8. As described in Section A.3, a shared low dimensional
representation makes this eigenvalue computation tractable.

E.3 Choosing a Target Subfunction

The subfunction j to update in Equation 8 is chosen as,

j = argmax
i

[
xt − xτi

]T
Ht
[
xt − xτi

]
, (15)

where τi indicates the time at which subfunction i was last evaluated.

That is, the updated subfunction is the one which was last evaluated farthest from the current lo-
cation, using the approximate Hessian as a metric. This is motivated by the observation that the
approximating functions which were computed farthest from the current location tend to be the
functions which are least accurate at the current location, and therefore the most useful to update.
This contrasts with the cyclic choice of subfunction in [4], and the random choice of subfunction
in [27]. See Figure D.1 for a comparison of the optimization performance corresponding to each
update ordering scheme.

E.4 Growing the Number of Active Subfunctions

For many problems of the form in Equation 1, the gradient information is nearly identical between
the different subfunctions early in learning. We therefore begin with only a small number of active
subfunctions, and expand the active set as learning progresses. We expand the active set by one
subfunction every time the average gradient shrinks to within a factor α of the standard error in
the average gradient. This comparison is performed using the inverse approximate Hessian as the
metric. That is, we increment the active subset whenever

(
f̄ ′t
)T

Ht−1f̄ ′t < α

∑
i (f ′ti )

T
Ht−1f ′ti

(N t − 1)N t
, (16)

where N t is the size of the active subset at time t, Ht is the full Hessian, and f̄ ′t is the average
gradient,

f̄ ′t =
1

N t

∑
i

fi
′ (xti) . (17)

For all the experiments shown here, α = 1, and the initial active subset size is two. We additionally
increased the active active subset size by 1 when a bad update is detected (Section ??) or when a full
pass through the active batch occurs without a batch size increase. See Figure D.1 for a comparison
to the case where all subfunctions are initially active.
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E.5 Detecting Bad Updates

For some ill-conditioned problems, such as ICA with a Student’s t-prior (see Section 3), we addi-
tionally found it necessary to identify bad proposed parameter updates. In BFGS and LBFGS, bad
update detection is also performed, but it is achieved via a line search on the full objective. Since we
only evaluate a single subfunction per update step, a line search on the full objective is impossible.
Updates are instead labeled bad when the value of a subfunction has increased since its previous
evaluation, and also exceeds its approximating function by more than the corresponding reduction
in the summed approximating function (ie fj (xt)− gt−1j (xt) > Gt−1

(
xt−1

)
−Gt−1 (xt)).

When a bad update proposal is detected, xt is reset to its previous value xt−1. The BFGS his-
tory matrices ∆f ′ and ∆x are also updated to include the change in gradient in the failed update
direction. Additionally, after a failed update, the update step length in Equation 7 is temporarily
shortened. It then decays back towards 1 with a time constant of one data pass. That is, the step
length is updated as,

ηt+1 =

{
1
N + N−1

N ηt successful update
1
2η
t failed update

. (18)

This temporary shortening of the update step length is motivated by the observation that when the
approximate Hessian for a single subfunction becomes inaccurate it has often become inaccurate for
the remaining subfunctions as well, and failed update steps thus tend to co-occur.
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Figure D.1: SFO is insensitive to several specific design decisions. Plots showing the consequences
of changing several of the design choices made in SFO for (a) the logistic regression objective, and
(b) the Ising / Hopfield objective. SFO as described in this paper corresponds to the SFO standard
line. All other lines correspond to changing a single design choice. SFO rank 1 corresponds to using
a rank 1 rather than BFGS update (Section A.4). SFO all active corresponds to starting optimization
with all the subfunctions active. SFO random and SFO cyclic correspond to random and cyclic
update ordering, rather than maximum distance ordering. For all design choices, SFO outperforms
all other techniques in Figure 2.
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Operation One time cost Repeats per pass Cost per pass

Function and gradient computation O (Q) O (N) O (QN)
Subspace projection O (MN) O (N) O

(
MN2

)
Subspace collapse O

(
MN1.4 +N3

)
O (1) O

(
MN1.4 +N3

)
Minimize Gt (x) ≤ O

(
N2.4

)
O (N) ≤ O

(
N3.4

)
BFGS ≤ O

(
NL2 + L3

)
O (N) ≤ O

(
N2L2 +NL3

)
Total O

(
QN +MN2 +N3.4 +N2L2 +NL3

)
Table B.1: Computational cost for components of SFO. Q is the cost of evaluating the objective
function and gradient for a single subfunction, M is the number of parameter dimensions, N is
the number of subfunctions, L is the number of history terms kept per subfunction. Typically,
M � N � L. In this case all contributions besides O

(
QN +MN2

)
become small. Additionally

the number of subfunctions can be chosen such that O (QN) = O
(
MN2

)
(see Section B.1.1).

Contributions labeled with ‘≤’ could be reduced with small changes in implementation, as described
in Section C. However as also discussed, and as illustrated by Figure A.1, they are not typically the
leading terms in the cost of the algorithm.
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